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On definitions of groupoids closely connected

with quasigroups
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Abstract. Both “existential” and “equational” definitions of binary quasigroups
and groupoids closely connected with quasigroups are given. It is proved that a
groupoid (Q, ·) is a quasigroup if and only if all middle translations of (Q, ·) are
bijective maps of the set Q.
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1 Introduction

Historically one of the first definitions of binary quasigroups, left binary quasi-
groups and right binary quasigroups have been given by R. Moufang in language
of the existence of solutions of some equations in [19] (see Definition 12). These
“existencial” definitions are used at present since these definitions are quite short
and convenient. See also article of W. Dörnte [7].

Later T. Evans has given an “equational” definition of a quasigroup [11] (see
Definition 16). Evans’ definition is usually used by the study of universal algebraic
questions of quasigroup theory.

In this paper we give some new both “existential” and “equational” defini-
tions of quasigroups and groupoids closely connected with quasigroups. Some other
conditions when a groupoid is a quasigroup can be found in [6,15,17,20].

For convenience of readers we start with some definitions which can be found
in [1, 4, 12,21].

A binary operation defined on a non-empty set Q is a map A : Q 2 −→ Q such
that D(A) = Q 2, i.e. this map is defined for any element of the set Q×Q. Often are
used more traditional symbols for the binary operation, for example, the expression
A(x, y) = z can be written in the form x · y = z.

Definition 1. A binary groupoid (G,A) is understood to be a non-empty set G
together with a binary operation A.

As usual the product of mappings is their consecutive realization. We shall use
the following (left) order of multiplication of maps: if µ, ν are some maps, then
(µν)(x) = µ(ν(x)). We recall the following definitions [12].
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Definition 2. A mapping f : S → T is onto or surjective if every t ∈ T is the
image under f of some s ∈ S; that is, if and only if, for given t ∈ T , there exists an
s ∈ S such that t = f(s).

Definition 3. A mapping f : S → T is said to be one-to-one (written 1-1) or
injective if for s1 6= s2 in S, f(s1) 6= f(s2) in T . Equivalently, f is 1-1 if f(s1) =
f(s2) implies s1 = s2.

Definition 4. A mapping f : S → T is said to be 1-1 correspondence or a bijection
if f is both 1-1 and onto (i.e. f is an injective and surjective map).

Let (Q, ·) be a groupoid. As usual, the map La : Q → Q, Lax = a · x for all
x ∈ Q, is a left translation of the groupoid (Q, ·) relative to a fixed element a ∈ Q,
the map Ra : Q → Q, Rax = x · a, is a right translation.

We give the following definitions [1, 4, 13,14,21].

Definition 5. A groupoid (G, ·) is called a left cancellation groupoid, if the following
implication is fulfilled: a · x = a · y ⇒ x = y for all a, x, y ∈ G, i.e. the translation
La is an injective map for any a ∈ G.

Definition 6. A groupoid (G, ·) is called a right cancellation groupoid if the following
implication fulfilled: x · a = y · a ⇒ x = y for all a, x, y ∈ G, i.e. the translation Ra

is an injective map for any a ∈ G.

Definition 7. A groupoid (G, ·) is called a cancellation groupoid if it is both a left
and a right cancellation groupoid.

Example 1. Let x ◦ y = 2x + 3y for all x, y ∈ Z, where (Z,+, ·) is the ring of
integers. It is possible to check that (Z, ◦) is a cancellation groupoid.

Definition 8. A groupoid (G, ·) is said to be a left (right) division groupoid if the
mapping Lx ( Rx ) is surjective for every x ∈ G.

Definition 9. A groupoid (G, ·) is said to be a division groupoid if it is simultane-
ously a left and right division groupoid.

Example 2. Let x◦y = x2 ·y3 for all x, y ∈ C, where (C,+, ·) is the field of complex
numbers. It is possible to check that (C, ◦) is a division groupoid.

