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1 Introduction

This paper continues the study of LCA groups with commutative rings of con-
tinuous endomorphisms, started in [14] and [15]. Our work was motivated by some
results available for discrete torsionfree groups. Although the classification of all
discrete torsionfree abelian groups with commutative endomorphism rings seems to
be impossible, for certain restricted subclasses of such groups there exist complete
characterizations. Thus, J. Zelmanowitz disposed in [18] of the case of Z-dualizable
groups. Further, C. Murley and Ph. Schultz [16] settled the case of reduced groups
X with the property that, for all p ∈ P, either X = pX or X/pX ∼= Z(p). Also,
L.C.A. van Leeuwen solved in [7] the case of completely decomposable groups, and
in [8] the case of irreducible groups of finite rank ρ, such that ρ is squarefree. Later,
A. Mader and Ph. Schultz [10] extended the result of L.C.A. van Leeuwen on com-
pletely decomposable groups to the case of almost completely decomposable groups.
On the other hand, T. Szele and J. Szendrei [17] have obtained useful information
in the case of mixed groups with splitting torsion subgroups, which is closely re-
lated to the case of torsionfree groups because the torsion groups with commutative
endomorphism rings are described completely [17].

The purpose of the present paper is to exhibit analogues of these results in the
more general context of all LCA groups.

2 Notation

Throughout, we shall freely use the notation and terminology introduced in [14]
and [15]. In addition, if p ∈ P, we let Jp be the group of p-adic integers taken
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discrete. The direct product of all groups Jp, taken with the discrete topology too, is

denoted by
∏loc

p∈P
(Jp; {0}). Given any X ∈ L, we redefine the symbol S(X) by setting

S(X) =
{

p ∈ P |
((

c(X)+k(X)
)

/c(X)
)

p
6= {0}

}

. Also, we let Xω =
⋂

n∈N0
nX, and

denote by D(X) the minimal divisible extension of X, topologized in such a way
that X becomes open in D(X). If X is torsionfree and A is a subgroup of X, we
denote by A∗ the smallest pure subgroup of X containing A. If f is a homomorphism
from X into another group Y ∈ L, then f |A stands for the restriction of f to A.

3 Z-dualizable and topologically purely indecomposable groups

As we mentioned in Introduction, a description of discrete, torsionfree groups
in L having commutative endomorphism rings is improbable. A reason for such an
assertion is given in [16, §4]. There are, however, several interesting special cases
which admit complete solutions. In this section, we extend two of them to the more
general framework of LCA groups.

Definition 3.1. A group X ∈ L is said to be Z-dualizable if H(X,Z) 6= {0}.

In [18, Corollary 2.3], J. Zelmanowitz mentions that a discrete, torsionfree, Z-
dualizable group X ∈ L has a commutative ring E(X) if and only if X ∼= Z.

As a generalization, we have

Theorem 3.2. Let X be a torsionfree Z-dualizable group in L. The ring E(X) is
commutative if and only if X ∼= Z.

Proof. Assume E(X) is commutative. By hypothesis, there exist f ∈ H(X,Z)
and a ∈ X such that f(a) 6= 0. Since Z is discrete, f is open. Therefore, since
the nonzero subgroups of Z are isomorphic to Z, it is sufficient to show that f is
injective. For x ∈ X, let gx ∈ H(Z,X) be given by gx(1) = x. If there existed a
nonzero b ∈ ker(f), then u = ga ◦ f and v = gb ◦ f would be elements of E(X)
satisfying u ◦ v = 0 and (v ◦ u)(a) = f(a)2b, which contradicts the commutativity of
E(X). Thus f is injective, and hence X ∼= Z.

The converse is clear. 2

We continue with

Corollary 3.3. Let X be a densely divisible group in L containing a copy of T. The
ring E(X) is commutative if and only if X ∼= T.

Proof. It is easy to see that X contains a copy of T if and only if H(T,X) 6= {0}.
Since H(T,X) ∼= H(X∗,Z) [12, Ch. II, Theorem 2.8, Corollary 2], the assertion
follows from Theorem 3.2 and duality. 2

C. Murley and Ph. Schultz [16] showed that every discrete, reduced, torsionfree
group X ∈ L with cyclic p-basic subgroups for all p ∈ P has a commutative en-
domorphism ring. It is well known that such a group X is isomorphic to a pure
subgroup of

∏loc
p∈P

(Jp; {0}). On the other hand, Ph. Griffith showed in [5] that a
discrete, reduced, torsionfree, purely indecomposable group in L is isomorphic to a
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subgroup of
∏loc

p∈P
(Jp; {0}), and gave a characterization of those pure subgroups of

∏loc
p∈P

(Jp; {0}), which are purely indecomposable.
Next we introduce a generalization of purely indecomposable groups and show

that some of these new groups have commutative rings of continuous endomor-
phisms.

Definition 3.4. A group X ∈ L is said to be topologically purely indecomposable if
every closed, pure subgroup of X is topologically indecomposable.

Theorem 3.5. Let X be a torsionfree, topologically purely indecomposable group in
L. Suppose also that if X is discrete, then for each p ∈ P the p-basic subgroups of
X are cyclic. Then X is topologically isomorphic either to one of the groups R, Q,
Q∗, Qp, or Zp, where p ∈ P, or to a pure subgroup of

∏loc
p∈P

(Jp; {0}). In particular,
E(X) is commutative.

Proof. Assume the stated condition. If c(X) 6= {0}, we must have c(X) = X. For, if
c(X) were a proper subgroup of X, we could write X = c(X) ⊕ Y for some nonzero
closed subgroup Y of X [6, (25.30)(c)], in contradiction with the fact that every
topologically purely indecomposable group in L is topologically indecomposable.
Thus c(X) = X. Now, as is well known, every connected torsionfree group in L is
topologically isomorphic to a group of the form Rd × (Q∗)α, where d ∈ N and α is a
cardinal number [6, see (9.14) and (25.8)]. By topological indecomposability of X,
we conclude that in this case either X ∼= R or X ∼= Q∗.

Next suppose c(X) = {0}. In particular, X ∈ L0 and hence k(X) is open in
X. Consequently, if k(X) = {0}, X is discrete. As every discrete group in L can
be written as a direct sum of a divisible group with a reduced group [6, (A.8)], we
conclude that X is either divisible or reduced. Therefore, as every discrete, divisible,
torsionfree group in L is isomorphic to Q(β) for some cardinal number β [6, (A.14)],
we deduce that in the former case X ∼= Q. Further, in the second case we see that,
for each p ∈ P, every p-basic subgroup of X is cyclic, and so X is isomorphic to a
pure subgroup of

∏loc
p∈P

(Jp; {0}) [5, p. 740].
Next suppose k(X) 6= {0}. Since c(X) = {0}, it follows that k(X) is a topolog-

ical torsion group. Now, since the topological primary components of a topological
torsion group in L split topologically from that group [1, Theorem 3.13] and since
k(X) is pure in X, we conclude that there exists p ∈ P such that k(X) = kp(X),
and hence k(X) is a topological p-primary group. We assert that if k(X) is nonre-
duced, then X ∼= Qp. Indeed, every nonreduced, torsionfree, topological p-primary
group in L contains copies of Qp [1, Theorem 4.23]. Since Qp is splitting in the
class of torsionfree LCA groups [1, Proposition 6.23], we conclude by topological
indecomposability of X that X ∼= Qp.

