Isomorphism of the factor powers of finite groups

Vladislav Duma

Abstract. All factor powers of an arbitrary finite group are classified up to isomorphism.

Mathematics subject classification: 20B05.
Keywords and phrases: Factor-power, classification, power set, group action.

1 Introduction

The set \(\mathcal{P}(G) \) of all subsets of a group \(G \) is called a global supersemigroup of that group. The operation on \(\mathcal{P}(G) \) is defined in a natural way:

\[
H \cdot F = \{ xy : x \in H, y \in F \} \quad \text{for all } H, F \subseteq G.
\]

If the group \(G \) acts on a set \(M \), we can define an induced action of a semigroup \(\mathcal{P}(G) \) on the power set of the set \(M \):

\[
N^F = \{ a^x : a \in N, x \in F \} \quad \text{for all } N \subseteq M, F \in \mathcal{P}(G).
\]

There exists a natural congruence \(\sim \) of the semigroup \(\mathcal{P}(G) \), related to this action: \(H \sim F \) iff \(H \) and \(F \) act identically on \(\mathcal{B}(M) \). Note that this definition is equivalent to the following: \(H \sim F \) iff \(\{m\}^H = \{m\}^F \) (shortly: \(m^H = m^F \)) for all \(m \in M \).

The corresponding factor semigroup \(\mathcal{FP}(G,M) = \mathcal{P}(G)/\sim \) is called a factor power of the action \((G,M) \). \(\mathcal{FP}(G,M) \) is called also a factor power of the group \(G \); note that a group can have several factor powers. The congruence \(\sim \) is said to define the factor power \(\mathcal{FP}(G,M) \).

The factor powers were introduced in [1] for arbitrary action semigroups; the further results are stated in [2,3]. In [4] the classification of factor powers of finite groups is given for the case of cyclic groups.

From now on, we consider only right group actions, so \(m^{hf} = (m^h)^f \) for all \(m \in M, h, f \in G \).

If \(|M| = 1 \), then \(|\mathcal{FP}(G,M)| = 2 \), so the factor power \(\mathcal{FP}(G,M) \) in this case is called trivial. If the action \((G,M) \) is regular, global supersemigroup \(\mathcal{P}(G) \) is isomorphic to factor power \(\mathcal{FP}(G,M) \), which is called then a regular factor power.

From now on, we consider a finite group \(G \) and its different factor powers.
2 Preliminaries

For an arbitrary subgroup $H \subseteq G$ we introduce the notation:

$$\{x_1, \ldots, x_k\} \equiv \{y_1, \ldots, y_m\} \pmod{H}$$

where $\{x_1, \ldots, x_k\}, \{y_1, \ldots, y_m\}$ are subsets of $G, x \in G$.

If $X \equiv Y \pmod{H}$, we say that the sets X and Y are equivalent with respect to the subgroup H.

Consider the collection of point stabilizers of the action (G, M). This collection is partitioned into equivalency classes by conjugacy relation. If two points m_1, m_2 belong to the same orbit, there exists an element $x \in G$ such that $m_1^x = m_2$. Clearly, $\text{St}(m_2) = x^{-1} \text{St}(m_1)x$, so the two stabilizers are conjugate. Furthermore, a conjugate subgroup to the stabilizer of some point m_1 is itself a stabilizer of some point m_2 from the same orbit as m_1. Indeed, the subgroup $x^{-1} \text{St}(m_1)x$ is the stabilizer for the point $m_2 = m_1^x$: $\text{St}(m_2) = \{y : m_2^y = m_2\} = \{y : m_1^{xy^{-1}} = m_1\} = \{y : m_1^{xy^{-1}} = m_1\}$.

If the stabilizer of point m is a superset of the stabilizer of another point m', the orbit $\text{Orb}(m)$ will be called neglectable. As stabilizers of points belonging to the same orbit are conjugate, any stabilizer of point from $\text{Orb}(m)$ is a subset of some stabilizer of point from $\text{Orb}(m')$. All (conjugate) stabilizers of points from $\text{Orb}(m)$ will be called neglectable as well.

Lemma 1. Let “∼” be the congruence defining a factor power $FP(G)$ of a finite group G, $X, Y \in P(G)$. Then $X \sim Y$ iff $X \equiv Y \pmod{N}$ for each stabilizer N.

Proof. Suppose that $X \sim Y$. Let N be a stabilizer of some point $m \in M$. We have: $m^X = m^Y$, which can be rewritten as $\{m^x : x \in X\} = \{m^y : y \in Y\}$. Therefore for each x from X there exists such a y from Y that $m^x = m^y$, which is equivalent to $m^{xy^{-1}} = m$, $xy^{-1} \in \text{St}(m) = N$, or $xN = yN$.

Thus for each $X \in X$ there exists such $y \in Y$ that $xN = yN$, that is, $\{xH : x \in X\} \subseteq \{yH : y \in Y\}$. The opposite inclusion can be proved in the similar way. We obtain: $\{xH : x \in X\} = \{yH : y \in Y\}$, that is, $X \equiv Y \pmod{N}$.

