
BULETINUL ACADEMIEI DE ŞTIINŢE
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Locicaly separable algebras in varieties of algebras

B. Plotkin

Abstract. Let Θ be an arbitrary variety of algebras and H be an algebra in Θ.
Along with algebraic geometry in Θ over the distinguished algebra H we consider
logical geometry in Θ over H . This insight leads to a system of notions and stimulates
a number of new problems. We introduce a notion of logically separable in Θ algebras
and consider it in the frames of logically-geometrical relations between different H1

and H2 in Θ. The paper is aimed to give a flavor of a rather new subject in a short
and concentrated manner.

Mathematics subject classification: 08C05, 08B20.
Keywords and phrases: Variety of algebras, free algebra, algebraic (logical) geom-
etry in variety, geometrically (logically) equivalent algebras.

1 Introduction

In the paper we give a list of main notions, formulate some results and spec-
ify problems. The paper is self-contained from the viewpoint of ideas of universal
algebraic geometry and logical geometry.

The described theory has deep ties with model theory and some problems are of
model theoretic nature [1, 2].

We fix an arbitrary variety of algebras Θ. Throughout the paper we consider
algebras H in Θ. To each algebra H ∈ Θ one can attach an algebraic geometry
(AG) in Θ over H and a logical geometry (LG) in Θ over H.

In algebraic geometry we consider algebraic sets over H, while in logical geometry
we consider logical (elementary) sets over H. These latter sets are connected with
the elementary logic, i.e. with the first order logic (FOL).

Consideration of these sets gives grounds to geometries in an arbitrary variety
of algebras. We distinguish algebraic and logical geometries in Θ. However, there is
a very little trace of the usual geometry in the geometries of such kind. It should be
remembered that we consider an arbitrary variety Θ. Only some ”good” varieties Θ
and ”good” algebras H ∈ Θ lead to a geometry which is, in some sense, close to a
traditional one.

Algebraic sets are defined by systems of equations T of the type w ≡ w′. Here
we assume that there is a fixed finitely generated free algebra W = W (X) in Θ, and
w,w′ are the elements from W .

Elementary sets are defined by systems T of first order formulas. In this setting
arbitrary FOL formulas play a role occupied by ordinary equations in the setting
above.
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Suppose that along with a free algebra W (X) we consider a special algebra of
formulas Φ = Φ(X). This Φ is also associated with the variety Θ. Then a system
T of ”equations” i.e., a system of first order formulas turns to be a set of elements
from Φ. In particular, an equation w = w′ is viewed as a formula of equality of the
form w ≡ w′, and this is an element in the algebra Φ(X).

Algebraic sets and elementary sets lie in the affine space HX which we identify
in a standard way with the set of homomorphisms Hom(W (X),H). Hence, any
point of an affine space is a homomorphism µ : W −→ H.

Let us consider the algebra Φ = Φ(X) in more detail. We are not ready to
give the precise definition of this algebra yet. For our immediate needs we shall say
that Φ(X) is the algebra of the compressed first order formulas, i.e., the quotient
algebra of the ordinary first order formulas modulo their semantic equivalence. It is
important that:

1. Φ(X) is a Boolean algebra equipped with unary quantifier operations with
respect to variables x ∈ X and with equations w ≡ w′, w ∈W (X) which are viewed
as nullary operations.

2. To each formula u ∈ Φ corresponds its value V alXH (u) = A, which is a subset
in Hom(W (X),H). In particular

V alXH (w ≡ w′) = {µ : W −→ H|(w,w′) ∈ Ker(µ)}.

3. Let us define the logical kernel LKer(µ) of a point µ : W −→ H. A formula
u ∈ Φ(X) belongs to LKer(µ) if and only if µ ∈ V alH(u). The usual kernel Ker(µ)
is the set of all (w,w′) with w ≡ w′ ∈ LKer(µ). We say that a point µ is a solution
of the ”equation” u if u ∈ LKer(µ).