Definition 10. A groupoid (Q, ◦) is called a right quasigroup (a left quasigroup)
if, for all a, b ∈ Q, there exists a unique solution x ∈ Q to the equation x ◦ a = b
(a ◦ x = b), i.e. in this case any right (left) translation of the groupoid (Q, ◦) is a
bijective map of the set Q.

Definition 11. A left and right quasigroup is called a quasigroup.

Definition 12. A binary groupoid (Q,A) with a binary operation A such that in
the equality A(x1, x2) = x3 the knowledge of any 2 elements of x1, x2, x3 uniquely
specifies the remaining one is called a binary quasigroup [3,19].
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From Definition 12 it follows that with any quasigroup (Q,A) it is possible to
associate (3!−1) = 5 more quasigroups, so-called parastrophes of quasigroup (Q,A):
A(x1, x2) = x3 ⇔ A(12)(x2, x1) = x3 ⇔ A(13)(x3, x2) = x1 ⇔ A(23)(x1, x3) = x2 ⇔
A(123)(x2, x3) = x1 ⇔ A(132)(x3, x1) = x2.

We shall denote:
the operation of (12)-parastrophe of a quasigroup (Q, ·) by ∗;
the operation of (13)-parastrophe of a quasigroup (Q, ·) by /;
the operation of (23)-parastrophe of a quasigroup (Q, ·) by \;
the operation of (123)-parastrophe of a quasigroup (Q, ·) by //;
the operation of (132)-parastrophe of a quasigroup (Q, ·) by \\.

2 Ternary relations, their translations and parastrophes

We have defined left and right translations of a groupoid and, therefore, of a
quasigroup. But for quasigroups it is possible to define also the third kind of trans-
lations, namely, the map Pa : Q −→ Q, x · Pax = a for all x ∈ Q [2].

Unfortunately, in general, for groupoids a “middle” translation is not even a
map. This fact and the wish to define “middle” translations of groupoids forces
us to use by the study of translations of groupoids more or less standard language
of ternary relations [6, 8]. Binary relations were used by the study of quasigroup
translations in [22,24].

It is known that any binary groupoid (Q,A) can be defined as the set T(Q,A) of
ordered triplets (a1, a2, A(a1, a2)), where a1, a2 ∈ Q. It is clear that the set T(Q,A)
is a ternary relation on the set Q. Binary groupoids (Q,A) and (Q,B) are equal if
and only if T(Q,A) = T(Q,B), where T(Q,B) is the set of triplets of the groupoid
(Q,B) [15,16].

We shall denote an element from the set T(Q,A) as A(x1, x2, x3), if we need
to show which groupoid operation was used by obtaining the third component of a
groupoid triplet.

We recall that an n-ary relation on a set Q is a subset of Qn [6, 8].

Definition 13. If T(Q) is a ternary relation, then the first projection of relation
T(Q) is the following set pr1T(Q) = {x1 | (x1, x2, x3) ∈ T(Q)}. By analogy we de-
fine the second and third projection of relation T(Q): pr2T(Q) = {x2 | (x1, x2, x3) ∈
T(Q)}, pr3T(Q) = {x3 | (x1, x2, x3) ∈ T(Q)} [8].

Definition 14. If T(Q) is a ternary relation, then (12)-projection of relation T(Q) is
the following set pr(12)T(Q) = {(x1, x2) | (x1, x2, x3) ∈ T(Q)}. By analogy we define
(13)- and (23)-projection of relation T(Q): pr(13)T(Q) = {(x1, x3) | (x1, x2, x3) ∈
T(Q)}, pr(23)T(Q) = {(x2, x3) | (x1, x2, x3) ∈ T(Q)}.

Theorem 1. 1. A ternary relation T(Q) defines a groupoid on the set Q if and
only if there exist bijections between the sets T(Q), pr(12)T(Q) and Q × Q.

2. A ternary relation T(Q) defines a left quasigroup on the set Q if and only if
there exist bijections between the sets T(Q), pr(12)T(Q), pr(13)T(Q) and Q×Q.
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3. A ternary relation T(Q) defines a right quasigroup on the set Q if and only if
there exist bijections between the sets T(Q), pr(12)T(Q), pr(23)T(Q) and Q×Q.