In the remaining case when k(X) is reduced, we consider an arbitrary compact
open subgroup U of k(X). By [6, (25.8)], U ∼= Z

γ
p for some cardinal number γ. We

first show that γ = 1. To see this, assume the contrary, and write U = A⊕B, where
A ∼= Zp × Zp and B is a closed subgroup of U. Our first task is to show that A∗

is closed in X. This is clear in case B = {0}, since then A∗ ⊃ U. In the other case
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when B 6= {0}, define f ∈ H(U,D(B)) by setting f = ηB ◦ πB, where πB is the
canonical projection of U onto B and ηB is the canonical injection of B into D(B).
Since D(B) is divisible and U is open in k(X), f extends to a homomorphism f0 ∈
H(k(X),D(B)). In particular, ker(f0) is closed in k(X). Further, since X/ ker(f0) is
algebraically isomorphic to a subgroup of D(B) and D(B) is torsionfree, X/ ker(f0)
is torsionfree too, and hence ker(f0) is pure in k(X). It is also clear that A ⊂ ker(f0),
so that A∗ ⊂ ker(f0). To show the reverse inclusion, pick an arbitrary y ∈ ker(f0). For
sufficiently large n, we have pny ∈ U, so that pny = a+ b for some a ∈ A and b ∈ B.
It follows that b = pny− a ∈ ker(f0), and hence b = 0 because f0|B = f is injective.
Then pny ∈ A, so y ∈ A∗, and since y ∈ ker(f0) was arbitrary, A∗ = ker(f0).
Consequently, in both cases A∗ is closed in k(X).

We next proceed to show that A∗ is topologically decomposable. Let πA be the
canonical projection of U onto A, ϕ a topological isomorphism of A onto Zp×Zp, and
j the canonical inclusion of Zp×Zp into Qp×Qp. Extend g = j◦ϕ◦πA ∈ H(U,Qp×Qp)
to a homomorphism g0 ∈ H(k(X),Qp × Qp). Since g0(A) = j(Zp × Zp) and since
j(Zp × Zp) is open in Qp × Qp, g0 is an open mapping. It is then clear that g0|A∗

establishes a topological isomorphism between A∗ and the open subgroup g0(A∗) of
Qp × Qp. Since k(X) is reduced, we conclude that g0(A∗) is compact in Qp × Qp [2,
Ch.VII, §1, Exercise 17(d)], so that g0(A∗) and hence A∗ is topologically isomorphic
to Zp × Zp [2, Ch.VII, §1, Exercise 17(c)]. This contradiction shows that γ = 1.

Now, define h ∈ H(U,Qp) by setting h = i ◦ ψ, where ψ is a topological isomor-
phism of U onto Zp and i is the canonical injection of Zp into Qp. Then h extends to
a topological isomorphism of k(X) onto an open subgroup of Qp. By the reduceness
of k(X), we deduce that k(X) ∼= Zp. Finally, we claim that k(X) = X. For, other-
wise k(X) would be a nontrivial algebraical direct summand of X because k(X) is
compact and pure in X [6, (25.21)]. But then k(X) would be a nontrivial topological
direct summand of X because k(X) is open in X [1, Corollary 6.8], a contradiction.
Thus X = k(X), and hence X ∼= Zp. 2

In order to dualize Theorem 3.5, we need some definitions.

Definition 3.6. Let S be a subset of P. A group X ∈ L is called S-torsionfree if
∑

p∈S tp(X) = {0}. In case S = {p}, we say X is p-torsionfree.

Definition 3.7. Let X be a compact group in L. Given any p ∈ P, a subgroup A of
X is said to be a p-cobasic subgroup of X if A is closed, p-pure and p-torsionfree,
and X/A is topologically isomorphic to a group of the form Tα ×

∏

n∈N0
Z(pn)αn ,

where α and the αn’s are cardinal numbers.

We have

Corollary 3.8. Let X be a densely divisible group in L such that every its quotient
by a closed, densely divisible subgroup is topologically indecomposable. Suppose also
that if X is compact, then for each p ∈ P its quotients by p-cobasic subgroups are
topologically isomorphic to T. Then X is topologically isomorphic either to R, Q,
Q∗, Qp, or Z(p∞), or to a quotient of

(
∏loc

p∈P
(jp; {0})

)∗
by a closed subgroup. In

particular, E(X) is commutative.
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4 Topologically completely decomposable groups and their genera-

lizations

We recall that a type is an isomorphism class of discrete, torsionfree, abelian
groups of rank one, and that the set of all types admits a partial ordering:

τ1 ≤ τ2 if and only if there exist A ∈ τ1 and B ∈ τ2 such that H(A,B) 6= {0}.

L.C.A. van Leeuwen proved the following

Theorem 4.1 ([7], Theorem 3). A discrete, torsionfree, completely decomposable
abelian group X =

⊕

i∈I Xi has a commutative endomorphism ring if and only if
the types of the rank one components Xi are pairwise incomparable.

Let X be a discrete, torsionfree group in L. If x ∈ X, the type of x, written
type(x), is the type containing the subgroup 〈x〉∗ of X. Given a type τ, let X(τ)
denote the subgroup of X consisting of those elements x ∈ X for which type(x) ≥ τ,
and X♮(τ) the pure subgroup of X generated by all X(σ) for σ > τ. The set Tcr(X)
of types τ such that X(τ) 6= X♮(τ) is called the set of critical types of X.

Definition 4.2. A discrete, torsionfree group in L is said to be

(i) almost completely decomposable if X is of finite rank and contains a completely
decomposable subgroup of finite index;

(ii) rigid if for every τ ∈ Tcr(X), X(τ)/X♮(τ) is of rank one, and any distinct
τ1, τ2 ∈ Tcr(X) are incomparable.

The following theorem is due to A. Mader and Ph. Schultz.

Theorem 4.3 ([10], Proposition 3.3). Let X ∈ L be almost completely decomposable.
The ring E(X) is commutative if and only if X is rigid.

This section will be concerned with extending to general LCA groups the results
of Theorems 4.1 and 4.3.

We begin with a lemma which will be frequently used in the sequel.

Lemma 4.4. Let X be a group in L such that E(X) is commutative. If X = D⊕Y,
where D is divisible and k(Y ) is open in Y, then Y = k(Y ).

Proof. Assume by way of contradiction that Y 6= k(Y ), and pick any a ∈ Y \ k(Y )
and any nonzero b ∈ D. Letting π : Y → Y/k(Y ) denote the canonical projection,
define f ∈ H(〈π(a)〉,D) by setting f(π(a)) = b. Since D is divisible, f extends to a
homomorphism f0 ∈ H(Y/k(Y ),D) [6, (A.7)]. Then applying [14, Lemma 3.5] with
ω = 1X and h = f0 ◦ π, we obtain the required contradiction. Consequently, we
must have Y = k(Y ). 2

Definition 4.5. A group X ∈ L is said to be residual if d(X) ⊂ k(X) and c(X) ⊂
m(X).
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The following theorem reduces the study of general LCA groups with commuta-
tive rings of continuous endomorphisms to some more special groups.

