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Isomorphism of the factor powers of finite groups
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Abstract. All factor powers of an arbitrary finite group are classified up to
isomorphism.
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1 Introduction

The set P(G) of all subsets of a group G is called a global supersemigroup of that
group. The operation on P(G) is defined in a natural way:

H · F = {xy : x ∈ H, y ∈ F} for all H, F ⊆ G.

If the group G acts on a set M , we can define an induced action of a semigroup P(G)
on the power set of the set M :

NF = {ax : a ∈ N, x ∈ F} for all N ⊆ M , F ∈ P(G).

There exists a natural congruence ∼ of the semigroup P(G), related to this action:
H ∼ F iff H and F act identically on B(M). Note that this definition is equivalent
to the following: H ∼ F iff {m}H = {m}F (shortly: mH = mF ) for all m ∈ M .

The corresponding factor semigroup FP(G,M) = P(G)/∼ is called a factor
power of the action (G,M). FP(G,M) is called also a factor power of the group
G; note that a group can have several factor powers. The congruence ∼ is said to
define the factor power FP(G,M).

The factor powers were introduced in [1] for arbitrary action semigroups; the
further results are stated in [2, 3]. In [4] the classification of factor powers of finite
groups is given for the case of cyclic groups.

From now on, we consider only right group actions, so mhf = (mh)f for all
m ∈ M , h, f ∈ G.

If |M | = 1, then |FP(G,M)| = 2, so the factor power FP(G,M) in this case
is called trivial. If the action (G,M) is regular, global supersemigroup P(G) is
isomorphic to factor power FP(G,M), which is called then a regular factor power.

From now on, we consider a finite group G and its different factor powers.
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2 Preliminaries

For an arbitrary subgroup H ⊆ G we introduce the notation:

{x1, . . . , xk} ≡ {y1, . . . , ym} (mod H)

def
⇐⇒ {x1H, . . . , xkH} = {y1H, . . . , ymH} ,

x ∈ {y1, . . . , ym} (mod H)
def
⇐⇒ xH ∈ {y1H, . . . , ymH} ,

where {x1, . . . , xk}, {y1, . . . , ym} are subsets of G, x ∈ G.

If X ≡ Y (mod H), we say that the sets X and Y are equivalent with respect
to the subgroup H.

Consider the collection of point stabilizers of the action (G,M). This collection
is partitioned into equivalency classes by conjugacy relation. If two points m1,
m2 belong to the same orbit, there exists an element x ∈ G such that mx

1 = m2.
Clearly, St(m2) = x−1 St(m1)x, so the two stabilizers are conjugate. Furthermore,
a conjugate subgroup to the stabilizer of some point m1 is itself a stabilizer of some
point m2 from the same orbit as m1. Indeed, the subgroup x−1 St(m1)x is the
stabilizer for the point m2 = mx

1 : St(m2) = {y : my
2 = m2} = {y : mxy

1 = mx
1} =

{y : mxyx−1

1 = m1} = x−1 St(m1)x.

If the stabilizer of point m is a superset of the stabilizer of another point m′,
the orbit Orb(m) will be called neglectable. As stabilizers of points belonging to the
same orbit are conjugate, any stabilizer of point from Orb(m) is a subset of some
stabilizer of point from Orb(m′). All (conjugate) stabilizers of points from Orb(m)
will be called neglectable as well.

Lemma 1. Let “∼” be the congruence defining a factor power FP(G) of a finite
group G, X, Y ∈ P(G). Then X ∼ Y iff X ≡ Y (mod N) for each stabilizer N .