4. A ternary relation T(Q) defines a quasigroup on the set Q if and only if there
exist bijections between the sets T(Q), pr(12)T(Q), pr(13)T(Q), pr(23)T(Q) and
Q × Q.

Proof. Case 1. The existence of a bijection between the sets pr(12)T(Q) and Q×Q
means that any pair (x1, x2) ∈ Q × Q lies in the set pr(12)T(Q). The existence of
a bijection between the sets T(Q) and pr(12)T(Q) means that there exists a unique
triple in the set T(Q) of the form (x1, x2, a) for any fixed pair (x1, x2) ∈ pr(12)T(Q).

Thus the existence of bijections between the sets T(Q), pr(12)T(Q) and Q × Q
means that for any element (x, y) ∈ pr(12)T(Q) there exists a unique element a ∈ Q
such that (x, y, a) ∈ T(Q). Therefore the relation T(Q) defines on the set Q a binary
operation, i.e. by Definition 1 T(Q) defines a groupoid.

Cases 2–4 are proved in the similar way.

Let T(Q,A) be a set of triplets of a groupoid (Q,A). A ternary relation

La = {(a, x, y) | (a, x, y) ∈ T(Q,A)},

where a is a fixed element of the set Q, will be called a left relation translation of
groupoid (Q,A). Sometimes we shall use denotation La(Q,A) instead of La.

Similarly a ternary relation

Ra = {(x, a, y) | (x, a, y) ∈ T(Q,A)},

where a is a fixed element of the set Q, will be called a right relation translation of
groupoid (Q,A); a ternary relation

Pa = {(x, y, a) | (x, y, a) ∈ T(Q,A)},

where a is a fixed element of the set Q, will be called a middle relation translation
of groupoid (Q,A).

Further we define inverse relations to the relations La, Ra and Pa in the following
way:

L−1
a = {(a, y, x) | (a, x, y) ∈ La},

R−1
a = {(y, a, x) | (x, a, y) ∈ Ra},

P−1
a = {(y, x, a) | (x, y, a) ∈ Pa}.

We notice that only if a groupoid translation is a surjective or injective map,
then this translation has an inverse map. See below Propositions 2 and 3.

We define the following correspondence between “usual” translations of a gro-
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upoid (Q, ·) and its relation translations:

Lax = y ⇐⇒ (a, x, y) ∈ La,

Rax = y ⇐⇒ (x, a, y) ∈ Ra,

Pax = y ⇐⇒ (x, y, a) ∈ Pa

L−1
a x = y ⇐⇒ (a, x, y) ∈ L−1

a ,

R−1
a x = y ⇐⇒ (x, a, y) ∈ R−1

a ,

P−1
a x = y ⇐⇒ (x, y, a) ∈ P−1

a .

The sentence “a relation translation of a groupoid (Q, ·) defines a map” will mean
that the corresponding “usual” translation of (Q, ·) is a map. We remember that
usually a groupoid translation is a map, therefore the last four groupoid translations
from previous table do not exist for a “general” groupoid. But all six kinds of the
above mentioned translations are well defined in any quasigroup.

Lemma 1. There exists a bijection between the set of all left translations LT (Q,A)
and the set of all left relation translations LRT (Q,A) of a groupoid (Q,A).

There exists a bijection between the set of all right translations RT (Q,A) and
the set of all right relation translations RRT (Q,A) of a groupoid (Q,A).

Proof. 1. The correspondence Lax = y ⇐⇒ A(a, x) = y ⇐⇒ (a, x, y) ∈ La for any
fixed a ∈ Q defines a bijection between the sets LT (Q,A) and LRT (Q,A).

2. The correspondence Rax = y ⇐⇒ (x, a, y) ∈ Ra for any fixed a ∈ Q defines a
bijection between the sets RT (Q,A) and RRT (Q,A).

For a quasigroup there exist four more analogs of Lemma 1.

Using the “relation” approach we define for groupoids analogs of quasigroup
parastrophes.