The logical kernel LKer(µ) is an ultrafilter in the algebra Φ. Denote by MX the
set of all equalities w ≡ w′ over the algebra W = W (X). Then

Ker(µ) = LKer(µ) ∩MX .

Together with the usual FOL formulas we consider some weak variant of infini-
tary formulas. These are formulas of the type

∧

u∈T u→ v, where T can be infinite
and all u and v are FOL formulas, written in a given finite set X. We write shortly
T → v and say that the T → v is an almost finite formula. We denote this new
logic by LG keeping in mind the relation to logic geometry. We treat the logic LG
as geometrical logic.

Denote by Th(H) an elementary theory for the given algebra H ∈ Θ and by
LGTh(H) all T → v which hold in H.

Algebras H1 and H2 are elementary equivalent if Th(H1) = Th(H2) and
LG-equivalent if LGTh(H1) = LGTh(H2).

If H1 and H2 are LG-equivalent, then they are elementary equivalent. The
opposite is not true.

Now we able to manifest the main idea hidden in the title of the paper:
We call an algebra H ∈ Θ logically (LG−)separable in Θ if for every H ′ ∈ Θ not

isomorphic to H the algebras H and H ′ are not LG−equivalent.
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We are interested in the situation when every free in Θ algebra W = W (X) with
the finite X is logically separable in Θ.

The main goal of the paper is to suggest a general view on this problem and on
related problems around logical geometry. In order to make the paper self-contained
and clear we include some necessary material from universal algebra and algebraic
logic. The paper does not contain proofs. It is aimed to give a flavor of a rather
new subject in a short and concentrated manner.

Proceed now to the geometric approach.

2 Galois correspondence

Recall, first, how this correspondence looks like in universal algebraic geometry
[6–9]. About universal AG see [4–9].

Let us fix a variety Θ and a finitely generated free algebra W (X) ∈ Θ and let
T be a binary relation on W (X). We view T as a system of equations w ≡ w′,
(w,w′) ∈ T and as a system of formulas of the form w ≡ w′. Define:

T ′

H = A = {µ : W −→ H|T ⊂ Ker(µ)}

for every H ∈ Θ.

We can write the same as

T ′

H = A =
⋂

(w,w′)∈T

V alH(w ≡ w′).

Here A is the set of points, satisfying every equation in T , i.e. the set of solutions
of all equations from T . Such sets A are called algebraic sets.

Define the correspondence in the opposite direction:

A′

H = T =
⋂

µ∈A

Ker(µ) = {(w,w′)|A ⊂ V alXH (w ≡ w′)}.

Here T is a congruence in W called an H-closed congruence.

The obtained correspondence between algebraic sets and H-closed congruence is
a Galois correspondence. This means that

1. A1 ⊂ A2 implies A′

2H ⊂ A′

1H ,

2. T1 ⊂ T2 implies T ′

2H ⊂ T ′

1H ,

3. A ⊂ A
′′

H , T ⊂ T
′′

H .

Here, the algebraic set A
′′

H and the H-closed congruence T
′′

H are the closures of a set
A and a system T , respectively.

Proposition 2.1. A congruence T is H-closed if and only if W/T ∈ SC(H).

Here S is the operator of taking subgroups while C takes Cartesian products.
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For each set of formulas T consider quasiidentities of the form

∧

(w,w′)∈T

w ≡ w′ −→ w0 ≡ w′

0,

or, shortly, T −→ w0 ≡ w′

0.
The set T is not necessarily finite, and the formulas above are considered in the

infinitary logic.

Proposition 2.2. The inclusion (w0, w
′

0) ∈ T
′′

H holds if and only if the formula
T −→ w0 ≡ w′

0 holds in H.

Now we define a Galois correspondence in logical geometry. We start with the
algebra of formulas Φ(X) and consider an arbitrary subset T in Φ. In order to
establish in this case the correspondence similar to the previous one we shall replace
the kernel Ker(µ) by the logical kernel LKer(µ). Let us define

TL
H = A = {µ : W −→ H|T ⊂ LKer(µ)} =

⋂

u∈T

V alH(u).