The sufficiency is proved in a similar way. \qed

Remark 1.1. As point stabilizers are subgroups, the notion of equivalency, which was introduced at the beginning of this section, is applicable to them. Equivalency w.r.t. non-neglectable stabilizers implies equivalency w.r.t. neglectable ones, therefore in Lemma 1 $X \sim Y$ if $X \equiv Y \pmod{N}$ for every non-neglectable stabilizer N.

Lemma 2. Factor power will not be changed if we remove from M all points of neglectable orbits, and leave only one of several non-neglectable equal ones.
Proof. This is a corollary of Lemma 1. □

The set of all non-neglectable stabilizers defines the congruence ∼, therefore defines a factor power $\mathcal{FP}(G) = \mathcal{P}(G)/\sim$.

If $\{N_1, \ldots, N_s\} = N$ is the set of all non-neglectable stabilizers, denote the corresponding factor power as $\mathcal{FP}_{N_1, \ldots, N_s}(G) = \mathcal{FP}_N(G)$. The set N is called a signature of factor power $\mathcal{FP}_N(G)$.

Lemma 3. Let \mathcal{N} be a collection of subgroups of a finite group G such that

1. if a subgroup N belongs to \mathcal{N}, all conjugate subgroups belong to \mathcal{N} as well;
2. no subgroup from \mathcal{N} is a subset of another subgroup from \mathcal{N}.

Then \mathcal{N} is a signature of some factor power $\mathcal{FP}(G)$.

Proof. Indeed, let M be the set of all right cosets of subgroups from \mathcal{N} in G. The group G acts on M in the natural way. It is easy to check that the signature of this factor power is exactly \mathcal{N}. □

3 Properties of factor powers

For an element $X = \{x_1, \ldots, x_k\} \in \mathcal{P}(G)$ denote $\langle x_1, \ldots, x_k \rangle$ its projection to the factor power. For an element x of the factor power $\mathcal{FP}_N(G)$ denote an inverse projection image $[x] = \bigcup_{(Y) = x} Y \in \mathcal{P}(G)$.

Obviously $\langle [x] \rangle = x$.

For a factor power $S = \mathcal{FP}_N(G)$, denote $N^0 = \bigcap_{N \in \mathcal{N}} N$. Obviously N^0 is the kernel of the group action and therefore a normal subgroup. N^0 is called the kernel of the signature \mathcal{N}.

Lemma 4. The maximal subgroup of factor power $\mathcal{FP}_N(G)$ of a finite group G is isomorphic to G/N^0.

Proof. I. The equality $\langle x_1, \ldots, x_k \rangle = \langle e \rangle$ is held iff on every orbit the element $x = \{x_1, \ldots, x_k\}$ doesn’t move points. This is equivalent to the fact that every element x_i belongs to each stabilizer, that is, to their intersection N^0. Therefore $\langle x_1, \ldots, x_k \rangle = \langle e \rangle \iff \{x_1, \ldots, x_k\} \subseteq N^0$.

II. Let all x_i belong to the same conjugacy class $x_0 N^0$. Then $\{x_0^{-1}\} \cdot \{x_1, \ldots, x_k\} \subseteq N^0$, or $\langle x_0^{-1} \rangle \cdot \langle x_1, \ldots, x_k \rangle = \langle e \rangle$, so $\langle x_1, \ldots, x_k \rangle$ is a group element.

III. Let now $\langle x_1, \ldots, x_k \rangle$ be a group element. There exist an inverse element $\langle y_1, \ldots, y_m \rangle$, $\langle x_1, \ldots, x_k \rangle \cdot \langle y_1, \ldots, y_m \rangle = \langle e \rangle$. Taking any nonequal x_i, x_j, we obtain: $x_i y_i \in N^0$, $x_j y_1 \in N^0$, therefore $x_i = n y_i^{-1}$, $x_j = n' y_1^{-1}$ for some $n, n' \in N^0$. We have: $x_j x_i^{-1} = n' y_1^{-1} y n^{-1} = n n' \in N^0$, therefore all x_i belong to the same conjugacy class. Moreover, if $\langle z_1, \ldots, z_l \rangle = \langle x_1, \ldots, x_k \rangle$, then similarly $z_1 y_1 \in N^0$, $z_1 x_1^{-1} \in N^0$, so all z_i belong to the same conjugacy class as x_i.

IV. Putting the conjugacy class that contains element x_1N^o as correspondent for the group element $\langle x_1, \ldots, x_k \rangle$, we obtain an isomorphism. Indeed, III shows that it is well-defined, injectivity follows from the uniqueness of inverse element, surjectivity is proved in II.

Next proof requires the following technical lemma.

Lemma 5. Let $FP(G) = P(G)/\sim$ be a factor power of a finite group G, and $X, Y \in P(G)$. Then $X \sim Y$ iff for each point stabilizer N the equality $XN =YN$ is held.