Definition 15. With a ternary relation T we associate the following ternary rela-
tions, so-called parastrophes of the relation T :

(x1, x2, x3) ∈ T ⇔ (x2, x1, x3) ∈ T
(12) ⇔ (x3, x2, x1) ∈ T

(13) ⇔

(x1, x3, x2) ∈ T
(23) ⇔ (x2, x3, x1) ∈ T

(123) ⇔ (x3, x1, x2) ∈ T
(132).

For example, (x3, x1, x2) ∈ T(132) ⇔ (x1, x2, x3) ∈ T: that is, (x(132)1, x(132)2,

x(132)3) ∈ T(132) ⇔ (x1, x2, x3) ∈ T.

The following table contains connections between different kinds of relation trans-
lations in different parastrophes of a ternary relation T(Q, ·). This table generalizes
the corresponding table for translations of quasigroup parastrophes from [9,23].
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Table 1

Kinds ε = · (12) = ∗ (13) = / (23) = \ (123) = // (132) = \\

R R L R−1 P P−1 L−1

L L R P−1 L−1 R−1 P

P P P−1 L−1 R L R−1

R−1 R−1 L−1 R P−1 P L

L−1 L−1 R−1 P L R P−1

P−1 P−1 P L R−1 L−1 R

In Table 1, for example, R(23) = P(·).

Theorem 2. 1. A groupoid (Q, ·) is a quasigroup if on the set Q there exist
binary operations / and \ such that in the algebra (Q, ·, /, \) the following
equivalences hold x·y = z ⇐⇒ z/y = x ⇐⇒ x\z = y for all suitable x, y, z ∈ Q.

2. A groupoid (Q, ·) is a quasigroup if on the set Q there exist binary operations
// and \ such that in the algebra (Q, ·, //, \) the following equivalences hold
x · y = z ⇐⇒ y//z = x ⇐⇒ x\z = y for all suitable x, y, z ∈ Q.

3. A groupoid (Q, ·) is a quasigroup if on the set Q there exist binary operations
/ and \\ such that in the algebra (Q, ·, /, \\) the following equivalences hold
x · y = z ⇐⇒ z/y = x ⇐⇒ z\\x = y for all suitable x, y, z ∈ Q.

Proof. Case 1. Since (Q, ·) is a groupoid, then from Theorem 1 follows the existence
of bijections between the sets T(Q, ·), pr(12)T(Q, ·) and Q × Q.

Since (Q, /) is a groupoid and it is (13)-parastrophe of groupoid (Q, ·), then there
exists a bijection between the sets pr(12)T(Q, ·) and pr(32)T(Q, ·).

Since (Q, \) is a groupoid and it is (23)-parastrophe of groupoid (Q, ·), then there
exists a bijection between the sets pr(12)T(Q, ·) and pr(13)T(Q, ·).

Therefore, by Theorem 1 the groupoid (Q, ·) is a quasigroup.
Cases 2, 3 are proved in the similar way.

Remark 1. In algebra (Q, ·, \, /) the equivalence x ·y = z ⇐⇒ z/y = x is equivalent
to the following quasiidentities x · y = z =⇒ z/y = x and z/y = x =⇒ x · y = z.
Other definition of quasigroup with the help of quasiidentities can be found in [17].

Theorem 3. A groupoid (Q, ·) is a quasigroup if and only if all middle translations
of (Q, ·) are bijective maps of the set Q.

Proof. Let a, b be a pair of fixed elements of the set Q. Since the translation Pb of
the groupoid (Q, ·) is a bijective map, then we have that for the element a of set Q
there exists a unique element x ∈ Q such that Pba = x, i.e. a·x = b. Since all middle
translations of (Q, ·) are bijective maps, then for any fixed elements a, b ∈ Q there
exists a unique element x such that the equation a · x = b has a unique solution.