Proof. Suppose that X ∼ Y . Let N be a stabilizer of some point m ∈ M . We have:
mX = mY , which can be rewritten as {mx : x ∈ X} = {my : y ∈ Y }. Therefore for
each x from X there exists such a y from Y that mx = my, which is equivalent to
mxy−1

= m, xy−1 ∈ St(m) = N , or xN = yN .
Thus for each X ∈ X there exists such y ∈ Y that xN = yN , that is, {xH : x ∈

X} ⊆ {yH : y ∈ Y }. The opposite inclusion can be proved in the similar way. We
obtain: {xH : x ∈ X} = {yH : y ∈ Y }, that is, X ≡ Y (mod N).

The sufficiency is proved in a similar way. 2

Remark 1.1. As point stabilizers are subgroups, the notion of equivalency, which
was introduced at the beginning of this section, is applicable to them. Equiva-
lency w. r. t. non-neglectable stabilizers implies equivalency w. r. t. neglectable ones,
therefore in Lemma 1 X ∼ Y if X ≡ Y (mod N) for every non-neglectable stabilizer
N .

Lemma 2. Factor power will not be changed if we remove from M all points of
neglectable orbits, and leave only one of several non-neglectable equal ones.
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Proof. This is a corollary of Lemma 1. 2

The set of all non-neglectable stabilizers defines the congruence ∼, therefore
defines a factor power FP(G) = P(G)/∼.

If {N1, . . . , Ns} = N is the set of all non-neglectable stabilizers, denote the
corresponding factor power as FP{N1,...,Ns}(G) = FPN (G). The set N is called a
signature of factor power FPN (G).

Lemma 3. Let N be a collection of subgroups of a finite group G such that

(1) if a subgroup N belongs to N , all conjugate subgroups belong to N as well;

(2) no subgroup from N is a subset of another subgroup from N .

Then N is a signature of some factor power FP(G).

Proof. Indeed, let M be the set of all right cosets of subgroups from N in G. The
group G acts on M in the natural way. It is easy to check that the signature of this
factor power is exactly N . 2

3 Properties of factor powers

For an element X = {x1, . . . , xk} ∈ P(G) denote 〈x1, . . . , xk〉 its projection to
the factor power. For an element x of the factor power FPN (G) denote an inverse
projection image [x] =

⋃

〈Y 〉=x

Y ∈ P(G).

Obviously 〈[x]〉 = x.

For a factor power S = FPN (G), denote N◦ =
⋂

N∈N
N . Obviously N◦ is the

kernel of the group action and therefore a normal subgroup. N◦ is called the kernel
of the signature N .

Lemma 4. The maximal subgroup of factor power FPN (G) of a finite group G is
isomorphic to G/N◦.

Proof. I. The equality 〈x1, . . . , xk〉 = 〈e〉 is held iff on every orbit the element
x = {x1, . . . , xk} doesn’t move points. This is equivalent to the fact that every
element xi belongs to each stabilizer, that is, to their intersection N◦. Therefore
〈x1, . . . , xk〉 = 〈e〉 ⇐⇒ {x1, . . . , xk} ⊆ N◦.

II. Let all xi belong to the same conjugacy class x0N
◦. Then {x−1

0 } ·
{x1, . . . , xk} ⊆ N◦, or

〈

x−1
0

〉

· 〈x1, . . . , xk〉 = 〈e〉, so 〈x1, . . . , xk〉 is a group
element.

III. Let now 〈x1, . . . , xk〉 be a group element. There exist an inverse element
〈y1, . . . , ym〉, 〈x1, . . . , xk〉 · 〈y1, . . . , ym〉 = 〈e〉. Taking any nonequal xi, xj, we
obtain: xiy1 ∈ N◦, xjy1 ∈ N◦, therefore xi = ny−1

1 , xj = n′y−1
1 for some n, n′ ∈ N◦.