Proof. Sets X and Y are equivalent iff for every stabilizer N $X \equiv Y \pmod{N}$, or, in other words,

$$\{xN: x \in X\} = \{yN: y \in Y\}. \quad (1)$$

Sufficiency:

$$XN = \bigcup_{x \in X} xN$$

$$= \bigcup_{y \in Y} yN \quad \text{(due to (1))}$$

$$= YN.$$

Necessity: let’s take an arbitrary $x \in X$. We want to prove that there exists such $y \in Y$, that $xN = yN$.

As $XN = YN$, for each $n_1 \in N$ there exist such $y \in Y$ and $n_2 \in N$ that $xn_1 = yn_2 = yn_1n_1^{-1}n_2$. For arbitrary $n \in N$ we have $xn = xn_1(n_1^{-1}n) = yn_2(n_1^{-1}n)$. Let now n run over all elements in N, then $n_2n_1^{-1}n$ traverses the whole N as well.

Therefore $\{xN: x \in X\} \subseteq \{yN: y \in Y\}$. The counter-inclusion is proved in a similar way. \hfill \square

Lemma 6 (on reduction). For a finite group G, consider a factor power $FP_N(G)$. Let N^o be the kernel of its signature N; let π be the projection $G \rightarrow G/N^o$. Then $FP\{\pi(N_1), \ldots, \pi(N_s)\}(G) \cong FP\{\pi(N_1), \ldots, \pi(N_s)\}(G/N^o)$.

Proof. Define $\tau(\langle x_1, \ldots, x_k \rangle) = \langle x_1N^o, \ldots, x_kN^o \rangle$.

We prove first that τ is well-defined and injective. Indeed, the following statements are equivalent:

1. $\langle x_1, \ldots, x_k \rangle = \langle y_1, \ldots, y_m \rangle$;
2. $\{x_1N^o, \ldots, x_kN^o\} = \{y_1N^o, \ldots, y_mN^o\}$;
3. for every stabilizer N:

$$\{(x_1N^o)(NN^o), \ldots, (x_kN^o)(NN^o)\} = \{(y_1N^o)(NN^o), \ldots, (y_mN^o)(NN^o)\};$$

4. $\langle x_1N^o, \ldots, x_kN^o \rangle = \langle y_1N^o, \ldots, y_mN^o \rangle$.

(Lemma 5 is used.)
Surjectivity is clear. Let’s show that \(\tau \) preserves the semigroup operation. Indeed,

\[
\langle x_1, \ldots, x_k \rangle \langle y_1, \ldots, y_m \rangle = \langle x_i y_j : i = 1, \ldots, k, j = 1, \ldots, m \rangle.
\]

Applying \(\tau \), we obtain:

\[
\langle x_i y_j N^\circ : i = 1, \ldots, k, j = 1, \ldots, m \rangle = \langle x_1 N^\circ, \ldots, x_k N^\circ, y_1 N^\circ, \ldots, y_m N^\circ \rangle.
\]

Hence \(\tau \) is an isomorphism \(\mathcal{FP}_{\{N_1, \ldots, N_s\}}(G) \rightarrow \mathcal{FP}_{\{\pi(N_1), \ldots, \pi(N_s)\}}(G/N^\circ) \).

Notice that the image of a group element under an isomorphism of factor powers is again a group element.

If the kernel of action is trivial, \(N^\circ = \{e\} \), the factor power \(\mathcal{FP}_N(G) \) is called reduced.

Lemma 7. Let \(\mathcal{FP}(G) \) be a reduced factor power. There exists a one-to-one correspondence between \(G \) and the maximal subgroup of \(\mathcal{FP}(G) \): an element \(x \in \mathcal{FP}(G) \) is a group element iff \(x = \langle x \rangle \) for some \(x \in G \); moreover, in this case \([x] = \{x\} \), so the mapping \(x \mapsto \langle x \rangle \) is the needed bijection.

Proof is obvious.

Lemma 8. Let \(\mathcal{FP}_N(G) \) be a factor power of a finite group \(G \):

I. If \(X \) is a subgroup of \(G \), \(\langle X \rangle \) is an idempotent in \(\mathcal{FP}_N(G) \);

II. If \(y \) is an idempotent in \(\mathcal{FP}_N(G) \), \([y] \) is a subgroup;

III. If \(y \) is an idempotent and \(x = \langle x_1, \ldots, x_k \rangle \), the equality \(xy = y \) is held iff all the \(x_i \) belong to the set \([y]\).

Proof. I. Since \(X \) is a subgroup, \(\langle X \rangle \langle X \rangle = \langle XX \rangle = \langle X \rangle \).

II. We have: \(\langle [y] \rangle = \langle [y] \rangle \langle [y] \rangle = yy = y \), therefore \([y] [y] \) is an inverse image of \(y \). By definition, \([y] \) is a maximal inverse image, therefore \([y] [y] \subseteq [y] \). Hence the set \([y] \) is closed with respect to multiplication. For a finite group \(G \) this is sufficient to show that \([y] \) is a subgroup.