If a translation Pb is a bijective map, then the translation P−1
b also is a bijective

map. Further we have that for any fixed element a of the set Q there exists a unique
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element y ∈ Q such that P−1
b a = y, i.e. y · a = b. Therefore the equation y · a = b

has a unique solution in (Q, ·) for any fixed elements a, b ∈ Q.
Converse. It is known that in a quasigroup all its middle translations are bijective

mappings [2].
Here a square means Cayley table of a finite groupoid without bordering row

and column. A Latin square is the inner part of Cayley table of a finite quasigroup.
We notice that in [20] for squares an analog of Theorem 3 is proved.

Theorem 4. A square S(Q) defines an m-tuple of permutations of the kind p if and
only if this square is a Latin square.

3 Equational definitions of some classes of groupoids

Trevor Evans [11] defined a binary quasigroup as an algebra (Q, ·, /, \) with three
binary operations. He has defined the following identities:

x · (x\y) = y, (1)

(y/x) · x = y, (2)

x\(x · y) = y, (3)

(y · x)/x = y. (4)

Definition 16. An algebra (Q, ·, \, /) with identities (1), (2), (3) and (4) is called
a quasigroup [1,4–6,11,21].

In [5] an algebra (Q, ·, \, /) with identities (1)–(4) is called an e-quasigroup (equa-
tional quasigroup). A.I. Mal’tsev [17, 18] has called this algebra a primitive quasi-
group. The equivalence of Definitions 11 and 16 is well known [1,5, 6, 18].

Using Table 1 it is easy to check that: if (Q, ·) is a quasigroup, then in the algebra
(Q, ·, //) the following identities are fulfilled:

(x//y) · x = y, (5)

x//(y · x) = y; (6)

if (Q, ·) is a quasigroup, then in the algebra (Q, ·, \\) the following identities are
fulfilled:

x · (y\\x) = y, (7)

(x · y)\\x = y. (8)

It is possible to rewrite identities (1)–(8) in the language of translations of the
corresponding groupoids:

x · (x\y) = y ⇐⇒ L(·)
x L(\)

x y = y, (9)

(y/x) · x = y ⇐⇒ R(·)
x R(/)

x y = y, (10)
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x\(x · y) = y ⇐⇒ L(\)
x L(·)

x y = y, (11)

(y · x)/x = y ⇐⇒ R(/)
x R(·)

x y = y, (12)

(x//y) · x = y ⇐⇒ R(·)
x L(//)

x y = y, (13)

x//(y · x) = y ⇐⇒ L(//)
x R(·)

x y = y, (14)

x · (y\\x) = y ⇐⇒ L(·)
x R(\\)

x y = y, (15)

(x · y)\\x = y ⇐⇒ R(\\)
x L(·)

x y = y. (16)

The situation with the existence and the uniqueness of a solution of an equation
in a groupoid will be more clear if we give the following lemmas.

Lemma 2. Let f : A → B be a map of non-empty sets. Then
(i) the map f is surjective if and only if there exists a map g : B → A such that

gf = 1A;
(ii) the map f is injective if and only if there exists a map g : B → A such that

fg = 1B;
(iii) the map f is bijective if and only if there exists a map g : B → A such that

gf = 1A and fg = 1B ([12], 1. Proposition.)

Let f : A → B be a map. A left inverse map to the map f is a map g : B → A
such that gf = 1A. A right inverse map to the map f is a map h : B → A such
that fh = 1B . A left and right inverse map is called an inverse map. It is known
that every map has a unique inverse map. In general this is not true for left or right
inverse maps.

Lemma 3. Let f : A → B be a map of non-empty sets. Then
(i) f is injective if and only if f has a left inverse map;
(ii) f is surjective if and only if f has a right inverse map;
(iii) f is bijective if and only if f has an inverse map. ([12], 2. Proposition.)

Lemma 4. Let µ and ν be some maps of a non-empty set Q into itself. The product
of mappings µ and ν is the identity map 1Q of the set Q, i.e µ ν = 1Q, if and only
if the map ν is an injective map and the map µ is a surjective map.

Proof. This lemma is a corollary of Lemma 2 and Lemma 3.