We have: xjx
−1
i = n′y−1

1 y1n
−1 = n′n ∈ N◦, therefore all xi belong to the same

conjugacy class. Moreover, if 〈z1, . . . , zl〉 = 〈x1, . . . , xk〉, then similarly z1y1 ∈ N◦,
z1x

−1
1 ∈ N◦, so all zi belong ot the same conjugacy class as xi.
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IV. Putting the conjugacy class that contains element x1N
◦ as correspondent

for the group element 〈x1, . . . , xk〉, we obtain an isomorphism. Indeed, III shows
that it is well-defined, injectivity follows from the uniqueness of inverse element,
surjectivity is proved in II. 2

Next proof requires the following technical lemma.

Lemma 5. Let FP(G) = P(G)/∼ be a factor power of a finite group G, and X,
Y ∈ P(G). Then X ∼ Y iff for each point stabilizer N the equality XN = Y N is
held.

Proof. Sets X and Y are equivalent iff for every stabilizer N X ≡ Y (mod N), or,
in other words,

{xN : x ∈ X} = {yN : y ∈ Y }. (1)

Sufficiency:

XN =
⋃

x∈X

xN

=
⋃

y∈Y

yN (due to (1))

= Y N.

Necessity: let’s take an arbitrary x ∈ X. We want to prove that there exists
such y ∈ Y , that xN = yN .

As XN = Y N , for each n1 ∈ N there exist such y ∈ Y and n2 ∈ N that xn1 =
yn2 = yn1n

−1
1 n2. For arbitrary n ∈ N we have xn = xn1(n

−1
1 n) = yn2(n

−1
1 n). Let

now n run over all elements in N , then n2n
−1
1 n traverses the whole N as well.

Therefore {xN : x ∈ X} ⊆ {yN : y ∈ Y }. The counter-inclusion is proved in a
similar way. 2

Lemma 6 (on reduction). For a finite group G, consider a factor power FPN (G).
Let N◦ be the kernel of its signature N ; let π be the projection G → G/N◦. Then
FP{N1,...,Ns}(G) ∼= FP{π(N1),...,π(Ns)}(G/N◦).

Proof. Define τ(〈x1, . . . , xk〉) = 〈x1N
◦, . . . , xkN

◦〉.
We prove first that τ is well-defined and injective. Indeed, the following state-

ments are equivalent:

(1) 〈x1, . . . , xk〉 = 〈y1, . . . , ym〉;

(2) {x1N
◦, . . . , xkN

◦} = {y1N
◦, . . . , ymN◦};

(3) for every stabilizer N :

{(x1N
◦)(NN◦), . . . , (xkN

◦)(NN◦)} = {(y1N
◦)(NN◦), . . . , (ymN◦)(NN◦)} ;

(4) 〈x1N
◦, . . . , xkN

◦〉 = 〈y1N
◦, . . . , ymN◦〉.

(Lemma 5 is used.)
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Surjectivity is clear.

Let’s show that τ preserves the semigroup operation. Indeed,

〈x1, . . . , xk〉 〈y1, . . . , ym〉 = 〈xiyj : i = 1, . . . , k, j = 1, . . . ,m〉 .

Applying τ , we obtain:

〈xiyjN
◦ : i = 1, . . . , k, j = 1, . . . ,m〉 = 〈x1N

◦, . . . , xkN
◦〉 〈y1N

◦, . . . , ymN◦〉 .

Hence τ is an isomorphism FP{N1,...,Ns}(G) → FP{π(N1),...,π(Ns)}(G/N◦). 2

Notice that the image of a group element under an isomorphism of factor powers
is again a group element.

If the kernel of action is trivial, N◦ = {e}, the factor power FPN (G) is called
reduced.

Lemma 7. Let FP(G) be a reduced factor power. There exists a one-to-one corre-
spondence between G and the maximal subgroup of FP(G): an element x ∈ FP(G)
is a group element iff x = 〈x〉 for some x ∈ G; moreover, in this case [x] = {x}, so
the mapping x 7→ 〈x〉 is the needed bijection.

Proof is obvious.