III. If all \(x_i \) belong to \([y] \), \(xy = \{x_1, \ldots, x_k\} [y] \rangle = \langle [y] \rangle = y \).

If \(xy = y \), we have: \(\langle [y] \rangle = \langle \{x_1, \ldots, x_k\} [y] \rangle = \langle x_i y : i = 1, \ldots, k, y \in [y] \rangle \), therefore \(\{x_i y : i = 1, \ldots, k, y \in [y] \} \subseteq [y] \), hence all elements of the form \(x_i y \) belong to \([y] \). This means that all \(x_i \) belong to \([y] \).

Remark 8.1. The definition implies that for each subgroup \(X: [(X)] \supseteq X \).

Definition 9. For a given factor power of a finite group \(G \) and a subgroup \(H \) of this group, the subgroup \([(H)] \) is called closure of the subgroup \(H \). Denote it \(\overline{H} \).

Subgroup \(H \) is called closed, if it is equal to its closure.

Obviously, \(\overline{H} \) is the minimal closed subgroup that includes \(H \).
Remark 9.1. Closed subgroups correspond to idempotents of the factor power.

Remark 9.2. For a reduced factor power, point stabilizers are closed subgroups. Indeed, let \mathcal{X} be a point stabilizer, $\mathcal{X} = \text{St}(m)$. According to the definition, actions of \mathcal{X} and \mathcal{X} on the points from M must be the same. In particular,

$$m^\mathcal{X} = m^\mathcal{X} = m^{\text{St}(m)} = m,$$

which implies that $\mathcal{X} \subseteq \text{St}(m) = \mathcal{X}$. Taking Remark 8.1 into consideration, we obtain the needed equality.

For a closed subgroup H of the group G, denote $U(H)$ the set of all elements $x \in \mathcal{FP}_N(G)$ satisfying condition $x \cdot \langle H \rangle = \langle H \rangle$.

Let $\mathcal{N} = \{N_1, \ldots, N_s\}$ be the signature of some factor power $\mathcal{FP}(G)$, let H be a subgroup of G. Denote $\mathcal{N} \cap H$ the set $\{N_1 \cap H, \ldots, N_s \cap H\}$, from which all neglectable elements (i.e., elements which are subsets of other elements) are removed. Notice that according to Lemma 3, $\mathcal{N} \cap H$ is a signature of some factor power of the group H. Indeed, it does not contain neglectable elements by definition; if $\mathcal{N} \cap H$ is a non-neglectable element in $\{N_1 \cap H, \ldots, N_s \cap H\}$, $y \in H$, then $y^{-1}N\mathcal{Y}$ belongs to \mathcal{N} (since \mathcal{N} is a signature), and $y^{-1}N\mathcal{Y} \cap H = y^{-1}(N \cap H)y$ (since $y \in H$) belongs to $\{N_1 \cap H, \ldots, N_s \cap H\}$ as well. Furthermore, $y^{-1}(N \cap H)y$ cannot be neglectable, otherwise its conjugate $N \cap H$ would have been neglectable as well.

Lemma 10. For a subgroup H of a finite group G,

$$U(H) = \mathcal{FP}_{\mathcal{N} \cap \overline{H}}(H).$$

Proof. The proof consists mainly of direct checking the definition conditions.

According to Lemma 8 and the definition of closed subgroup, an element $\langle X \rangle$ belongs to $U(H)$ iff the set $X \in \mathcal{P}(G)$ is a subset of $\langle \langle H \rangle \rangle = \overline{H}$. Consider arbitrary subsets $X = \{x_1, \ldots, x_k\}$, $Y = \{y_1, \ldots, y_m\}$ of the set \overline{H}. We shall prove that $\{x_1, \ldots, x_k\} \sim \{y_1, \ldots, y_m\}$ is either held or not held in both $\mathcal{FP}(G)$ and $\mathcal{FP}(\overline{H})$ simultaneously. For that it is enough to prove the equivalence of the following two expressions: $X \equiv Y$ (mod N) and $X \equiv Y$ (mod $N \cap \overline{H}$) for an arbitrary $N \in \mathcal{N}$.

If $X \equiv Y$ (mod $N \cap \overline{H}$), for every x from X there exist such y from Y that $xy^{-1} \in N \cap \overline{H}$, which implies $xy^{-1} \in N$. Similarly, for every y from Y there exists such x from X that $xy^{-1} \in N$. Therefore $\{xN : x \in X\} = \{yN : y \in Y\}$.