Lemma 5. 1. In an algebra (Q, ·, \) with identity (1) the groupoid (Q, ·) is a left
division groupoid, the groupoid (Q, \) is a left cancellation groupoid.

2. In an algebra (Q, ·, /) with identity (2) the groupoid (Q, ·) is a right division
groupoid, the groupoid (Q, /) is a right cancellation groupoid.

3. In an algebra (Q, ·, \) with identity (3) the groupoid (Q, ·) is a left cancellation
groupoid, the groupoid (Q, \) is a left division groupoid.

4. In an algebra (Q, ·, /) with identity (4) the groupoid (Q, ·) is a right cancellation
groupoid, the groupoid (Q, /) is a right division groupoid.
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5. In an algebra (Q, ·, //) with identity (5) the groupoid (Q, ·) is a right division
groupoid, the groupoid (Q, //) is a left cancellation groupoid.

6. In an algebra (Q, ·, //) with identity (6) the groupoid (Q, ·) is a right cancella-
tion groupoid, the groupoid (Q, //) is a left division groupoid.

7. In an algebra (Q, ·, \\) with identity (7) the groupoid (Q, ·) is a left division
groupoid, the groupoid (Q, \\) is a right cancellation groupoid.

8. In an algebra (Q, ·, \\) with identity (8) the groupoid (Q, ·) is a left cancellation
groupoid, the groupoid (Q, \\) is a right division groupoid.

Proof. Case 1. In the language of groupoid translations we can rewrite identity (1)

in the following form: L
(·)
x L

(\)
x y = y. From Lemma 4 it follows that the groupoid

(Q, ·) is a left division groupoid, the groupoid (Q, \) is a left cancellation groupoid.
Cases 2–8 are proved in the similar way.

Theorem 5. 1. A groupoid (Q, ·) is a left division groupoid if and only if there
exists a left cancellation groupoid (Q, \) such that in the algebra (Q, ·, \) iden-
tity (1) is fulfilled.

2. A groupoid (Q, ·) is a right division groupoid if and only if there exists a right
cancellation groupoid (Q, /) such that in the algebra (Q, ·, /) identity (2) is
fulfilled.

3. A groupoid (Q, ·) is a left cancellation groupoid if and only if there exists a left
division groupoid (Q, \) such that in the algebra (Q, ·, \) identity (3) is fulfilled.

4. A groupoid (Q, ·) is a right cancellation groupoid if and only if there exists a
right division groupoid (Q, /) such that in the algebra (Q, ·, /) identity (4) is
fulfilled.

5. A groupoid (Q, ·) is a left quasigroup if and only if there exists a groupoid
(Q, \) such that in the algebra (Q, ·, \) identities (1) and (3) are fulfilled.

6. A groupoid (Q, ·) is a right quasigroup if and only if there exists a groupoid
(Q, /) such that in the algebra (Q, ·, /) identities (2) and (4) are fulfilled.

7. A groupoid (Q, ·) is a division groupoid if and only if there exist a right cancel-
lation groupoid (Q, /) and a left cancellation groupoid (Q, \) such that in the
algebra (Q, ·, /, \) identities (1) and (2) are fulfilled.

8. A groupoid (Q, ·) is cancellation groupoid if and only if there exist a right
division groupoid (Q, /) and a left division groupoid (Q, \) such that in the
algebra (Q, ·, /, \) identities (3) and (4) are fulfilled.

9. A groupoid (Q, ·) is a right division groupoid if and only if there exists a left
cancellation groupoid (Q, //) such that in the algebra (Q, ·, //) identity (5) is
fulfilled.
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10. A groupoid (Q, ·) is a right cancellation groupoid if and only if there exists a
left division groupoid (Q, //) such that in the algebra (Q, ·, //) identity (6) is
fulfilled.

11. A groupoid (Q, ·) is a left division groupoid if and only if there exists a right
cancellation groupoid (Q, \\) such that in the algebra (Q, ·, \\) identity (7) is
fulfilled.