Here A is an elementary set in Hom(W,H) which consists of all points µ satisfying
every ”equation” u ∈ T . In the opposite direction:

AL
H = T =

⋂

µ∈A

LKer(µ) = {u ∈ Φ(X)|A ⊂ V alXH (u)}.

We defined the Galois correspondence in the case of logical geometry. The Galois
closures are ALL

H and TLL
H , respectively. Here T = AL

H is always an H-closed Boolean
filter in Φ.

For a given set of formulas T ⊂ Φ(X) and a given v ∈ Φ(X) consider the formula

∧

u∈T

u −→ v,

or equally T −→ v, where T is not necessarily finite.

Proposition 2.3. The inclusion u ∈ TLL
H holds if and only if the formula T −→ v

holds in H.

3 Geometrical equivalence and logical equivalence of algebras

Recall that [6, 7] algebras H1 and H2 are geometrically equivalent (AG-equivalent
for short) if for every finite X and T in W = W (X) we have

T ′′
H1 = T ′′

H2 .

See the survey [8] and [7] for details.
Now we are able to define the notion of logically equivalent algebras.
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Definition 3.1. Algebras H1 and H2 are logically equivalent (LG-equivalent for
short) if for every finite X and T in Φ = Φ(X) we have

TLL
H1

= TLL
H2
.

Let us look at the idea of LG-equivalence from the yet another point of view.
Consider formulas of the form u1 ∧u2 ∧ . . .∧un −→ v, i.e., formulas T0 −→ v, where
T0 is a finite set. Denote by LG0Th(H) the set of all formulas of such kind which
hold in H. It is easy to see that H1 and H2 are elementary equivalent if and only if
LG0Th(H1) = LG0Th(H2).

Along with the invariants Th(H) and LG0Th(H) of the algebra H consider an
invariant LGTh(H). We call LGTh(H) the implicative theory of the algebra H. It
consists of all formulas of the form T −→ v which hold in H. Here, T is a set of
formulas in Φ (possibly inifinite) and v is a formula in Φ.

Proposition 3.2. Algebras H1 and H2 are logically equivalent if and only if their
implicative theories coincide, i.e.,

LGTh(H1) = LGTh(H2).

This proposition motivates the main idea formulated in the introduction. Hence,

Proposition 3.3. If the algebras H1 and H2 are LG-equivalent then they are
elementary equivalent.

The opposite implication is not true and thus the relation of LG-equivalence is
more strong than the relation of elementary equivalence.

It is also clear that

Proposition 3.4. If the algebras H1 and H2 are LG-equivalent then they are
geometrically equivalent.

Definition 3.5. Algebras H1 and H2 are called weakly LG-equivalent if the equality

TLL
H1

= TLL
H2
.

holds for all finite T .

Proposition 3.6. Algebras H1 and H2 are weakly LG-equivalent if and only if they
are elementary equivalent.

4 Some categories and lattices

Let us fix an infinite set X0 and let Γ0 be the set of all finite subsets of X0.
For a given variety Θ denote by Θ0 the category whose objects are the free

algebras W = W (X) in Θ with finite X ∈ Γ0. The category Θ0 is a full subcategory
in the category Θ. Its morphisms are homomorphisms of free algebras.
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Observe that we can consider also the special Halmos category Hal0Θ of all alge-
bras of formulas Φ(X), where X runs all finite subsets of X0. In logical geometry
this category plays the role similar to that of the category of free algebras Θ0 in the
case of algebraic geometry.

Given algebra H ∈ Θ, define the category of affine spaces K0
Θ(H) over H. Its

objects are the sets of homomorphisms Hom(W,H), W ∈ Θ0, and morphisms are
of the form

s̃ : Hom(W1,H) −→ Hom(W2,H),

where s : W2 −→ W1 is a morphism in Θ0 and the mapping s̃ is given by the
rule s̃(ν) = νs : W2 −→ H for ν : W1 −→ H. We have a contravariant functor
Θ0 −→ K0

Θ(H) which implies a duality of the categories if and only if the identities
of the algebra H determine the whole variety Θ, i.e., V ar(H) = Θ [9].