If, in turn, $X \equiv Y$ (mod N), for arbitrary x from X there exist such y from Y that $xy^{-1} \in N$. Since $x, y \in \overline{H}$, we have: $xy^{-1} \in N \cap \overline{H}$. Similarly for arbitrary y from Y there exist such x from X that $xy^{-1} \in N \cap \overline{H}$. Therefore $\{x(N \cap \overline{H}) : x \in X\} = \{y(N \cap \overline{H}) : y \in Y\}.$

Remark 10.1. If H is a closed subgroup, $U(H) = \mathcal{FP}_{\mathcal{N} \cap \overline{H}}(H)$.

Remark 10.2. If the factor power $\mathcal{FP}_N(G)$ is reduced, so is $\mathcal{FP}_{\mathcal{N} \cap \overline{H}}(H)$ as well. Indeed,

$$\bigcap (N_i \cap \overline{H}) = \left(\bigcap N_i\right) \cap \overline{H} = N^\circ \cap \overline{H} = \{e\} \cap \overline{H} = \{e\}.$$
Definition 11. Let \mathcal{N} and \mathcal{K} be signatures. Denote $\mathcal{N} \succ \mathcal{K}$ iff for each $K \in \mathcal{K}$ there exists such $N \in \mathcal{N}$ that $N \subseteq K$.

Lemma 12. Let \mathcal{N} and \mathcal{K} be signatures. Than $\mathcal{N} \prec \mathcal{K} \prec \mathcal{N}$ implies equality of \mathcal{N} and \mathcal{K}.

Proof. The Lemma assumption immediately implies that for each $K \in \mathcal{K}$ there exists such $N \in \mathcal{N}$ that is a subset of K. Furthermore, there exists such $K' \in \mathcal{K}$ that is a subset of N. Hence $K' \subseteq N \subseteq K$. Since neither \mathcal{N} nor \mathcal{K} contains neglectable elements, $K = N = K'$. Thus $\mathcal{K} \subseteq \mathcal{N}$.

Since the Lemma assumption is symmetrical, $\mathcal{K} \prec \mathcal{N} \prec \mathcal{K}$ as well, and we obtain similarly: $\mathcal{N} \subseteq \mathcal{K}$.

Lemma 13 (on local injectivity). Let $S_1 = \mathcal{F} \mathcal{P}_\mathcal{N}(G)$, $S_2 = \mathcal{F} \mathcal{P}_\mathcal{K}(G)$ and $\mathcal{N} \succ \mathcal{K}$. Then $S_1 \not= S_2$.

Proof. Note that $\mathcal{K} \not\succ \mathcal{N}$ (through Lemma 12), hence there exists such $N \in \mathcal{N}$ that is not a subset of K for each $K \in \mathcal{K}$.

Each set $T \subseteq G$ that contains at least one element from N is not equivalent to $G \setminus N$ modulo N (otherwise, if n is that element from N, we have: $n = gn'$ for some $g \in G \setminus N$, $n' \in N$, so $g = nn'^{-1} \in N$, which states a contradiction).

In particular, $G \setminus N \not\equiv (G \setminus N) \cup \{e\}$ (mod N).

But for every $K \in \mathcal{K}$ we have: $G \setminus N \not\equiv (G \setminus N) \cup \{e\}$ (mod K). Indeed, $K \not\subseteq N$, therefore $K \cap (G \setminus N) \not= \emptyset$. For an element $k \in K \cap (G \setminus N)$, $e \equiv k$ (mod K), thus, $e \in G \setminus N$.

Consequently, the equivalency w.r.t. congruence \sim_2 which defines S_2 does not imply the equivalency w.r.t. congruence \sim_1 which defines S_1. But the equivalency w.r.t. \sim_1 implies the equivalency w.r.t. \sim_2, since $\mathcal{N} \succ \mathcal{K}$.

4 Isomorphisms of factor powers

Definition 14. Let S_1 and S_2 be two isomporphic factor powers of a finite group G, φ be the isomorphism, N_1^φ and N_2^φ be the corresponding action kernels. We define an adjoint isomorphism $\varphi_m: G/N_1^\varphi \to G/N_2^\varphi$ in the following way: $\varphi_m(X) = [\varphi(\langle X \rangle)]$, where X is a coset of N_1^φ. Since $\langle X \rangle$ is a group element (see the proof of Lemma 4), $\varphi(\langle X \rangle)$ is therefore a group element in S_2, and its inverse image $[\varphi(\langle X \rangle)]$ is a coset of N_2^φ.

We extend φ_m to act on all sets that are unions of cosets by the same formula: $\varphi_m(X) = [\varphi(\langle X \rangle)]$. This can be written as well as follows: $\varphi(\langle x \rangle) = \langle [\varphi_m(x)] \rangle$,
\(\varphi_m([y]) = [\varphi(y)] \). Note that the inverse image of a factor power element is a union of cosets.

Consider the case when \(S_1 \) is reduced, then \(S_2 \) is reduced as well (since the maximal subgroup of \(S_1 \) is mapped by \(\varphi \) to the maximal subgroup of \(S_2 \), and due to the fact that the factor power \(FP(G) \) is reduced iff its maximal subgroup is isomorphic to \(G \). For this case \(\varphi_m \) can be naturally represented as a mapping of \(G \) to itself. Obviously \(\varphi_m \) preserves the product; since \(G \) is a finite group, \(\varphi_m \) is an automorphism in this case.