Theorem 4.6. Let X be a group in L such that E(X) is commutative. Then either
X is residual or it is topologically isomorphic with one of the following groups:

(i) R×
∏

p∈S(X)(Ap;Up), where every Ap is a topological p-primary group and Up

is a compact open subgroup of Ap;

(ii) Q×
∏

p∈S(X)(Bp;Vp), where every Bp is a reduced, topological p-primary group
and Vp is a compact open subgroup of Bp;

(iii) Q∗ ×
∏

p∈S(X)(Cp;Wp), where every Cp is a topological p-primary group with
m(Cp) = Cp and Wp is a compact open subgroup of Cp.

Proof. First suppose that X /∈ L0. As is well known, X can then be written in
the form X = D ⊕ A, where D,A are closed subgroups of X such that D ∼= Rd

for some d ∈ N0 and A ∈ L0 [6, (24.30)]. It is clear from [14, Lemma 3.2] that
E(D) is commutative, so that we must have d = 1. Further, since D is divisible
and k(A) is open in A, it follows from Lemma 4.4 that k(A) = A. We must also
have c(A) = {0}, since otherwise it would follow from [6, (25.20)] that there exists
a nonzero h ∈ H(D,A), and an application of [14, Lemma 3.5] to h and w = 1X

would provide a contradiction. In conclusion, A is a topological torsion group, and
an appeal to [1, Theorem 3.13] shows that in this case X satisfies (i).

Next suppose that X ∈ L0. Taking account of [1, Theorem 9.3], we conclude that
either X is residual or X is topologically isomorphic either to a group of the form
Q × B or to a group of the form Q∗ × C, where B,C ∈ L0. Assume X ∼= Q × B,
and so c(B) is compact. In view of Lemma 4.4, we must have k(B) = B. On the
other hand, H(Q, B) = {0} by [14, Lemma 3.5]. We claim that d(B) = {0}. Indeed,
if we had d(B) 6= {0}, then extending any nonzero homomorphism f : Z → d(B)
to a homomorphism f0 : Q → d(B) [6, (A.7)] and combining f0 with the canonical
inclusion of d(B) into B, we would obtain a contradiction. Thus d(B) = {0}, and
hence c(B) = {0} because c(X) ⊂ d(X) by [6, (24.25)]. Consequently, B is a reduced
topological torsion group. Appealing again to [1, Theorem 3.13], we see that in this
case X satisfies (ii). Finally, if X ∼= Q∗ × C, then X∗ ∼= Q × C∗. Since C∗ ∈ L0

and E(X∗) is commutative, we conclude that X∗ satisfies (ii), so that in this case
X must satisfy (iii). 2

We recall the following definition due to V. Charin.

Definition 4.7. A topological group X is said to be a group of finite special rank in
case there exists a natural number r such that every finite subset F of X topo-
logically generates a subgroup with no more than r topological generators, i.e.,
〈F 〉 = 〈x1, . . . , xk〉 for some x1, . . . , xk ∈ X and k ≤ r. The smallest r with this
property is called the special rank of X and is denoted by ρs(X). In case no such r
exists, X is said to have infinite special rank.
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It is easy to see that for discrete abelian groups the introduced notion of rank
coincides with the usual general rank for abstract groups.

Definition 4.8. Let S ⊂ P. A group X ∈ L is said to be S-divisible if pX = X for
all p ∈ S. We say X is densely S-divisible if it contains a dense S-divisible subgroup.

Definition 4.9. A group X ∈ L is said to be topologically completely decomposable
in case X is topologically isomorphic to a group of the form

∏

i∈I

(

X(i);U(i)
)

, where,
for each i ∈ I, X(i) is a group in L of special rank one and U(i) is a compact open
subgroup of X(i).

We can generalize Theorem 4.1 as follows.

Theorem 4.10. Let X ∈ L be torsionfree and topologically completely decomposable.
The ring E(X) is commutative if and only if X is topologically isomorphic with one
of the groups Q∗,

∏

p∈S(Qp; Zp)×
∏

p∈S(X)\S(Zp; p
npZp), or L×

∏

p∈S(X)(Zp; p
npZp),

where S is a nonempty subset of S(X), the np’s are natural numbers, and L is a
discrete, S(X)-divisible, torsionfree, completely decomposable abelian group such that
the rank one components of its decomposition have pairwise incomparable types.

Proof. We may assume that X =
∏

i∈I

(

X(i);U(i)
)

, where, for each i ∈ I, X(i) is
a group in L of special rank one and U(i) is a compact open subgroup of X(i).

Let E(X) be commutative. By [11, Lemma 2], a group in L having special rank
one is either compact and connected, or else discrete or topologically torsion. Write
I = I1 ∪ I2 ∪ I3, where

I1 = {i ∈ I | X(i) is compact and connected},

I2 = {i ∈ I | X(i) is discrete},

and I3 = {i ∈ I | X(i) is topologically torsion}.

LettingK =
∏

i∈I1

(

X(i);U(i)
)

, L =
∏

i∈I2

(

X(i);U(i)
)

, andM =
∏

i∈I3

(

X(i);U(i)
)

,
we have X = K ⊕ L⊕M. Now, if I1 6= ∅, then K ∼= (Q∗)α for some nonzero cardi-
nal number α because X is torsionfree [6, (25.8)]. Since X is then nonresidual, we
deduce from Theorem 4.6 that X ∼= Q∗. Next suppose I1 = ∅, and so X = L⊕M.
Clearly, M is topologically torsion, so that by [1, Theorem 3.13]

M ∼=
∏

p∈S(M)

(Mp;Vp), (4.1)

where, for each p ∈ S(M), Vp is a compact open subgroup of Mp. It is also clear
that S(M) =

⋃

i∈I3
S

(

X(i)
)

. Pick any distinct i, j ∈ I3. We shall show that

S
(

X(i)
)

∩ S
(

X(j)
)

= ∅.

Assume the contrary, and fix any p ∈ S
(

X(i)
)

∩ S
(

X(j)
)

. Since X(i) and X(j)
split topologically from M, and since the topological p-primary component of a
topological torsion group in L splits topologically from that group, we can write
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X = L⊕M ′⊕X(i)p ⊕X(j)p for some closed subgroup M ′ of M. It follows from [14,
Lemma 3.2] that E

(

X(i) ⊕ X(j)
)

is commutative, and hence H
(

X(i),X(j)
)

and
H

(

X(j),X(i)
)

must coincide with the zero group by [14, Lemma 3.5]. But, as
follows from [4, Corollary, p.92], X(i)p and X(j)p are topologically isomorphic with
either Qp or Zp. Therefore H

(

X(i),X(j)
)

and H
(

X(j),X(i)
)

cannot be both zero, a
contradiction. This proves that S

(

X(i)
)

∩S
(

X(j)
)

= ∅, so that for each p ∈ S(M),
Mp

∼= X(i)p for some i ∈ I, and hence either Mp
∼= Zp or Mp

∼= Qp [4, Corollary,
p.92]. Let

S1 = {p ∈ S(M)|Mp
∼= Zp} and S2 = {p ∈ S(M)|Mp

∼= Qp}.

