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Computation of inertial manifolds in biological models.

FitzHugh-Nagumo model

Cristina Nartea

Abstract. Inertial manifolds are related to the large time behaviour of dynamical
systems. An algorithm, based on the Lyapunov-Perron method, is implemented here
and used to construct a sequence of approximate inertial manifolds for a biological
model. The hypotheses of the Jolly, Rosa, Temam’s algorithm are verified for the
FitzHugh-Nagumo model in the case of real eigenvalues. This algorithm is used for
the construction of approximate inertial manifolds.
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1 Introduction

The purpose of this paper is to study the approximate inertial manifolds for
FitzHugh-Nagumo model, in the case of real eigenvalues using an algorithm devel-
oped by Jolly, Rosa and Temam in [5,6].

Let us consider the abstract evolution equation

du

dt
+ Au = f(u), (1)

with the initial condition u(0) = u0. Using the associated semigroup {S(t)}t≥0,
where S(t) : u0 → u(t), u(·) is the solution of (1), with u(0) = u0, the definition of
inertial manifolds is given below.

Definition 1. [8]. An inertial manifold M is a finite-dimensional Lipschitz man-
ifold, positively invariant (i.e. S(t)M ⊂ M, t ≥ 0) and which exponentially attracts
all orbits of (1).

Any inertial manifold contains the global attractor; and it is easier to describe
then the attractor.

An approximate inertial manifold (a.i.m.) is a smooth finite dimensional man-
ifold of the phase space which attracts all orbits to a thin neighborhood of it in a
finite time uniformly with respect to the initial conditions from a given bounded
set. This neighborhood contains the global attractor. The a.i.m.s are useful when
an inertial manifold is not known to exist or its exact representation is not known,
or when the dimension of the inertial manifold is too high and we want an approx-
imation by a lower finite dimensional system. The algorithm we use in this paper
keeps constant the dimension of the a.i.m.s.
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2 The algorithm

In [5] and [6] was developed an algorithm for the computation of inertial mani-
folds. The assumptions presented below guarantee the existence of an inertial man-
ifold and also the convergence of the algorithm.

Consider the equation (1), u(0) = u0, where A is a linear operator, u ∈ E and
E is a Banach space.

A1. The nonlinear term f is globally Lipschitz continuous from E into another
Banach space F , E ⊂ F ⊂ E , the injections being continuous, each space dense in
the following one, and E is a Banach space. It follows that

|f(u)|F ≤ M0 + M1|u|E ,

for M0 ≥ 0.

A2. The linear operator −A generates a strongly continuous semigroup
{e−tA}t≥0 of bounded operators on E such that e−tAF ⊂ E for all t > 0.

A3. There exist two sequences of numbers {λn}n1
n=n0

, {Λn}n1
n=n0

, n0 ∈ N, n1 ∈
N ∪ ∞ such that 0 < λn ≤ Λn, for all n0 ≤ n ≤ n1, and a sequence of finite-
dimensional projectors {Pn}n1

n=n0
such that PnE is invariant under e−tA for t ≥ 0,

and {e−tA|PnE}t≥0 can be extended to a strongly continuous semigroup {e−tAPn}t∈R

of bounded operators on PnE with

‖e−tAPn‖L(E) ≤ K1e
−λnt, t ≤ 0,

‖e−tAPn‖L(F,E) ≤ K1λ
α
ne−λnt, t ≤ 0,

QnE is positively invariant under e−tA for t ≥ 0, with

‖e−tAQn‖L(E) ≤ K2e
−Λnt, t ≥ 0,

‖e−tAQn‖L(F,E) ≤ K2(t
−α + Λα

n)e−Λnt, t > 0,

where K1,K2 ≥ 1 and 0 ≤ α < 1.

A4. The equation (1) has a continuous semiflow {S(t)}t≥0 in E.

A5. There exists K3 ≥ 0 independent of n such that ‖APn‖L(E) ≤ K3λn.

A6. A is invertible.

A7. The spectral gap condition

Λn − λn > 3M1K1K2[λ
α
n + (1 + γα)Λα

n],

holds for some n ∈ N, where γα =







∞
∫

0

e−rr−αdr, if 0 < α < 1,

0, if α = 0.
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3 An alternative formulation of the FitzHugh-Nagumo Model

The FitzHugh-Nagumo system [1], modelling the electrical potential in the nodal
system of the heart, reads

{

ẋ = c(x + y − x3/3),
ẏ = −(x − a + by)/c.