Lemma 15. Let \(S_1 = FP_N(G) \) and \(S_2 = FP_{N'}(G) \) be reduced factor powers of a finite group \(G \), \(\varphi \colon S_1 \to S_2 \) be an isomorphism, \(x_0 \) be an idempotent. Then \(\varphi_m([x_0]) = [\varphi(x_0)] \).

Proof. We have: \(\varphi(x_0)\varphi(x_0) = \varphi(x_0x_0) = \varphi(x_0) \), therefore \(\varphi(x_0) \) is idempotent.

The next statements are equivalent:

1) Element \(x \) belongs to the inverse image \([x_0] \).
2) By lemma 8, \([x_0] \) is an idempotent, thus 1) is equivalent to \(\langle x \rangle x_0 = x_0 \).
3) Since \(\varphi \) is an isomorphism, 2) is equivalent to \(\langle \varphi_m(x) \rangle \varphi(x_0) = \varphi(x_0) \).
4) Using lemma 8 again, we obtain: \(\varphi_m(x) \in [\varphi(x_0)] \).

The statement of lemma follows from the equivalence of 1) and 4). \(\square \)

Definition 16. Let \(\mathcal{N} = \{N_1, \ldots, N_s\} \) and \(\mathcal{N}' = \{N'_1, \ldots, N'_s\} \) be signatures on \(G \). \(N^o = \bigcap N_i \) and \(N'^o = \bigcap N'_i \) are the kernels of the corresponding actions. Let \(\tau \) be an isomorphism \(G/N^o \to G/N'^o \). We extend \(\tau \) to unions of cosets in the standard way. Then \(\tau(\mathcal{N}) \stackrel{\text{def}}{=} \{\tau(N_1), \ldots, \tau(N_s)\} \) is obviously a signature as well, and \(\tau \) induces the isomorphism

\[\hat{\tau} : FP_{\mathcal{N}'}(G) \to FP_{\tau(\mathcal{N})}(G). \]

Definition 17. Given any isomorphic factor powers \(S_1 \) and \(S_2 \) of \((G,M)\), be \(N_1^o \) and \(N_2^o \) the respective kernels, isomorphism \(\varphi : S_1 \to S_2 \) induces the isomorphism \(\varphi_m : G/N_1^o \to G/N_2^o \):

\[\varphi_m([x]) = [\varphi(x)]. \]

If \(\varphi_m \) is an identity transformation, (in particular, \(N_1^o = N_2^o \),) \(\varphi \) is called a direct isomorphism.

Remark 17.1. For an isomorphism

\[\varphi : FP_{\mathcal{N}'}(G) \to FP_{\mathcal{N}''}(G) \]

the mapping

\[\varphi_m^{-1} \circ \varphi : FP_{\mathcal{N}'}(G) \to FP_{\varphi_m^{-1}(\mathcal{N}'')}(G) \]

is a direct isomorphism.
Definition 18. Let π be an epimorphism $G \rightarrow H$, $\mathcal{N} = \{N_1, \ldots, N_s\}$ be a signature on G. We define $\pi(\mathcal{N})$ as the set $\{\pi(N_1), \ldots, \pi(N_s)\}$, from which all the neglectable elements (i.e. elements which are subsets of others) are removed.

Remark 18.1. According to Lemma 3, $\pi(\mathcal{N})$ is a signature of some factor power of the group H. Indeed, it does not contain neglectable elements by definition; if $\pi(\mathcal{N})$ contains some non-neglectable element in $\pi(N_i)$, then for any $y \in H$ $y^{-1}\pi(N_i)y = \pi(x^{-1}N_ix)$, where x is an arbitrary element, which is mapped to y by π (recall that π is an epimorphism). Since \mathcal{N} is a signature and N_i belongs to it, $x^{-1}N_ix$ belongs to it as well, therefore $y^{-1}\pi(N_i)y$ belongs to $\{\pi(N_1), \ldots, \pi(N_s)\}$ as well. Furthermore, $y^{-1}\pi(N_i)y$ cannot be neglectable, otherwise its conjugate $\pi(N_i)$ would have been neglectable as well.

Theorem 1. Let factor powers $S_1 = FP_{\mathcal{N}}(G)$ and $S_2 = FP_{\mathcal{N}'}(G)$ of a group G be directly isomorphic. Then $\mathcal{N} = \mathcal{N}'$.

Proof. The proof is by induction on size of the group G.

The induction basis (the case of cyclic groups) was proved in [4].

Consider the inductive step.

Factor powers S_1 and S_2 are both simultaneously reduced or not reduced.