It follows from (4.1) that

M ∼=
∏

p∈S1

(Mp;Vp) ×
∏

p∈S2

(Mp;Vp)

∼=
∏

p∈S1

(Zp; p
npZp) ×

∏

p∈S2

(Qp; Zp),

where np ∈ N for all p ∈ S1. Now, if S2 6= ∅, we conclude from Lemma 4.4 that
L = {0}, so X ∼=

∏

p∈S1
(Zp; p

npZp) ×
∏

p∈S2
(Qp; Zp). Next suppose S2 = ∅, and

hence S1 = S(X). Since, for each i ∈ I2, X(i) is discrete, it is clear that L is discrete
too, so that

L =
⊕

i∈I2

X(i). (4.2)

As E(L) is commutative, we conclude from Theorem 4.1 that the components
X(i) of decomposition (4.2) must have pairwise incomparable types. Moreover,
by [14, Lemma 3.5], we also must have H(L,M) = {0}, so H(M∗, L∗) = {0}
because H(M∗, L∗) ∼= H(L,M) [12, Ch. II, Theorem 2.8, Corollary 2]. Since
M∗ ∼=

∏

p∈S(X)

(

Z(p∞); Z(p∞)[pnp ]
)

[6, (23.33)], and since L∗ is connected hence
divisible, the equality H(M∗, L∗) = {0} can occur only if L∗ is S(X)-torsionfree, or
equivalently L is S(X)-divisible [13, (1.5)].

The converse is clear. 2

As is well known [10], every discrete, almost completely decomposable group X ∈
L contains completely decomposable subgroups of minimal index, called regulating
subgroups of X. The intersection of all regulating subgroups of X is a completely
decomposable, fully invariant subgroup of X having finite index.

This suggests the following definition.

Definition 4.11. A group X ∈ L is said to be topologically completely decomposable-
by-bounded order if X has a closed, topologically fully invariant subgroup A such that
A is topologically completely decomposable and X/A is a group of bounded order.

Our next theorem generalizes Theorem 4.3. Its proof is inspired by that of
Theorem 4.3.
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Theorem 4.12. Let X ∈ L be torsionfree and topologically completely decomposable-
by-bounded order. The following statements are equivalent:

(i) E(X) is commutative.

(ii) Either X is topologically isomorphic to one of the groups Q∗ or
∏

p∈S(Qp; Zp)×
∏

p∈S(X)\S(Zp; p
npZp), or else X contains a closed, topologically fully invariant

subgroup A such that A ∼= L ×
∏

p∈S(X)(Zp; p
npZp) and X/A is of bounded

order, where S is a nonempty subset of S(X), the np’s are natural numbers, and
L is a discrete, S(X)-divisible, torsionfree, completely decomposable abelian
group whose rank one components have pairwise incomparable types.

Proof. Assume (i). By hypothesis, there exists a closed, topologically fully invariant
subgroup A of X such that A is topologically completely decomposable and X/A is
of bounded order. Pick any u, v ∈ E(A). Letting η ∈ H(A,X) denote the canonical
injection of A into X and fixing any n ∈ N0 such that nX ⊂ A, we have η ◦ u ◦
n1X , η ◦ v ◦ n1X ∈ E(X), so that

(η ◦ u ◦ n1X) ◦ (η ◦ v ◦ n1X) − (η ◦ v ◦ n1X) ◦ (η ◦ u ◦ n1X) = 0.

It follows that for each x ∈ A, n2
[

(u ◦ v)(x)− (v ◦u)(x)
]

= 0, and hence (u ◦ v)(x)−
(v ◦ u)(x) = 0 because A is torsionfree. This proves that E(A) is commutative.
Consequently, by Theorem 4.10, A is topologically isomorphic to one of the groups

Q∗,
∏

p∈S

(Qp; Zp) ×
∏

p∈S(X)\S

(Zp; p
npZp), or L×

∏

p∈S(X)

(Zp; p
npZp),

where S is a nonempty subset of S(X), the np’s are natural numbers, and L is a dis-
crete, S(X)-divisible, completely decomposable abelian group whose rank one com-
ponents have pairwise incomparable types. Suppose A ∼= Q∗. Since Q∗ is splitting in
the class of torsionfree groups in L [1, Proposition 6.20], we have X ∼= A×

(

X/A
)

,
and hence X ∼= A because X is torsionfree and X/A is of bounded order. Next
suppose that A ∼=

∏

p∈S(Qp; Zp) ×
∏

p∈S(X)\S(Zp; p
npZp). Since S 6= ∅ and X is

torsionfree, we can write X = D ⊕ Y, where D ∼= Qp for some p ∈ S [1, Proposition
6.23]. It follows from Lemma 4.4 that X = k(X). Further, since every connected
group in L is divisible [6, (9.14) and (24.25)], we also have

c(X) ⊂ n · c(X) ⊂ nX ⊂ A,

and hence c(X) = {0} because A is totally disconnected. We claim that S(X) =
S(A). Indeed, since A is a closed subgroup of X, we clearly have S(A) ⊂ S(X). In
order to establish the reverse inclusion, pick any s ∈ S(X) and any nonzero x ∈ Xs.
Then limk→∞ skx = 0, so limk→∞ sk(nx) = 0, and hence nx is a nonzero element of
As. This proves that s ∈ S(A), so S(X) = S(A). Now, let p ∈ S, so that Ap

∼= Qp.
SinceXp splits topologically fromX [1, Theorem 3.13], E(Xp) is commutative by [14,
Lemma 3.2]. Since Xp is nonreduced, we deduce from [14, Theorem 5.12] that in
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this case Xp
∼= Qp. Further, let p ∈ S(X) \ S, so that Ap

∼= Zp. Pick a compact
open subgroup U of X. We clearly have nUp ⊂ Ap. Since X is torsionfree, n1X |Up

establishes a topological isomorphism between Up and a closed and hence open
subgroup Vp of Ap. Letting j : Vp → D(Ap) denote the canonical inclusion, extend
j◦n1X |Up to a homomorphism f ∈ H(Xp,Qp). It is easy to see that f is a topological
isomorphism from Xp onto an open subgroup of Qp. We cannot have f(Xp) = Qp,
because then X/A could not be of bounded order. Thus Xp

∼= Zp, and hence

X ∼=
∏

p∈S

(Qp; Zp) ×
∏

p∈S(X)\S

(Zp; p
mpZp),

where mp ∈ N0 for all p ∈ S(X) \ S. Consequently, (i) implies (ii).
Assume (ii). In view of Theorem 4.10, we need only to consider the case

when X has a closed, topologically fully invariant subgroup A such that A ∼=
L ×

∏

p∈S(X)(Zp; p
npZp) and X/A is of bounded order. Now, since A is topolog-

ically fully invariant in X, the restriction map ρ : E(X) → E(A) is well defined.
It is clear that ρ is a ring homomorphism. Fix any n ∈ N0 such that nX ⊂ A. If
f ∈ ker(ρ), we have

nf(X) = f(nX) ⊂ f(A) = {0},

so f = 0, and hence E(X) is isomorphic to a subring of E(A). Since E(A) is
commutative by Theorem 4.10, E(X) is commutative too. Hence (ii) implies (i). 2

In order to dualize Theorem 4.12, we need the notion of pattern due to P. Loth.