(2)

To its solution the initial condition x(0) = x0, y(0) = y0 is imposed, where x, y rep-
resent the electrical potential of the cell membrane and the excitability, respectively,
a, b are real parameters depending on the number of channels of the cell membrane
which are open for the ions of K+ and Ca++ and c > 0 is the relaxation parameter.

In [2, 3] the global bifurcation diagram provides the qualitative responses of the
model for all values of the parameters.

In order to apply to the FitzHugh-Nagumo model the numerical algorithm, this
model must be reformulated in an appropriate way. This is done in the present
section.

With the notation

A =

(

−c −c
1/c b/c

)

, f(x, y) =

(

−cx3/3
a/c

)

. (3)

system (2) can be written as
ẋ + Ax = f(x), (4)

where x = (x, y).
The eigenvalues of A are

λ1 =
b − c2 −

√

(c2 + b)2 − 4c2

2c
, λ2 =

b − c2 +
√

(c2 + b)2 − 4c2

2c

and the corresponding eigenvectors, read v1 = (1,−c + λ1

c
), v2 = (1,−c + λ2

c
).

We perform the following change of variables

x = Tu, (5)

where u = (u1, u2) and T contains the eigenvectors of A, i.e.

T =

(

1 1

−c + λ1

c
−c + λ2

c

)

. (6)

Then, equation (4) becomes

T u̇ + ATu = f(Tu).

Multiplying the last equation by T−1, we obtain

u̇ + T−1ATu = T−1f(Tu),
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Denoting B = T−1AT and g(u) = T−1f(Tu), we obtain the modified FitzHugh-
Nagumo system, which will be studied further in this paper, namely

u̇ + Bu = g(u), (7)

where B is the diagonal matrix
(

ζ 0
0 η

)

(8)

with

ζ = −c4 + 2bc2 + c2
√

(c2 + b)2 − 4c2 − 4c2 + b2 − b
√

(c2 + b)2 − 4c2

2c
√

(c2 + b)2 − 4c2
,

η =
c4 + 2bc2 − c2

√

(c2 + b)2 − 4c2 − 4c2 + b2 + b
√

(c2 + b)2 − 4c2

2c
√

(c2 + b)2 − 4c2
,

and

g(u) =















−(c2 + b +
√

(c2 + b)2 − 4c2)(u1 + u2)
3c

2
√

(c2 + b)2 − 4c2
+

ca
√

(c2 + b)2 − 4c2

(c2 + b −
√

(c2 + b)2 − 4c2)(u1 + u2)
3c

2
√

(c2 + b)2 − 4c2
− ca
√

(c2 + b)2 − 4c2















. (9)

4 Checking the hypotheses of the algorithm for the modified

FitzHugh-Nagumo model

We deal only with the case of real eigenvalues, i.e. b ∈ (−∞,−c2 − 2c] ∪ [−c2 +
2c,+∞), because for complex eigenvalues we cannot choose λn and Λn to satisfy the
conditions A3 and A7 of the numerical algorithm.

We consider E = F = E = R
2.

Assumption A1. The first assumption is that the nonlinear term g is globally
Lipschitz. In order to have this condition fulfilled, we shall further use the prepared
equation, as in like [6]. First we verify the Lipschitz condition for g restricted to
the disk of radius r and then we construct the prepared equation, inside the ball of
radius ρ the flow of the initial one, being the same with that of the prepared one.

First we compute the Lipschitz constant for each component of g = (g1, g2), and
then for g. Let u = (u1, u2),v = (v1, v2) be in the disk of radius r, i.e. u2

1 + u2
2 ≤ r2

and v2
1 + v2

2 ≤ r2. We use the norm ‖u‖ = max{|u1|, |u2|}.

|g1(u1, u2)−g1(v1, v2)| =

∣

∣

∣

∣

∣

c(c2 + b +
√

(c2 + b)2 − 4c2)[−(u1 + u2)
3 + (v1 + v2)

3]

2
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

=
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= c

∣

∣

∣

∣

∣

c2 + b +
√

(c2 + b)2 − 4c2

2
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

· |v1 + v2 −u1 −u2| · |v2
1 + v2

2 − v1v2 −u2
1 −u2

2 +u1u2|.

Using |v1 + v2 − u1 − u2| ≤ |v1 − u1| + |v2 − u2| ≤ 2max{|v1 − u1|, |v2 − u2|} =
‖(u1, u2) − (v1, v2)‖ and |u1|, |u2|, |v1|, |v2| ≤ r, we obtain

|g1(u1, u2) − g1(v1, v2)| ≤ c

∣

∣

∣

∣

∣

c2 + b +
√

(c2 + b)2 − 4c2

2
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

· 2‖(u1, u2) − (v1, v2)‖ · 6r2.