I. Let now them be not reduced. Since the factor powers are directly isomorphic, the two corresponding group actions have a common kernel. Denote this kernel as N^0, denote π the projection $G \rightarrow G/N^0$. By Lemma 6, S_1 is isomorphic to $FP_{\pi(\mathcal{N})}(G/N^0)$, S_2 is isomorphic to $FP_{\pi(\mathcal{N}')}\pi(\mathcal{N})(G/N^0)$. Notice that $FP_{\pi(\mathcal{N})}(G/N^0)$ is directly isomorphic to $FP_{\pi(\mathcal{N}')}\pi(\mathcal{N})(G/N^0)$ as factor power of G/N^0. Indeed, if φ is isomorphism $S_1 \rightarrow S_2$ as factor powers of G, by definition φ_m is an identity transformation. Since $FP_{\pi(\mathcal{N})}(G/N^0)$ and $FP_{\pi(\mathcal{N}')}\pi(\mathcal{N})(G/N^0)$ are reduced factor powers, their adjacent isomorphism is exactly φ_m, which is an identity.

So, by induction, $\pi(\mathcal{N}) = \pi(\mathcal{N}')$.

Note that each $N \in \mathcal{N}$ contains N^0, and therefore is a union of cosets of N^0. The element $\pi(N) \in G/N^0$ is indeed a set of cosets of N^0, and N is indeed the union of cosets from $\pi(N)$.

This means in particular that since \mathcal{N} is a signature, for each pair of elements $N_1, N_2 \in \mathcal{N}$ $\pi(N_1)$ does not contain $\pi(N_2)$ (otherwise N_1 would have contained N_2). Hence $\pi(\mathcal{N}) = \{\pi(N) : N \in \mathcal{N}\}$. The same is true for \mathcal{N}'.

Moreover, if some element N belongs to \mathcal{N}, its projection $\pi(N)$ belongs to $\pi(\mathcal{N})$ and therefore to $\pi(\mathcal{N}')$, so the corresponding union of cosets belongs to \mathcal{N}'.

Hence $\mathcal{N} = \mathcal{N}'$, which completes the proof in this case.

II. Let now both factor powers S_1 and S_2 be reduced. In this case the kernel of both actions is trivial, and φ_m is an identity $G \rightarrow G$.

We claim that for every closed (in either of factor powers) subgroup H of the group G

$$\mathcal{N} \cap H = \mathcal{N}' \cap H.$$ \hfill (*)
Indeed, let \(\varphi \) be the direct isomorphism mapping \(S_1 \) to \(S_2 \), \(H \) be a closed subgroup with respect to the first factor power. Then for an arbitrary \(x \) from \(S_1 \):

\[
x \in U(H)_{S_1} \iff x + (H) = (H) \quad \text{(by definition)}
\]

\[
\iff \varphi(x) + \varphi((H)) = \varphi((H)) \quad \text{(since \(\varphi \) is an isomorphism)}
\]

\[
\iff \varphi(x) \in U(\varphi((H))) \quad \text{(by definition)}
\]

\[
\iff \varphi(x) \in U(\varphi_m(H)) \quad \text{(by Lemma 15)}
\]

\[
\iff \varphi(x) \in U(H)_{S_2} \quad \text{(since \(\varphi \) is direct)}.
\]

So, the image of \(U(H) \subseteq S_1 \) is \(U(H) \subseteq S_2 \), therefore \(U(H)_{S_1} \) is directly isomorphic to \(U(H)_{S_2} \). Taking Lemma 10 and Remark ?? into consideration, we obtain that \(\mathcal{FP}_{N \cap H}(H) \) is directly isomorphic to \(\mathcal{FP}_{N' \cap \overline{H}}(\overline{H}) \), where the closure is taken with respect to the second factor power. But according to Remark ??, both factor powers are reduced, thus their maximal subgroups are \(H \) and \(\overline{H} \) respectively. Since maximal subgroups must be isomorphic, and recalling that \(\overline{H} \supseteq H \), we claim that \(\overline{H} = H, H \) is closed with respect to the second factor power as well, so \(\mathcal{FP}_{N \cap H}(H) \) is directly isomorphic to \(\mathcal{FP}_{N' \cap \overline{H}}(\overline{H}) \).

Hence by induction (\(\ast \)) is true.

Let \(N \) be an arbitrary element of \(\mathcal{N} \). We shall prove now that \(N \) belongs to \(\mathcal{N}' \) as well.

According to Remark ??, \(N \) is a closed subgroup. Putting \(H = N \) in (\(\ast \)), we get that there exist some \(N' \) from \(\mathcal{N}' \) which satisfies \(N' \cap H = N \cap H \), which can be written as \(N' \cap N = N, N' \supseteq N \).

Similarly, there exist \(N_1 \) from \(\mathcal{N} \) such that \(N_1 \cap N' = N', N_1 \supseteq N' \).

So, \(N \subseteq N' \subseteq N_1 \). As signature does not contain neglectable elements, \(N = N' = N_1 \).