Definition 4.13. Two compact connected abelian groups of dimension one are said
to be equivalent if they are topologically isomorphic, and the equivalence classes are
called patterns.

We see from [6, (24.28)] and [11, Lemma 3] that a pattern is an equivalence class
of topologically isomorphic, compact, connected, abelian groups of special rank one.
By duality theory, if τ is a type, then τ∗ = {X∗|X ∈ τ} is a pattern, and if π is a
pattern, then π∗ = {X∗|X ∈ π} is a type. Thus, there is a one-to-one correspondence
between the set of types and the set of patterns. In particular, the set of patterns
can be ordered by setting: π1 ≤ π2 if and only if π∗1 ≥ π∗2.

Definition 4.14. A group X ∈ L is said to be bounded order-by-topologically com-
pletely decomposable if X has a closed, topologically fully invariant subgroup A such
that A is of bounded order and X/A is topologically completely decomposable.

Corollary 4.15. Let X ∈ L be densely divisible and bounded order-by-topologically
completely decomposable. The following statements are equivalent:

(i) E(X) is commutative.

(ii) Either X is topologically isomorphic to one of the groups Q or
∏

p∈S(Qp; Zp)×
∏

p∈S(X)\S(Z(p∞); Z(p∞)[pnp ]), or else X contains a closed, topologically fully
invariant subgroup of bounded order, A, such that

X/A ∼= K ×
∏

p∈S(X)

(Z(p∞); Z(p∞)[pnp ]),
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where S is a nonempty subset of S(X), the np’s are natural numbers, and
K is a compact, connected, topologically completely decomposable group whose
components have pairwise incomparable patterns.

5 Torsionfree groups of finite rank

Motivated by a result of L. C. A. van Leeuwen, we examine here the torsionfree
LCA groups of finite special rank having commutative rings of continuous endomor-
phisms.

Definition 5.1. A discrete, torsionfree group X ∈ L is said to be strongly indecom-
posable if for any subgroups A,B of X such that A ∩B = {0} and X/(A⊕B) is of
bounded order, it follows that either A or B coincides with the zero group.

L. C. A. van Leeuwen proved

Theorem 5.2 ([8], Theorem 3). Let X ∈ L be a discrete, irreducible, torsionfree
group of finite rank ρ such that ρ is square free. Then E(X) is commutative if and
only if X is strongly indecomposable.

The following theorem gives a complete description of topological torsion LCA
groups of finite special rank having commutative rings of continuous endomorphisms.

Theorem 5.3. Let X be a topological torsion group in L. The following statements
are equivalent:

(i) X is of finite special rank, and E(X) is commutative.

(ii) For each p ∈ S(X), Xp is topologically isomorphic with one of the groups Zp,
Z(p∞), Z(pnp), Qp, or Qp × Z(pnp), where np ∈ N0.

Proof. Assume (i), and pick any p ∈ S(X). Since X is of finite special rank, we
conclude from the very definition that Xp has finite special rank too. It follows
from [4, Theorem 5] that Xp can be written in the form Xp = G1 ⊕ · · · ⊕Grp

, where
every Gi, 1 ≤ i ≤ rp, is topologically isomorphic with one of the groups Qp, Zp,
Z(p∞), or Z(pnp) for some np ∈ N0. Now, since in view of [14, Lemma 3.5] we must
have

H(Gi, G1 ⊕ · · · ⊕Gi−1 ⊕Gi+1 ⊕ · · · ⊕Grp
) = {0}

for all i ∈ {1, . . . , rp}, it is clear that Xp must be topologically isomorphic to one of
the groups Zp, Z(p∞), Z(pnp), Qp, or Qp × Z(pnp), where np ∈ N0. Thus (ii) holds.

Conversely, if X satisfies (ii), then for each p ∈ S(X) the special rank of Xp is
at most two, and so X is a group of finite special rank by [4, Theorem 6]. 2

In the following theorem, we obtain the description of nonresidual LCA groups
of finite special rank with a commutative ring of continuous endomorphisms.

Theorem 5.4. Let X ∈ L be a nonresidual group of finite special rank. The ring
E(X) is commutative if and only if X is topologically isomorphic with one of the
groups:
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(i) R×
∏

p∈S(X)(Ap;Up), where, for each p ∈ S(X), Ap is topologically isomorphic
with either Zp, Z(p∞), Z(pnp), Qp, or Qp ⊕ Z(pnp) for some np ∈ N0, and Up

is a compact open subgroup of Ap;

(ii) Q×
∏

p∈S(X)(Bp;Vp), where, for each p ∈ S(X), Bp is topologically isomorphic
with either Zp or Z(pnp) for some np ∈ N0, and Vp is a compact open subgroup
of Bp;

(iii) Q∗×
∏

p∈S(X)(Cp;Wp), where, for each p ∈ S(X), Cp is topologically isomorphic
with either Z(p∞) or Z(pnp) for some np ∈ N0, and Wp is a compact open
subgroup of Cp.

Proof. Assume E(X) is commutative. By Theorem 4.6, we can write X = D ⊕ Y,
where D and Y are closed subgroups of X for which exactly one of the following
situations can happen (we use the notation of Theorem 4.6):

(a) D ∼= R, Y ∼=
∏

p∈S(X)

(Ap;Up);

(b) D ∼= Q, Y ∼=
∏

p∈S(X)

(Bp;Vp);

and (c) D ∼= Q∗, Y ∼=
∏

p∈S(X)

(Cp;Wp).

Clearly, in each of these cases Y is a topological torsion group having a commutative
ring E(Y ) [14, Lemma 3.2]. Other properties of Y are described in Theorem 4.6.
Now, taking account of Theorem 5.3 and Theorem 4.6, we see that (a) gives us
(i), (b) gives us (ii) because every Bp is reduced, and (c) gives us (iii) because
m(Cp) = Cp for all p ∈ S(X).

The converse is clear. 2

In the following definition, we introduce topologically irreducible and weakly
topologically irreducible groups as generalizations to LCA groups of usual discrete,
irreducible, abelian groups. For discrete groups, all these notions coincide.

Definition 5.5. A group X ∈ L is said to be (weakly) topologically irreducible in
case X contains no nontrivial, closed (respectively, open), pure, topologically fully
invariant subgroups.

We shall now restrict attention to (weakly) topologically irreducible groups in
L. We have

Theorem 5.6. Let X ∈ L0 be a torsionfree group of finite special rank ρ such that
ρ is square free and either c(X) 6= {0} or k(X) 6= X. The following statements are
equivalent:

(i) X is topologically irreducible, and E(X) is commutative.

(ii) X is weakly topologically irreducible, and E(X) is commutative.
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(iii) Either X ∼= Q∗ or else X is discrete, irreducible, and strongly indecomposable.

Proof. Clearly, (i) implies (ii).