The next category is the category SetΘ(H) of affine sets over an algebra H. Its
objects are of the form (X,A), where A is an arbitrary subset in the affine space
Hom(W (X),H). The morphisms are

[s] : (X,A) −→ (Y,B).

Here s : W (Y ) −→ W (X) is a morphism in Θ0. The corresponding
s̃ : Hom(W (X),H) −→ Hom(W (Y ),H) should be coordinated with A and B by the
condition: if ν ∈ A ⊂ Hom(W (X),H), then s̃(ν) ∈ B ⊂ Hom(W (Y ),H). Then we
consider the induced mapping [s] : A −→ B as a morphism (X,A) −→ (Y,B).

Now we define the category of algebraic sets KΘ(H) and the category of
elementary sets LKΘ(H). Both these categories are full subcategories in SetΘ(H)
and are viewed as important invariants of the algebra H. We call them AG and
LG-invariants of H.

The objects of KΘ(H) are of the form (X,A), where A is an algebraic set in
Hom(W (X),H). If we take for A the elementary sets, then we are getting the
category of elementary sets LKΘ(H). The category KΘ(H) is a full subcategory in
LKΘ(H).

Let us turn to the lattices. We will see that if A and B are the elementary sets
in Hom(W,H), then the union A ∪ B is also an elementary set. This means that
elementary sets in Hom(W,H) constitute a lattice which is a sublattice in the lattice
of all subsets in the given affine space. The similar fact in AG is not true. Given
two algebraic sets A and B, the set A ∪ B is not always an algebraic set. (Clearly,
A ∪B is an elementary set.)

5 Algebras with the same logic

Recall, first, some general facts from category theory [3]. Let ϕ1, ϕ2 be two
functors C1 −→ C2. An isomorphism of functors s : ϕ1 −→ ϕ2 is defined by the
following conditions:
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1. To every object A of the category C1 an isomorphism sA : ϕ1(A) −→ ϕ2(A) in
C2 is assigned.

2. If ν : A −→ B is a morphism in C1 then there is a commutative diagram in
C2:

ϕ1(A)
sA−−−−−−−−−−→ ϕ2(A)

ϕ1(ν)





y





y

ϕ2(ν)

ϕ1(B)
sB−−−−−−−−−−→ ϕ2(B)

An isomorphism of functors ϕ1 and ϕ2 is denoted by ϕ1 ≃ ϕ2. Let now a pair
(ϕ, ψ) of functors ϕ : C1 −→ C2 and ψ : C2 −→ C1 be given. We say that it
defines a category equivalence C1 and C2 if ψϕ ≃ 1C1 and ϕψ ≃ 1C2 . Here, 1C1

and 1C2 are identity functors. The conditions ψϕ = 1C1 and ϕψ = 1C2 define an
isomorphism of categories. If C1 = C2 = C then we get the notions of automorphism
and autoequivalence of the category C.

An automorphism ϕ of the category C is called inner if it is isomorphic to the
identity automorphism 1C . The latter means that if s : 1C −→ ϕ is an isomorphism
of functors, then for every object A of the category C there is an isomorphism
sA : A −→ ϕ(A) such that the diagram

A
sA−−−−−−−−−−→ ϕ(A)

ν





y





y

ϕ(ν)

B
sB−−−−−−−−−−→ ϕ(B)

is commutative for any morphism ν : A −→ B in C. So, ϕ is inner if and only if it
can be represented in the form:

ϕ(ν) = sBνs
−1
A : ϕ(A) −→ ϕ(B).