Lemma 8. Let FPN (G) be a factor power of a finite group G:

I. If X is a subgroup of G, 〈X〉 is an idempotent in FPN (G);

II. If y is an idempotent in FPN (G), [y] is a subgroup;

III. If y is an idempotent and x = 〈x1, . . . , xk〉, the equality xy = y is held iff
all the xi belong to the set [y].

Proof. I. Since X is a subgroup, 〈X〉 〈X〉 = 〈XX〉 = 〈X〉.

II. We have: 〈[y] [y]〉 = 〈[y]〉 〈[y]〉 = yy = y, therefore [y] [y] is an inverse image
of y. By definition, [y] is a maximal inverse image, therefore [y] [y] ⊆ [y]. Hence the
set [y] is closed with respect to multiplication. For a finite group G this is sufficient
to show that [y] is a subgroup.

III. If all xi belong to [y], xy = 〈{x1, . . . , xk} [y]〉 = 〈[y]〉 = y.

If xy = y, we have: 〈[y]〉 = 〈{x1, . . . , xk} [y]〉 = 〈xiy : i = 1, . . . , k, y ∈ [y]〉,
therefore {xiy : i = 1, . . . , k, y ∈ [y]} ⊆ [y], hence all elements of the form xiy
belong to [y]. This means that all xi belong to [y]. 2

Remark 8.1. The definition implies that for each subgroup X: [〈X〉] ⊇ X.

Definition 9. For a given factor power of a finite group G and a subgroup H of
this group, the subgroup [〈H〉] is called closure of the subgroup H. Denote it H.

Subgroup H is called closed, if it is equal to its closure.

Obviously, H is the minimal closed subgroup that includes H.
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Remark 9.1. Closed subgroups correspond to idempotents of the factor power.

Remark 9.2. For a reduced factor power, point stabilizers are closed subgroups.
Indeed, let X be a point stabilizer, X = St(m). According to the definition, actions
of X and X on the points from M must be the same. In particular,

mX = mX = mSt(m) = m,

which implies that X ⊆ St(m) = X. Taking Remark 8.1 into consideration, we
obtain the needed equality.

For a closed subgroup H of the group G, denote U(H) the set of all elements
x ∈ FPN (G) satisfying condition x · 〈H〉 = 〈H〉.

Let N = {N1, . . . , Ns} be the signature of some factor power FP(G), let H
be a subgroup of G. Denote N ∩ H the set {N1 ∩ H, . . . , Ns ∩ H}, from which all
neglectable elements (i. e. elements which are subsets of other elements) are removed.
Notice that according to Lemma 3, N ∩H is a signature of some factor power of the
group H. Indeed, it does not contain neglectable elements by definition; if N ∩H is
a non-neglectable element in {N1 ∩ H, . . . , Ns ∩ H}, y ∈ H, then y−1Ny belongs to
N (since N is a signature), and y−1Ny∩H = y−1(N ∩H)y (since y ∈ H) belongs to
{N1 ∩ H, . . . , Ns ∩ H} as well. Furthermore, y−1(N ∩ H)y cannot be neglectable,
otherwise its conjugate N ∩ H would have been neglectable as well.

Lemma 10. For a subgroup H of a finite group G,

U(H) = FPN∩H(H).

Proof. The proof consists mainly of direct checking the definition conditions.

According to Lemma 8 and the definition of closed subgroup, an element 〈X〉
belongs to U(H) iff the set X ∈ P(G) is a subset of [〈H〉] = H.

Consider arbitrary subsets X = {x1, . . . , xk}, Y = {y1, . . . , ym} of the set H.
We shall prove that {x1, . . . , xk} ∼ {y1, . . . , ym} is either held or not held in both
FP(G) and FP(H) simultaneously. For that it is enough to prove the equivalence
of the following two expressions: X ≡ Y (mod N) and X ≡ Y (mod N ∩H) for an
arbitrary N ∈ N .