Hence,

|g1(u1, u2) − g1(v1, v2)| ≤ c

∣

∣

∣

∣

∣

c2 + b +
√

(c2 + b)2 − 4c2

√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

· 6r2‖(u1, u2) − (v1, v2)‖

and

|g2(u1, u2) − g2(v1, v2)| ≤ c

∣

∣

∣

∣

∣

c2 + b −
√

(c2 + b)2 − 4c2

√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

· 6r2‖(u1, u2) − (v1, v2)‖.

We conclude that

‖g(u) − g(v)‖ ≤ Mr‖u − v‖, (10)

where

Mr =
6cr2

√

(c2 + b)2 − 4c2
max{|c2 +b+

√

(c2 + b)2 − 4c2|, |c2 +b−
√

(c2 + b)2 − 4c2|}.

(11)
Now we determine M such that ‖g(u)‖ ≤ M , for u inside the disk of radius r.

We have

‖g(u)‖ = max

{∣

∣

∣

∣

∣

− (c2 + b +
√

(c2 + b)2 − 4c2)(u1 + u2)
3c

2
√

(c2 + b)2 − 4c2
+

ca
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

(c2 + b −
√

(c2 + b)2 − 4c2)(u1 + u2)
3c

2
√

(c2 + b)2 − 4c2
− ca
√

(c2 + b)2 − 4c2

∣

∣

∣

∣

∣

}

≤

≤ max{|c2 + b +
√

(c2 + b)2 − 4c2|, |c2 + b −
√

(c2 + b)2 − 4c2|}
2
√

(c2 + b)2 − 4c2
c|u1 + u2|3+

+
c|a|

√

(c2 + b)2 − 4c2
.

Since |u1|, |u2| ≤ r, we have |u1 + u2| ≤ 2r and |u1 + u2|3 ≤ 8r3. Thus,

‖g(u)‖ ≤ 4cr3 max{|c2 + b +
√

(c2 + b)2 − 4c2|, |c2 + b −
√

(c2 + b)2 − 4c2|} + c|a|
√

(c2 + b)2 − 4c2
.

(12)
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The prepared equation is

du

dt
+ Bu = gρ(u), (13)

where gρ(u) = χρ(r)g(u), χρ(r) = χ

(

r2

ρ2

)

, χ ∈ C1(R+), χ/[0,1] = 1,

χ/[2,∞) = 0, 0 ≤ χ(s) ≤ 1,∀s ∈ [1, 2]. Thus, the nonlinear term, gρ(u) is zero

outside the ball of radius ρ
√

2. For χ(s) = 2(s−1)3−3(s−1)2 +1, s ∈ [1, 2], χ′(s) =

6(s2−3s+2), hence χ′(s) ∈
[

−3

2
, 0

]

, i.e. χ′(s) ≤ 3

2
. For s ∈ R\[1, 2], χ′(s) = 0 ≤ 3

2
.

Let us compute the Lipschitz constant for gρ. For u2
1 +u2

2 ≤ r2
1 and v2

1 +v2
2 ≤ r2

2,
we have

‖gρ(u) − gρ(v)‖ = ‖χρ(r1)g(u) − χρ(r2)g(v)‖ = ‖χ
(

r2
1

ρ2

)

g(u) − χ

(

r2
2

ρ2

)

g(v)‖ =

= ‖χ
(

r2
1

ρ2

)

g(u) − χ

(

r2
2

ρ2

)

g(u) + χ

(

r2
2

ρ2

)

g(u) − χ

(

r2
2

ρ2

)

g(v)‖ ≤

≤ |χ
(

r2
1

ρ2

)

− χ

(

r2
2

ρ2

)

| · ‖g(u)‖ + |χ
(

r2
2

ρ2

)

| · ‖g(u) − g(v)‖ ≤

≤ |χ′(ξ)| ·
∣

∣

∣

∣

r2
1 − r2

2

ρ2

∣

∣

∣

∣

· ‖g(u)‖ + ‖g(u) − g(v)‖.

We have used the Lagrange Theorem, with ξ between
r2
1

ρ2
and

r2
2

ρ2
, and

∣

∣

∣

∣

χ

(

r2
2

ρ2

)∣

∣

∣

∣

≤ 1. Since |χ′(ξ)| ≤ 3

2
, using (10) we obtain

‖gρ(u) − gρ(v)‖ ≤ 3

2ρ2
|r1 + r2| · |r1 − r2| · ‖g(u)‖ + Mr‖u − v‖,

with Mr defined in (11).