12. A groupoid (Q, ·) is a left cancellation groupoid if and only if there exists a
right division groupoid (Q, \\) such that in the algebra (Q, ·, \\) identity (8) is
fulfilled.

13. A groupoid (Q, ·) is a right quasigroup if and only if there exists a groupoid
(Q, //) (a left quasigroup (Q, //)) such that in the algebra (Q, ·, //) identities
(5) and (6) are fulfilled.

14. A groupoid (Q, ·) is a left quasigroup if and only if there exists a groupoid
(Q, \\) such that in the algebra (Q, ·, \\) identities (7) and (8) are fulfilled.

15. A groupoid (Q, ·) is a division groupoid if and only if there exist a left cancel-
lation groupoid (Q, //) and a right cancellation groupoid (Q, \\) such that in
the algebra (Q, ·, //, \\) identities (5) and (7) are fulfilled.

16. A groupoid (Q, ·) is cancellation groupoid if and only if there exist a left division
groupoid (Q, //) and a right division groupoid (Q, \\) such that in the algebra
(Q, ·, //, \\) identities (6) and (8) are fulfilled.

Proof. Case 1. Let (Q, ·) be a division groupoid. From Zermelo Theorem [10] it
follows that every set can be done a well-ordered set.

On a well-ordered set Q any groupoid (Q, ·) can be defined in a unique way with

the help of its left translations {L
(·)
x |x ∈ Q}. In any division groupoid every its left

translation La, a ∈ Q, is a surjective map of the set Q.
By Lemma 3 every surjective map f has a right inverse map g (the map g is

not defined in a unique way). By Lemma 4 the map g is an injective map. We can

consider the map g as a left translation L
(\)
a of a partial groupoid (Q, \).

The set of all injective maps {L
(\)
a | a ∈ Q} with the property L

(·)
a L

(\)
a = 1Q

defines (in a unique way) a cancellation groupoid (Q, \).
Converse. If in the algebra (Q, ·, \) identity (1) is fulfilled, then in (Q, ·, \) identity

(9) also is true. From Lemma 4 it follows that any left translation L
(·)
a is a surjective

map, any left translation L
(\)
a is an injective map. The set {L

(·)
a | a ∈ Q} defines in

a unique way the division groupoid (Q, ·), the set {L
(\)
a | a ∈ Q} defines in a unique

way the cancellation groupoid (Q, \), if the set Q is a well-ordered set.
Cases 2–16 are proved in the similar way.

Corollary 1. An algebra (Q, ·, //, \) with identities (1), (3), (5) and (6) is an
e-quasigroup.
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An algebra (Q, ·, /, \\) with identities (2), (4), (7) and (8) is an e-quasigroup.
An algebra (Q, ·, //, \\) with identities (5), (6), (7) and (8) is an e-quasigroup.

Proof. The proof follows from Lemma 5.
In books of G. Birkhoff [5] and A.I. Mal’tsev [18] (see, also, J.D.H. Smith’s

article [25]) can be found the following e-quasigroup identities

(x/y)\x = y, (17)

x/(y\x) = y. (18)

Identities (5) and (6) are some analogs of identities (17) and (18). Indeed, if
we change operation “\” in identities (17) and (18) by operation “·”, then the
operation “/” passes in the operation “//”.

Identities (17) and (18) are easy obtained from conditions of Theorem 2. For
example, if z/y = x ⇐⇒ x\z = y, then z/(x\z) = x (18).

Lemma 6. Identities (17) and (18) hold in any e-quasigroup (Q, ·, \, /) [5, 25].

Proof. From Table 1 it follows that L
(/)
x = P−1

x , R
(\)
x = Px. Therefore identity

(17) is equivalent to the equality P−1
x Pxy = y and identity (18) can be written in

the form PxP−1
x y = y. It is clear that the last two equalities hold in the quasigroup

(Q, ·, \, /) for all x, y ∈ Q.

Acknowledgment: Author thanks V.I. Arnautov, J.D. Phillips, D.I. Pushka-
shu, E.A. Zamorzaeva and Referee for their helpful comments.
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