If X ≡ Y (mod N ∩ H), for every x from X there exist such y from Y that
xy−1 ∈ N ∩ H, which implies xy−1 ∈ N . Similarly, for every y from Y there exists
such x from X that xy−1 ∈ N . Therefore {xN : x ∈ X} = {yN : y ∈ Y }.

If, in turn, X ≡ Y (mod N), for arbitrary x from X there exist such y from
Y that xy−1 ∈ N . Since x, y ∈ H, we have: xy−1 ∈ N ∩ H. Similarly for
arbitrary y from Y there exist such x from X that xy−1 ∈ N ∩ H. Therefore
{x(N ∩ H) : x ∈ X} = {y(N ∩ H) : y ∈ Y }. 2

Remark 10.1. If H is a closed subgroup, U(H) = FPN∩H(H).

Remark 10.2. If the factor power FPN (G) is reduced, so is FPN∩H(H) as well.
Indeed,

⋂

(

Ni ∩ H
)

=
(

⋂

Ni

)

∩ H = N◦ ∩ H = {e} ∩ H = {e}.
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Definition 11. Let N and K be signatures. Denote N ≻ K iff for each K ∈ K
there exists such N ∈ N that N ⊆ K.

Lemma 12. Let N and K be signatures. Than N ≺ K ≺ N implies equality of N
and K.

Proof. The Lemma assumption immediately implies that for each K ∈ K there
exists such N ∈ N that is a subset of K. Furthermore, there exists such K ′ ∈ K
that is a subset of N . Hence K ′ ⊆ N ⊆ K. Since neither N nor K contains
neglectable elements, K = N = K ′. Thus K ⊆ N .

Since the Lemma assumption is symmetrical, K ≺ N ≺ K as well, and we obtain
similarly: N ⊆ K. 2

Lemma 13 (on local injectivity). Let

S1 = FPN (G), S2 = FPK(G)

and N � K. Then S1 6= S2.

Proof. Note that K ⊁ N (through Lemma 12), hence there exists such N ∈ N that
is not a subset of K for each K ∈ K.

Each set T ⊆ G that contains at least one element from N is not equivalent to
G\N modulo N (otherwise, if n is that element from N , we have: n = gn′ for some
g ∈ G \ N , n′ ∈ N , so g = nn′−1 ∈ N , which states a contradiction).

In particular, G \ N 6≡ (G \ N) ∪ {e} (mod N).

But for every K ∈ K we have: G\N 6≡ (G\N)∪{e} (mod K). Indeed, K * N ,
therefore K ∩ (G \ N) 6= ∅. For an element k ∈ K ∩ (G \ N), e ≡ k (mod K), thus,
e ∈ G \ N .

Consequently, the equivalency w. r. t. congruence ∼2 which defines S2 does not
imply the equivalency w. r. t. congruence ∼1 which defines S1. But the equivalency
w. r. t. ∼1 implies the equivalency w. r. t. ∼2, since N ≻ K. 2

4 Isomorphisms of factor powers

Definition 14. Let S1 and S2 be two isomporphic factor powers of a finite group G,
ϕ be the isomorphism, N◦

1 and N◦
2 be the corresponding action kernels. We define an

adjoint isomorphism ϕm : G/N◦
1 → G/N◦

2 in the following way: ϕm(X) = [ϕ(〈X〉)],
where X is a coset of N◦

1 . Since 〈X〉 is a group element (see the proof of Lemma 4),
ϕ(〈X〉) is therefore a group element in S2, and its inverse image [ϕ(〈X〉)] is a coset
of N◦

2 .

We extend ϕm to act on all sets that are unions of cosets by the same formula:
ϕm(X) = [ϕ(〈X〉)]. This can be written as well as follows: ϕ(〈x〉) = 〈ϕm(x)〉,
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ϕm([y]) = [ϕ(y)]. Note that the inverse image of a factor power element is a union
of cosets.