If r2
1,2 > 2ρ2, then ‖gρ(u)−gρ(v)‖ = 0. If r2

1,2 ≤ 2ρ2, then |r1−r2| ≤
√

2‖u−v‖
and thus, ‖gρ(u) − gρ(v)‖ ≤ 3

2ρ2
2ρ

√
2 ·

√
2‖u − v‖ · ‖g(u)‖ + Mr‖u − v‖. Using

r2
1,2 ≤ 2ρ2 in (12) and (11), we obtain

‖gρ(u) − gρ(v)‖ ≤ Mρ‖u − v‖ (14)

where

Mρ =
max{|c2 + b +

√

(c2 + b)2 − 4c2|, |c2 + b −
√

(c2 + b)2 − 4c2|}
√

(c2 + b)2 − 4c2
×

×(48
√

2 + 12)cρ2 +
6c|a|

ρ
√

(c2 + b)2 − 4c2
(15)
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Assumption A3. We choose the following projectors

P =

(

1 0
0 0

)

, Q =

(

0 0
0 1

)

.

We have ‖e−tBP‖ = e−λ1t and ‖e−tBQ‖ = e−λ2t. We have to choose 0 < λn ≤ Λn

to satisfy the conditions A3.
I. The case 0 < λ1 ≤ λ2. We have ‖e−tBP‖ = e−λ1t ≤ 1e−λ1t, ∀t ≤ 0,
‖e−tBQ‖ = e−λ2t ≤ 1e−λ2t, ∀t ≥ 0. So, we can choose λn = λ1, Λn = λ2,
K1 = 1, K2 = 1 and α = 0.

II. The case λ1 ≤ 0 < λ2. ‖e−tBP‖ = e−λ1t ≤ e0 < 1e−10−1t, ∀t ≤ 0,
‖e−tBQ‖ = e−λ2t ≤ 1e−λ2t, ∀t ≥ 0. Consequently, for λn = 10−1, Λn = λ2,
K1 = 1, K2 = 1 and α = 0, we have A3 satisfied if λ2 ≥ 10−1.

III. The case λ1 < λ2 ≤ 0. In this case we can not have the conditions A3
satisfied. This would imply that e−λ2t ≤ K2e

−Λnt for all t ≥ 0, i.e. Λn ≤ λ2 < 0,
which is impossible. Thus, in this case, we can not apply this algorithm.

Assumption A5. ‖BP‖ = |λ1|. In the first case, λ1 > 0, hence ‖BP‖ = λ1,
λn = λ1, and K3 = 1. In the second case λ1 < 0 and we must have ‖BP‖ = −λ1 ≤
K3λn, where λn =

1

10
.

In conclusion, there exists K3 ≥ 0 independent of n such that ‖BP‖ ≤ K3λn,
for λn defined as above.

Assumption A7 (Spectral Gap Condition). We must have Λn − λn >
3MρK1K2[λ

α
n + (1 + γα)Λα

n]. For α = 0, we have γα = 0, the condition reads then

Λn − λn > 6Mρ, (16)

with Mρ defined in (15).

5 The approximate inertial manifolds for the prepared equation

Using the Jolly, Rosa, Temam’s algorithm (see [5],[6]), we have implemented a
program, using Scilab software (see [10]), for the construction of approximate inertial
manifolds.

The approximate inertial manifolds are the collections of trajectories given by
Mj = graphΦj, where Φj : PR

2 → QR
2, Φj(p0) = Qϕj(p0)(0).

For the following choice of parameters, we have all conditions satisfied: a =
0.01, b = 5, c = 1; we also choose ρ = 1/20. The eigenvalues are λ1 = 2 − 2

√
2 and

λ2 = 2 + 2
√

2, i.e. the second case. We take λn = 10−1, Λn = λ2 and then, the
spectral gap condition becomes 19

10 + 2
√

2 > 2.68, which is satisfied.
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Fig. 1

Fig. 2

The graphical representations of Qϕj vs time, for different numbers of iterations,
for the initial conditions u0 = 1, v0 = 1 are shown in Fig. 1. For the same choice of
parameters, but for u0 = 5, v0 = 3 we have the graphics in Fig. 2.

For a = 0.01, b = 0.9, c = 0.1, we are situated in the first case, real positive
eigenvalues, λn = λ1 = 0.011,Λn = λ2 = 8.89. Choosing ρ = 1/10, the spectral
gap condition becomes 8.88 > 1.038, which is satisfied. For u0 = 5, v0 = 3 we have
Fig. 3.

Fig. 3
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