Assume (ii). First we note that since X ∈ L0, c(X) is compact and k(X) is open
in X. Now, since k(X) is pure in X and X is weakly topologically irreducible, it
follows that either k(X) = {0} or k(X) = X. In the former case, X is discrete, and
hence X has to be strongly indecomposable by Theorem 5.2. In the latter case, it
follows from hypothesis that c(X) 6= {0}. We assert that in fact c(X) = X. Suppose
the contrary. Since X is torsionfree, c(X) splits topologically from X [1, Proposition
6.13], and hence we can write X = c(X) ⊕D for some nonzero, closed subgroup D

of X. Pick any p ∈ S(D), and write D = Dp ⊕D#
p , where D#

p =
∑

s∈S(D)\{p}Ds [1,
Theorem 3.13)]. Fixing an arbitrary compact open subgroup U of Dp, we have
U ∼= Zν

p for some nonzero cardinal number ν [6, (25.8)], so that we can choose
a nonzero f ∈ H(U,Zp). Further, since the topological p-primary component of
c(X) is nonzero (being dense in c(X) [1, Corollary 4.18(a)]), we can choose also a
nonzero g ∈ H(Zp, c(X)). Now, since c(X) is divisible [6, (24.25)], g ◦ f extends to a
continuous homomorphism h : Dp → c(X). It follows that the canonical projection

of D onto Dp with kernel D#
p followed by h is a nonzero element of H(D, c(X)). But

then [14, Lemma 3.5] applies, producing a contradiction to E(X) being commutative.
This proves that X = c(X). As every compact, connected, torsionfree group in L is
topologically isomorphic to (Q∗)µ for some cardinal number µ [6, (25.8)], we deduce
that X ∼= Q∗. Hence (ii) implies (iii).

Finally, (iii) implies (i) by Theorem 5.2 and the fact that Q∗ is a pure-simple [1,
Proposition 7.11] group of special rank one with a commutative ring E(Q∗). 2

For residual, weakly topologically irreducible groups, we have

Theorem 5.7. Let X ∈ L be a residual, torsionfree, weakly topologically irreducible
group of finite special rank ρ such that ρ is squarefree. The ring E(X) is commutative
if and only if either X is discrete and strongly indecomposable or X is a topological
torsion group such that, for each p ∈ S(X), Xp is topologically isomorphic with
either Qp or Zp.

Proof. Assume E(X) is commutative. Since X is residual and torsionfree, c(X) =
{0}, and so k(X) is open in X. Now, since k(X) is pure in X, it follows that
either k(X) = {0} or k(X) = X. In the former case, X is discrete, and hence
X has to be strongly indecomposable by Theorem 5.2. In the latter case, X is a
topological torsion group, and we see from Theorem 5.3 that for each p ∈ S(X), Xp

is topologically isomorphic with either Qp or Zp.

The converse follows from Theorem 5.2 in case X is discrete, and from [1, Propo-
sition 7.11], [4, Corollary, p. 92] and Theorem 5.3 in case X is topologically
torsion. 2

We continue with the case of residual, topologically irreducible groups.

Corollary 5.8. Let X ∈ L be a residual, torsionfree, topologically irreducible group
of finite special rank ρ such that ρ is squarefree. The ring E(X) is commutative if
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and only if either X is discrete and strongly indecomposable or X is topologically
isomorphic with one of the groups Qp or Zp for some p ∈ P.

Proof. The fact that (i) implies (ii) follows from Theorem 5.7 by observing that
in a topological torsion group the topological p-primary components are closed pure
subgroups.

The converse is clear. 2

We conclude this section by stating the dual analogues of Theorems 5.6 and 5.7
and Corollary 5.8. First, we introduce a few definitions.

Definition 5.9. Let X ∈ L. A closed subgroup C of X is said to satisfy PHH (for
”property of Hartman and Hulanicki”), if whenever γ ∈ C∗ has order n there exists
γ′ ∈ X∗ such that γ′ extends γ and also has order n.

Definition 5.10. A group X ∈ L is said to be (weakly) topologically coirreducible
in case X contains no nontrivial, closed (respectively, compact), topologically fully
invariant subgroups satisfying PHH.

Definition 5.11. A topological group X is said to be strictly indecomposable if
for any two closed subgroups A,B of X such that A ∩ B is of bounded order and
A+B = X, it follows that either A or B is equal to X.

Corollary 5.12. Let X ∈ L0 be a densely divisible, residual group of finite special
rank ρ such that ρ is square free and either c(X) 6= {0} or k(X) 6= X. The following
statements are equivalent:

(i) X is topologically coirreducible, and E(X) is commutative.

(ii) X is weakly topologically coirreducible, and E(X) is commutative.

(iii) Either X ∼= Q or else X is compact, topologically coirreducible, and strictly
indecomposable.

Proof. By [4, Theorem 4], X has finite special rank if and only if X∗ does, but,
as is shown in [11, Theorem, p. 171], the equality ρs(X) = ρs(X

∗) takes place
if and only if none of the groups X or X∗ is topologically isomorphic to a group
of the form Rd × F, where d ∈ N0 and F is a nonzero, discrete, torsionfree group
in L. In our case X is residual, so that neither X nor X∗ contains copies of R,
and hence ρs(X) = ρs(X

∗). Obviously, X is (weakly) topologically coirreducible if
and only if X∗ is (weakly) topologically irreducible. It is also clear that X is compact
and strictly indecomposable if and only if X∗ is discrete and strongly
indecomposable. 2

Corollary 5.13. Let X ∈ L be a residual, densely divisible, weakly topologically
coirreducible group of finite special rank ρ such that ρ is squarefree. The ring E(X)
is commutative if and only if either X is compact and strictly indecomposable or
X is a topological torsion group such that, for each p ∈ S(X), Xp is topologically
isomorphic with either Qp or Z(p∞).
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Corollary 5.14. Let X ∈ L be a residual, densely divisible, topologically coirre-
ducible group of finite special rank ρ such that ρ is squarefree. The ring E(X) is
commutative if and only if either X is compact and strictly indecomposable or X is
topologically isomorphic with one of the groups Qp or Z(p∞) for some p ∈ P.

6 Some splitting cases

In [17], T. Szele and J. Szendrei proved among others the following result:

Theorem 6.1 ([17], Theorem 3). Let X be a discrete, mixed group in L such that
X = t(X) ⊕W for some subgroup W of X. Then E(X) is commutative if and only
if the following conditions hold:

(i) t(X) ∼=
⊕

p∈S(X) Z(pnp), where np ∈ N0 for all p ∈ S(X);

(ii) W is S(X)-divisible;

(iii) E(W ) is commutative.

Our aim here is to extend this theorem to general LCA groups. By utilizing
duality, we will also obtain information about LCA groups with splitting subgroup
of elements of infinite topological height, which have commutative rings of continuous
endomorphisms.

In the case of compact groups, we have

Corollary 6.2. Let X be a compact group in L such that X 6= c(X) 6= {0} and
X = c(X)⊕M for some closed subgroup M of X. The ring E(X) is commutative if
and only if the following conditions hold:

(i) M ∼=
∏

p∈S(X) Z(pnp), where np ∈ N0 for all p ∈ S(X);

(ii) c(X) is S(X)-torsionfree;

(iii) E(c(X)) is commutative.

Proof. It is clear that X∗ is a discrete, mixed group in L satisfying X∗ = t(X∗)⊕W,
where W = A(X∗;M). We also have W ∗ ∼= X/A(X;W ) = X/M ∼= c(X). Letting
p ∈ S(X), it then follows that c(X)[p] ∼= W ∗[p] ∼= A(W ; pW ). The assertion follows
from Theorem 6.1 and duality. 2

In extending Theorem 6.1 to general LCA groups, we distinguish two cases. For
residual LCA groups, we have

Theorem 6.3. Let X be a mixed, residual group in L such that t(X) splits topolog-
ically from X. The following statements are equivalent:

(i) The ring E(X) is commutative.