Consider the case when S1 is reduced, then S2 is reduced as well (since the max-
imal subgroup of S1 is mapped by ϕ to the maximal subgroup of S2, and due to the
fact that the factor power FP(G) is reduced iff its maximal subgroup is isomorphic
to G). For this case ϕm can be naturally represented as a mapping of G to itself. Ob-
viously ϕm preserves the product; since G is a finite group, ϕm is an automorphism
in this case.

Lemma 15. Let S1 = FPN (G) and S2 = FPN ′(G) be reduced factor powers of
a finite group G, ϕ : S1 → S2 be an isomorphism, x0 be an idempotent. Then
ϕm([x0]) = [ϕ(x0)].

Proof. We have: ϕ(x0)ϕ(x0) = ϕ(x0x0) = ϕ(x0), therefore ϕ(x0) is idempotent.

The next statements are equivalent:

1) Element x belongs to the inverse image [x0].

2) By lemma 8, [x0] is an idempotent, thus 1) is equivalent to 〈x〉x0 = x0.

3) Since ϕ is an isomorphism, 2) is equivalent to 〈ϕm(x)〉ϕ(x0) = ϕ(x0).

4) Using lemma 8 again, we obtain: ϕm(x) ∈ [ϕ(x0)].

The statement of lemma follows from the equivalence of 1) and 4). 2

Definition 16. Let N = {N1, . . . , Ns} and N ′ =
{

N ′
1, . . . , N ′

s′

}

be signatures on
G. N◦ =

⋂

Ni and N◦′ =
⋂

N ′
i are the kernels of the corresponding actions. Let

τ be an isomorphism G/N◦ → G/N◦′. We extend τ to unions of cosets in the

standard way. Then τ(N )
def
= {τ(N1), . . . , τ(Ns)} is obviously a signature as well,

and τ induces the isomorphism

τ̂ : FPN (G) → FPτ(N )(G).

Definition 17. Given any isomorphic factor powers S1 and S2 of (G,M), be
N◦

1 and N◦
2 the respective kernels, isomorphism ϕ : S1 → S2 induces the isomor-

phism ϕm : G/N◦
1 → G/N◦

2 :

ϕm([x]) = [ϕ(x)] .

If ϕm is an identity transformation, (in particular, N◦
1 = N◦

2 ,) ϕ is called a direct
isomorphism.

Remark 17.1. For an isomorphism

ϕ : FPN (G) → FPN ′(G)

the mapping

ϕ̂m
−1 ◦ ϕ : FPN (G) → FP

ϕ−1
m (N ′)(G)

is a direct isomorphism.
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Definition 18. Let π be an epimorphism G → H, N = {N1, . . . , Ns} be a signature
on G. We define π(N ) as the set {π(N1), . . . , π(Ns)}, from which all the neglectable
elements (i. e. elements which are subsets of others) are removed.

Remark 18.1. According to Lemma 3, π(N ) is a signature of some factor power of
the group H. Indeed, it does not contain neglectable elements by definition; if π(N )
contains some non-neglectable element in π(Ni), then for any y ∈ H y−1π(Ni)y =
π(x−1Nix), where x is an arbitrary element, which is mapped to y by π (recall
that π is an epimorphism). Since N is a signature and Ni belongs to it, x−1Nix
belongs to it as well, therefore y−1π(Ni)y belongs to {π(N1), . . . , π(Ns)} as well.
Furthermore, y−1π(Ni)y cannot be neglectable, otherwise its conjugate π(Ni) would
have been neglectable as well.

Theorem 1. Let factor powers S1 = FPN (G) and S2 = FPN ′(G) of a group G be
directly isomorphic. Then N = N ′.

Proof. The proof is by induction on size of the group G.

The induction basis (the case of cyclic groups) was proved in [4].

Consider the inductive step.

Factor powers S1 and S2 are both simultaneously reduced or not reduced.