This formula motivates the term ”inner automorphism”.
Now we consider the main topic of this subsection. Let LatH : Θ0 −→ Lat

be the functor which assigns to each W (X) the lattice of elementary sets in
Hom(W (X)),H). We say that algebras H1 and H2 have the same lattices if there
exists an automorphism ϕ : Θ0 −→ Θ0 such that the functors LatH1 and LatH2ϕ are
isomorphic. Coincidence of lattices can be represented by the commutative diagram

Θ0 Θ0-ϕ

Lat

LatH1

@
@

@
@R

LatH2

�
�

�
�	

Here Lat is the category of lattices and commutativity means the existence of an
isomorphism LatH1 −→ LatH2ϕ.
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Consider also isomorphisms of categories LKΘ(H1) −→ LKΘ(H2). We require
that there exists a special correct isomorphism of these categories. Informally speak-
ing the correctness means coordination of the category isomorphism with lattices.
We regard algebras H1 and H2 to have the same logic if the categories LKΘ(H1)
and LKΘ(H2) are correctly isomorphic.

This approach repeats similar definitions in the case of AG. In AG we prove
that if H1 and H2 are AG-equivalent, then the categories KΘ(H1) and KΘ(H2) are
correctly isomorphic. Analogously:

Theorem 5.1. If the algebras H1 and H2 are LG-equivalent, then the categories
LKΘ(H1) and LKΘ(H2) are correctly isomorphic.

Here, LG-equivalence means that the corresponding logics are the same. In the case
of AG the proof of a theorem of such kind is trivial and based on the duality of
KΘ(H) and CΘ(H) . In the case of LG there is no such a duality and the proof is
not trivial [9].

Note that the definition of the coincidence of logics can be grounded also on the
correct equivalence of the categories of algebraic and elementary sets.

6 Some problems

We shall provide the reader with the list of problems related to the general
scheme described above.

Problem 6.1. Consider various non-isomorphic LG-equivalent algebras.

It is hard to believe that LG-equivalence always implies isomorphism. Moreover,
the general model-theoretic methods allow to construct non-isomorphic
LG-equivalent algebras. We are mostly interested in the cases when the
LG-equivalence of algebras implies their isomorphism. Grounding on this aim we
introduce the following:

Definition 6.2. Let H1 and H2 be two non-isomorphic algebras in Θ. We call them
LG-separated if they are not LG-equivalent.

Definition 6.3. An algebra H is called LG-separable in Θ if H is not LG-equivalent
to any other algebra H ′ in Θ.

Problem 6.4. Consider varieties Θ such that every free in Θ algebra W (X) is
separable.

It can be proved that the varieties of semigroups and inverse semigroups possess
this property. There are also other examples of such kind.

Problem 6.5. What is the situation in the case of the variety of all groups, i.e.,
Θ = Grp?
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It can be proved (Z.Sela, unpublished) that every free group Fn can be separated
from other free groups Fm, n 6= m. Hence, the question is what can be said if the
second group is not free.

Problem 6.6. What is the situation in the case of the variety of all commutative
and associative algebras over a field P , i.e., Θ = Com− P?

Problem 6.7. What is the situation in the case of the variety of all associative
algebras over a field P , i.e., Θ = Ass − P , or in the case of the variety of all Lie
algebras over a field P , i.e., Θ = Lie− P ?

Problem 6.8. Let us fix a free algebra W (X) in the variety Θ. Describe all
LG-equivalent to W (X) algebras H. In particular, consider Θ = Grp.

Problem 6.9. Let H1 and H2 be two abelian groups. Suppose that they are
LG-equivalent. Is it true that they are isomorphic?

It can happen that this question has a positive answer.

Problem 6.10. Let L1 and L2 be two extensions of the field P . Suppose that they
are LG-equivalent. Is it true that they are isomorphic?

In fact, a negative answer to this question in the case of arbitrary L1 and L2 also
can be deduced from model theory (see the survey [2] and references therein). The
most interesting case is to consider extensions with some natural restrictions on L1

and L2.

Note now the following important question. Let H1 and H2 be elementary equiv-
alent. When a single formula of the form T −→ v makes H1 and H2 isomorphic? Or,
vice versa, to separate non-isomorphic H1 and H2 with the help of a single formula
of the form T −→ v.
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