(ii) X is topologically isomorphic with one of the groups:
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1)
⊕

p∈S1
Z(pnp)×

⊕

p∈S2
Z(p∞)×

∏

p∈S3
(Qp; Zp)×G, where S1, S2 and S3

are subsets of P satisfying S1 ∪ S2 6= ∅ and (S1 ∪ S3) ∩ S2 = ∅, np ∈ N0

for all p ∈ S1, and G is a densely (S1∪S2)-divisible, reduced, torsionfree,
topological torsion group in L with S(G) ∩ (S2 ∪ S3) = ∅ and having a
commutative ring E(G).

2)
⊕

p∈S Z(pnp) × G, where S is a nonempty subset of P, np ∈ N0 for all
p ∈ S, and G is a densely S-divisible, reduced, torsionfree, totally discon-
nected group in L such that k(G) 6= G, S(k(G)) ∩ S = ∅, and E(G) is
commutative.

Proof. Assume (i). By hypothesis, t(X) splits topologically from X, and hence we
can write X = t(X)⊕Y for some subgroup Y of X. It follows that t(X) is closed in
X, so that m(X) = t(X). Since X is residual, we conclude that c(X) ⊂ t(X), which
implies c(X) = {0}, because t(X) is totally disconnected [6, (24.21)]. It is also clear
from [14, Lemma 3.2] that E(t(X)) and E(Y ) are commutative. In particular, we
deduce from [14, Corollary 5.7] that t(X) ∼=

⊕

p∈S1
Z(pnp) ×

⊕

p∈S2
Z(p∞), where

S1, S2 are disjoint subsets of P and np ∈ N0 for all p ∈ S1.

Our first purpose is to show that k(Y ) is densely (S1 ∪ S2)-divisible. Pick any
p0 ∈ S1 ∪ S2. We shall first show that p0Y = Y. Assume the contrary, and let ϕ
denote the canonical projection of Y onto Y/p0Y . Taking account of [3, Ch. II, §4,
Théoréme 2], we can write Y/p0Y = A⊕B, where A ∼= Z(p0). Let π be the canonical
projection of Y/p0Y onto A with kernel B. Choose two arbitrary nonzero elements
a ∈ A and c in the socle of tp0(X), and define f ∈ H(A, t(X)) by setting f(a) = c.
Then f ◦ π ◦ ϕ is a nonzero element of H(Y, t(X)), and applying [14, Lemma 3.5]
with w = 1X and h = f ◦ π ◦ ϕ we obtain a contradiction. Consequently, we must
have p0Y = Y.

Next we show that p0k(Y ) = k(Y ). Fix any nonzero y ∈ k(Y ) and any neigh-
borhood V of zero in X. Since X is totally disconnected, we can choose a compact
open subgroup W of X such that y /∈ W and W ⊂ V [6, (7.7)]. Further, since
p0Y = Y, there exists z ∈ Y such that p0z − y ∈ W. It follows that p0z 6= 0 and
p0z ∈ y + W ⊂ k(Y ), so that 〈p0z〉 is compact and nonzero, whence z ∈ k(Y ) [6,
(9.1)]. This proves that p0k(Y ) = k(Y ).

Next we show that p0kp0(Y ) = kp0(Y ). In view of [1, Theorem 3.13], we can

write k(Y ) = kp0(Y ) ⊕ kp0(Y )#, where kp0(Y )# =
∑

s∈S(Y )\{p0}
ks(Y ). Since for

each s ∈ S(k(Y )) \ {p0}, we have p0ks(Y ) = ks(Y ) [1, (2.16)], it is clear that

ks(Y ) ⊂ p0kp0(Y )#. It follows that kp0(Y )# ⊂ p0kp0(Y )#, and hence kp0(Y )# =

p0kp0(Y )#. Observe also that, by [15, Lemma 4.4], p0kp0(Y ) + kp0(Y )# is closed in
Y. We have

kp0(Y ) ⊂ k(Y ) = p0k(Y )

⊂ p0kp0(Y ) + pkp0(Y )#

⊂ p0kp0(Y ) + kp0(Y )#.
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It follows by modular law that

kp0(Y ) = kp0(Y ) ∩
(

p0kp0(Y ) + kp0(Y )#
)

= p0kp0(Y ) + kp0(Y ) ∩ kp0(Y )#.

But kp0(Y ) ∩ kp0(Y )# = {0}, so that p0kp0(Y ) = kp0(Y ).
Now we show that kp0(Y )∗ is torsionfree, and hence kp0(Y ) is densely divisible

by [1, Theorem 4.15]. Indeed, kp0(Y )∗ is a topological p0-primary group. Since

kp0(Y )∗[p0] ∼=
(

kp0(Y )/p0kp0(Y )
)∗

[6, (23.25) and (24.22)], it follows that kp0(Y )∗[p] = {0}, so kp0(Y )∗ is torsionfree.
As p0 ∈ S1 ∪ S2 was arbitrary, we deduce that k(Y )∗ is (S1 ∪ S2)-torsionfree, and
hence k(Y ) is densely (S1 ∪ S2)-divisible [13, (1.5)].

In the following we distinguish two cases in regard to the group Y. First let us
suppose that k(Y ) = Y. By [1, Theorem 3.13], we have Y ∼=

∏

p∈S(Y )(Yp;Up), where,
for each p ∈ S(Y ), Up is a compact open subgroup of Yp. Letting

S3 =
{

s ∈ S(Y ) | d(Ys) 6= {0}
}

,

we can write Y = D ⊕ G, where D ∼=
∏

p∈S3
(Yp;Up) and G ∼=

∏

p∈S(Y )\S3
(Yp;Up)

[3, p. 7]. Clearly, G is reduced, and densely (S1 ∪ S2)-divisible as a continuous
homomorphic image of a (S1 ∪ S2)-divisible group. Moreover, E(D) and E(G) are
commutative. It follows from [14, Corollary 5.13] that D ∼=

∏

p∈S3
(Qp; Zp). Since

Z(p∞) is a continuous homomorphic image of Qp, it is clear from [14, Lemma 3.5]
that S2 and S3 must be disjoint. Suppose there exists q ∈ S2 ∩S(G). Since Uq

∼= Zν
q

for some nonzero cardinal number ν, there is a nonzero f ∈ H(Uq,Z(q∞)). Extend f

to a homomorphism f̂ ∈ H(Yq,Z(q∞)). Choosing any nonzero ηq ∈ H(Z(q∞), t(X))

and letting πq ∈ H(Y, Yq) denote the canonical projection, we see that ηq ◦ f̂ ◦ πq is
a nonzero element of H(Y, t(X)), in contradiction with the commutativity of E(X).
Thus, in this case X is topologically isomorphic to a group described in 1).