I. Let now them be not reduced. Since the factor powers are directly isomorphic,
the two corresponding group actions have a common kernel. Denote this kernel
as N◦, denote π the projection G → G/N◦. By Lemma 6, S1 is isomorphic to
FPπ(N )(G/N◦), S2 is isomorphic to FPπ(N ′)(G/N◦). Notice that FPπ(N )(G/N◦)
is directly isomorphic to FPπ(N ′)(G/N◦) as factor power of G/N◦. Indeed, if ϕ is
isomorphism S1 → S2 as factor powers of G, by definition ϕm is an identity trans-
formation. Since FPπ(N )(G/N◦) and FPπ(N ′)(G/N◦) are reduced factor powers,
their adjacent isomorphism is exactly ϕm, which is an identity.

So, by induction, π(N ) = π(N ′).

Note that each N ∈ N contains N◦, and therefore is a union of cosets of N◦.
The element π(N) ∈ G/N◦ is indeed a set of cosets of N◦, and N is indeed the
union of cosets from π(N).

This means in particular that since N is a signature, for each pair of elements
N1, N2 ∈ N π(N1) does not contain π(N2) (otherwise N1 would have contained N2).
Hence π(N ) = {π(N) : N ∈ N}. The same is true for N ′.

Moreover, if some element N belongs to N , its projection π(N) belongs to π(N )
and therefore to π(N ′), so the corresponding union of cosets belongs to N ′.

Hence N = N ′, which completes the proof in this case.

II. Let now both factor powers S1 and S2 be reduced. In this case the kernel of
both actions is trivial, and ϕm is an identity G → G.

We claim that for every closed (in either of factor powers) subgroup H of the
group G

N ∩ H = N ′ ∩ H. (∗)
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Indeed, let ϕ be the direct isomorphism mapping S1 to S2, H be a closed subgroup
with respect to the first factor power. Then for an arbitrary x from S1:

x ∈ U(H)S1 ⇐⇒ x + 〈H〉 = 〈H〉 (by definition)

⇐⇒ ϕ(x) + ϕ(〈H〉) = ϕ(〈H〉) (since ϕ is an isomorphism)

⇐⇒ ϕ(x) ∈ U([ϕ(〈H〉)]) (by definition)

⇐⇒ ϕ(x) ∈ U(ϕm(H)) (by Lemma 15)

⇐⇒ ϕ(x) ∈ U(H)S2 (since ϕ is direct).

So, the image of U(H) ⊂ S1 is U(H) ⊂ S2, therefore U(H)S1 is directly isomorphic
to U(H)S2 . Taking Lemma 10 and Remark ?? into consideration, we obtain that
FPN∩H(H) is directly isomorphic to FPN ′∩H(H), where the closure is taken with
respect to the second factor power. But according to Remark ??, both factor powers
are reduced, thus their maximal subgroups are H and H respectively. Since maximal
subgroups must be isomorphic, and recalling that H ⊇ H, we claim that H = H, H
is closed with respect to the second factor power as well, so FPN∩H(H) is directly
isomorphic to FPN ′∩H(H).

Hence by induction (∗) is true.
Let N be an arbitrary element of N . We shall prove now that N belongs to N ′

as well.
According to Remark ??, N is a closed subgroup. Putting H = N in (∗), we get

that there exist some N ′ from N ′ which satisfies N ′ ∩ H = N ∩ H, which can be
written as N ′ ∩ N = N , N ′ ⊇ N .

Similarly, there exist N1 from N such that N1 ∩ N ′ = N ′, N1 ⊇ N ′.
So, N ⊆ N ′ ⊆ N1. As signature does not contain neglectable elements,

N = N ′ = N1.
This means that N is a subset of N ′. The counter-inclusion is proved in a similar

way. 2

5 Main result

The conjugacy is an equivalence relation on the set of all subgroups of a finite
group G. Denote L̂(G) the quotient set by this relation.