This means that \(\mathcal{N} \) is a subset of \(\mathcal{N}' \). The counter-inclusion is proved in a similar way. \(\square \)

5 Main result

The conjugacy is an equivalence relation on the set of all subgroups of a finite group \(G \). Denote \(\hat{L}(G) \) the quotient set by this relation.

We define a non-strict partial order “\(\geq \)” on \(\hat{L}(G) \) in a straightforward way: \(a \geq b \) iff for every set \(A \in a \) a set \(B \in b \) which is contained in \(A \) can be found.

The relation “\(\geq \)” is indeed a non-strict partial order. It is obviously reflexive. Transitivity can be easily established: if \(a \geq b \geq c \), then for each \(A \in a \) there exists \(B \in b \) such that \(A \supseteq B \); for any such \(B \) there exists \(C \in c \) such that \(B \supseteq C \); therefore for the considered \(a \subseteq c \) contained in \(A \) can be found. Antisymmetry requires a little bit more work. Suppose the opposite: let \(a \geq b \geq a, a \neq b \). Then either some element from \(a \) does not belong to \(b \), or some element of \(b \) does not belong to \(a \). Consider the first case (the second is done in the similar way). Let \(A \in a \), \(A \notin b \). Since \(a \geq b \), there exist \(B \in b \) such that \(A \supseteq B \). Since \(b \geq a \), there exists some \(A' \in a \) such that \(B \supseteq A' \). This yields \(A \supseteq B \supseteq A' \). But \(a \) is a conjugacy
class, therefore $|A| = |A'|$, $A = B = A'$. This contradicts to the assumption that $A \notin b$.

According to Lemma 3, each antichain in $\hat{L}(G)$ corresponds to some factor power of G. From the other side, for a factor power $FP_N(G)$ its signature by definition corresponds to an antichain in $\hat{L}(G)$.

Consider now the question: which antichains correspond to the isomorphic factor powers? Let’s fix a factor power $S = FP_N(G)$.

Let φ be some non-inner automorphism of G. Then φ maps N to some another signature $\varphi(G)$. Indeed, if $N \in \varphi(N)$, then $x^{-1}Nx = \varphi((\varphi^{-1}(x))^{-1}N'\varphi^{-1}(x))$, where N' is an element from N which is mapped to N by φ. Moreover, if $\varphi(N_1) \leq \varphi(N_2)$, then $\varphi^{-1}(\varphi(N_1)) \subseteq \varphi^{-1}(\varphi(N_2))$, i.e. $N_1 \subseteq N_2$, which is impossible since N is a signature.

It’s easy to see that $FP_{\varphi(N)}(G)$ is isomorphic to $FP_N(G)$.

Let now $S' = FP_N'(G)$ be isomorphic to S, φ be the isomorphism. Then, according to the previous Theorem 1 and Remark ??, $N = \varphi^{-1}(N')$. φ^{-1} can be extended to an automorphism of the group G.

Consequently, let’s introduce the factor equivalency of signatures and (which is the same) antichains in $\hat{L}(G)$: two elements are factor equivalent iff one can be mapped to another by a mapping corresponding to some element from $Out(G)$.

Factor equivalency is, in turn, an equivalence relation on the set of all antichains on $\hat{L}(G)$. Denote $\hat{L}(G)$ the quotient set by this relation.

Consider the following relation on \hat{L}: a set of antichains \mathfrak{A} majorizes set \mathfrak{B} iff for each element $a \in \mathfrak{A}$ there exist such an element $b \in \mathfrak{B}$ that $a \succ b$.

The set \hat{L} equipped with majorization becomes a poset. The proof is identical to the proof that “\succ” is a partial order, only instead of using conjugacy class for proving antisymmetry we need to use antichain.

A congruence \sim_1 on a semigroup S is called a refinement of a congruence \sim_2, if $s_1 \sim_1 s_2$ implies $s_1 \sim_2 s_2$ for each pair of elements $s_1, s_2 \in S$. If moreover $\sim_1 \neq \sim_2$, the refinement is called strict. The factor semigroup S/\sim_1 is said to be an extension of the factor semigroup S/\sim_2 (denoted: $S/\sim_1 \succ S/\sim_2$), if the congruence \sim_1 is a refinement of \sim_2. The relation “\succ” is a partial order on the set of all factor semigroups of the semigroup S.

Theorem 2. There exists a one-to-one correspondence between the set of all non-isomorphic factor powers of the finite group G and the set $\hat{L}(G)$ of all factor equivalence classes of antichains from the set $\hat{L}(G)$. This correspondence is consistent with the partial order on $\hat{L}(G)$, that is, factor power S_1 is an extension of factor power S_2 iff the element of $\hat{L}(G)$ corresponding to S_1 majorizes the element corresponding to S_2.

The author is grateful to O.G. Ganyushkin (his scientific advisor) for stating the problem and many fruitful discussions about it, without which the article would have never been written.
References

Kyiv National Taras Shevchenko University
Ukraine
E-mail: vdma@mail.ru

Received January 12, 2007