Next we consider the other case when k(Y ) 6= Y. We assert that X is then
reduced. Indeed, it is clear from Lemma 4.4 that S2 = ∅. Therefore, if X were
nonreduced, it would follow that d(Y ) 6= {0}. Since Y is clearly residual, and hence
d(Y ) ⊂ k(Y ), this would imply that d(ks(Y )) 6= {0} for some s ∈ S(k(Y )). By [1,
Proposition 4.22)], ks(Y ) would then contain a closed subgroup K ∼= Qs. As Qs

is splitting in the class of torsionfree groups in L, we could write Y = K ⊕ L for
some closed subgroup L of Y. It would then follow from Lemma 4.4 that k(L) = L,
and hence k(Y ) = Y, a contradiction. Thus X must be reduced. In particular, we
must have ks(Y ) = {0} for all s ∈ S1 because, as we saw above, every such ks(Y )
is densely divisible. Putting S = S1 and G = Y, we see that X is topologically
isomorphic to a group described in 2). Consequently, (i) implies (ii).

The converse follows from [14, Lemma 3.4], [17, Theorem 1] and [14, Corollary
5.13]. 2

In case of nonresidual LCA groups, we have
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Theorem 6.4. Let X be a mixed, nonresidual group in L such that t(X) splits
topologically from X. The following statements are equivalent:

(i) The ring E(X) is commutative.

(ii) X is topologically isomorphic with one of the groups:

1)
⊕

p∈S1
Z(pnp)×

⊕

p∈S2
Z(p∞)×

∏

p∈S3
(Qp; Zp)×R×G, where S1, S2 and

S3 are subsets of P satisfying S1∪S2 6= ∅ and (S1∪S3)∩S2 = ∅, np ∈ N0

for all p ∈ S1, and G is a densely (S1∪S2)-divisible, reduced, torsionfree,
topological torsion group in L with S(G) ∩ (S2 ∪ S3) = ∅ and having a
commutative ring E(G).

2)
⊕

p∈S Z(pnp) × Q × G, where S is a nonempty subset of P, np ∈ N0 for
all p ∈ S, and G is a densely S-divisible, reduced, torsionfree, topological
torsion group in L with a commutative ring E(G).

3)
⊕

p∈S1
Z(pnp) ×

⊕

p∈S2
Z(p∞) × Q∗, where S1, S2 are disjoint subsets of

P such that S1 ∪ S2 6= ∅, and np ∈ N0 for all p ∈ S1.

Proof. Assume (i). By Theorem 4.6, we can write X = D⊕ Y, where D and Y are
closed subgroups of X for which exactly one of the following situations can happen
(with notation as in Theorem 4.6):

(a) D ∼= R, Y ∼=
∏

p∈S(X)

(Ap;Up);

(b) D ∼= Q, Y ∼=
∏

p∈S(X)

(Bp;Vp);

and (c) D ∼= Q∗, Y ∼=
∏

p∈S(X)

(Cp;Wp).

First note that since in each of these cases Y is a topological torsion group (see
Theorem 4.6), it is residual. Next observe that t(X) ⊂ Y. Indeed, given any x ∈ t(X),
we can write x = xD + xY for some xD ∈ D and xY ∈ Y. Letting n = o(x), we have

nxD = −nxY ∈ D ∩ Y = {0},

so that xD = 0 because D is torsionfree. Therefore x ∈ Y, and hence t(X) ⊂ Y.
Next we show that t(X) splits topologically from Y. To this end, write X =

t(X) ⊕M for some closed subgroup M of X, and let π ∈ H(X, t(X)) denote the
canonical projection of X onto t(X). We then have Y = t(X) + (Y ∩M) by the
modular law, and t(X) ∩ (Y ∩ M) = {0}, so that Y = t(X) ∔ (Y ∩ M). If ϕ
is the canonical projection of Y onto t(X) corresponding to this decomposition,
then ϕ coincides with the restriction of π to Y , so ϕ is continuous, and hence
Y = t(X) ⊕ (Y ∩M) [2, Ch. III, §6, Proposition 2]. In conclusion, in any of cases
(a), (b) or (c), Y is a mixed, residual group in L such that t(Y ) splits topologically
from Y and E(Y ) is commutative. It follows that its structure is given by 1) or 2)
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of Theorem 6.3. But, as in addition Y is a topological torsion group, it is clear that
Y cannot be topologically isomorphic to a group described in 2) of Theorem 6.3,
and hence Y is topologically isomorphic to a group described in 1) of Theorem 6.3.
Taking account of this, in case (a) we are led to 1). Further, in case (b) we have
2), because Y must be reduced (see (ii) of Theorem 4.6). Finally, in case (c) we are
led to 3) because, for each p ∈ S(Y ), the topological p-primary component Yp of Y
must satisfy m(Yp) = Yp (see (iii) of Theorem 4.6). Thus (i) implies (ii).

The converse is clear. 2

Definition 6.5. A group X ∈ L is said to be comixed if {0} 6= Xω 6= X.

By use of duality, we obtain the following two corollaries:

Corollary 6.6. Let X be a comixed, residual group in L such that X/Xω is compact-
by-bounded order. The following statements are equivalent:

(i) Xω splits topologically from X, and E(X) is commutative.

(ii) X is topologically isomorphic with one of the groups:

1)
∏

p∈S1
Z(pnp) ×

∏

p∈S2
Zp ×

∏

p∈S3
(Qp; Zp) ×G, where S1, S2 and S3 are

subsets of P satisfying S1 ∪ S2 6= ∅ and (S1 ∪ S3) ∩ S2 = ∅, np ∈ N0 for
all p ∈ S1, and G is a densely divisible, (S1 ∪ S2)-torsionfree, topological
torsion group in L such that m(G) = G, S(G)∩ (S2 ∪S3) = ∅, and E(G)
is commutative.

2)
∏

p∈S Z(pnp) × G, where S is a nonempty subset of P, np ∈ N0 for all
p ∈ S, and G is a densely divisible, S-torsionfree group in L0 such that
m(G) = G, c(G) 6= {0}, S(X/c(X)) ∩ S = ∅, and E(G) is commutative.

Corollary 6.7. Let X be a comixed, nonresidual group in L such that X/Xω is
compact-by-bounded order. The following statements are equivalent:

(i) Xω splits topologically from X, and E(X) is commutative.

(ii) X is topologically isomorphic with one of the groups:

1)
∏

p∈S1
Z(pnp)×

∏

p∈S2
Zp ×

∏

p∈S3
(Qp; Zp)× R ×G, where S1, S2 and S3

are subsets of P satisfying S1∪S2 6= ∅ and (S1∪S3)∩S2 = ∅, np ∈ N0 for
all p ∈ S1, and G is a densely divisible, (S1 ∪ S2)-torsionfree, topological
torsion group in L such that S(G)∩ (S2 ∪S3) = ∅, m(G) = G, and E(G)
is commutative.

2)
∏

p∈S Z(pnp) × Q∗ × G, where S is a nonempty subset of P, np ∈ N0 for
all p ∈ S, and G is a densely divisible, S-torsionfree, topological torsion
group in L such that m(G) = G and E(G) is commutative.

3)
∏

p∈S1
Z(pnp)×

∏

p∈S2
Zp ×Q, where S1, S2 are disjoint subsets of P such

that S1 ∪ S2 6= ∅, and np ∈ N0 for all p ∈ S1.
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