We define a non-strict partial order “<” on L̂(G) in a straitforward way: a < b

iff for every set A ∈ a a set B ∈ b which is contained in A can be found.
The relation “<” is indeed a non-strict partial order. It is obviously reflexive.

Transitivity can be easily established: if a < b < c, then for each A ∈ a there exists
B ∈ b such that A ⊇ B; for any such B there exists C ∈ c such that B ⊇ C;
therefore for the considered A a C ∈ c contained in A can be found. Antisymmetry
requires a little bit more work. Suppose the opposite: let a < b < a, a 6= b. Then
either some element from a does not belong to b, or some element of b does not
belong to a. Consider the first case (the second is done in the similar way). Let
A ∈ a, A /∈ b. Since a < b, there exist B ∈ b such that A ⊇ B. Since b < a, there
exists some A′ ∈ a such that B ⊇ A′. This yields A ⊇ B ⊇ A′. But a is a conjugacy
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class, therefore |A| = |A′|, A = B = A′. This contradicts to the assumption that
A /∈ b.

According to Lemma 3, each antichain in L̂(G) corresponds to some factor power
of G. From the other side, for a factor power FPN (G) its signature by definition
corresponds to an antichain in L̂(G).

Consider now the question: which antichains correspond to the isomorphic factor
powers? Let’s fix a factor power S = FPN (G).

Let ϕ be some non-inner automorphism of G. Then ϕ maps N to some another
signature ϕ(G). Indeed, if N ∈ ϕ(N ), then x−1Nx = ϕ((ϕ−1(x))−1N ′ϕ−1(x)),
where N ′ is an element from N which is mapped to N by ϕ. Moreover, if ϕ(N1) ⊆
ϕ(N2), then ϕ−1(ϕ(N1)) ⊆ ϕ−1(ϕ(N2)), i. e. N1 ⊆ N2, which is impossible since N
is a signature.

It’s easy to see that FPϕ(N )(G) is isomorphic to FPN (G).

Let now S′ = FPN ′(G) be isomorphic to S, ϕ be the isomorphism. Then,
according to the previous Theorem 1 and Remark ??, N = ϕ−1

m (N ′). ϕ−1
m can be

extended to an automorphism of the group G.

Consequently, let’s introduce the factor equivalency of signatures and (which is
the same) antichains in L̂(G): two elements are factor equivalent iff one can be
mapped to another by a mapping corresponding to some element from OutG.

Factor equivalency is, in turn, an equivalence relation on the set of all antichains
on L̂(G). Denote L̃(G) the quotient set by this relation.

Consider the following relation on L̃: a set of antichains A majorizes set B iff
for each element a ∈ A there exist such an element b ∈ B that a < b.

The set L̃ equipped with majorization becomes a poset. The proof is identical
to the proof that “<” is a partial order, only instead of using conjugacy class for
proving antisymmetry we need to use antichain.

A congruence ∼1 on a semigroup S is called a refinement of a congruence ∼2, if
s1 ∼1 s2 implies s1 ∼2 s2 for each pair of elements s1, s2 ∈ S. If moreover ∼1 6= ∼2,
the refinement is called strict. The factor semigroup S/∼1 is said to be an extension
of the factor semigroup S/∼2 (denoted: S/∼1 ≻ S/∼2), if the congruence ∼1 is
a refinement of ∼2. The relation “≻” is a partial order on the set of all factor
semigroups of the semigroup S.

Theorem 2. There exists a one-to-one correspondence between the set of all non-
isomorphic factor powers of the finite group G and the set L̃(G) of all factor equiva-
lency classes of antichains from the set L̂(G). This correspondence is consistent with
the partial order on L̃(G), that is, factor power S1 is an extension of factor power
S2 iff the element of L̃(G) corresponding to S1 majorizes the element corresponding
to S2.

The author is grateful to O.G. Ganyushkin (his scientific advisor) for stating
the problem and many fruitful discussions about it, without which the article would
have never been written.
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