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On description of some radical filters

of noetherian rings
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Abstract. We describe some radical filters of noetherian rings.
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Let R be a ring. The category of right R-modules will be denoted by Mod−R.
Let Lr(R) be the set of all right ideals of the ring R. Let Specr(R) be the set of
all maximal right ideals of R. If N is a submodule of a module M we shall write
N ≤ M . A set P ⊆ R is said to be similarly-closed in case

∀p ∈ P ∀r ∈ R : r ∼ p ⇒ r ∈ P.

Let

EP := {I ∈ Lr(R) | (∃n ∈ N ∃a1, a2, . . . , an ∈ P : I = a1a2 . . . anR) ∨ I = R}.

We shall say that R is a domain if ∀a, b ∈ R \ {0} : ab ∈ R \ {0}.
A ring R is said to be a principal ideal domain in case it is a domain such that

every its right ideal is a right principal ideal and every its left ideal is a left principal
ideal.

Definition 1. A right ideal A is similar to a right ideal B if R/A ∼= R/B. In this

case we shall write A ∼ B.

Definition 2. A set G ⊆ Lr(R) is said to be similarly-closed in case ∀A ∈ G ∀B ∈
Lr(R) : A ∼ B ⇒ B ∈ G.

Let [G] = {P | ∃A ∈ G : P ∼= R/A} for G ⊆ Specr(R).

Definition 3 [l, 2]. A set E ⊆ Lr(R)is called a radical filter if the following

conditions are fulfilled

Gl. I ∈ E, I ⊆ J , J ∈ Lr(R) ⇒ J ∈ E.

G2. I ∈ E, a ∈ R ⇒ (I : a) ∈ E.

G3. I ∈ E, J ⊆ I, J ∈ Lr(R), ∀a ∈ I : (J : a) ∈ E ⇒ J ∈ E.

Let

EG = {I | ∃n ∈ N ∪ {0}∃A0, A1, . . . , An ∈ Lr(R) : I = A0 ⊆ A1 ⊆ . . . ⊆ An = R
∧ ∀i ∈ {1, 2, . . . , n} : Ai/Ai−1 ∈ [G]}.
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Theorem 1. Let R be a right noetherian ring. If G ⊆ Specr(R) is similarly-closed

then EG is a radical filter of R.

Proof. Gl. Let I ∈ EG, I ⊆ J , J ∈ Lr(R). Then

∃n ∈ N ∪ {0} ∃A0, A1, . . . , An ∈ Lr(R) : I = A0 ⊆ A1 ⊆ . . . ⊆ An = R

∧ ∀i ∈ {1, 2, . . . , n} : Ai/Ai−1 ∈ [G] (∗)

It follows from this that

0 = A0/I ⊆ A1/I ⊆ . . . ⊆ An/I = R/I ∧ ∀i ∈ {1, 2, . . . , n} :

(Ai/I)/(Ai−1/I) ∈ [G] (∗∗)

and 0 ⊆ J/I ⊆ R/I. Now taking this into consideration by Corollary 3.5.3 [4] we
have that

J/I = B0/I ⊆ B1/I ⊆ . . . ⊆ Bk/I =

= R/I ∧ ∀i ∈ {1, 2, . . . , k} : (Bi/I)/(Bi−1/I) ∈ [G]

for some B0, B1, . . . , Bk ∈ Lr(R).
It follows from this that J ∈ EG.

G2. Let I ∈ EG, a ∈ R. Then we have (*). Hence (**). But 0 ⊆ (aR + I)/I ⊆
R/I. Now taking this into consideration by Corollary 3.5.3 [4] we have that

0 = C0/I ⊆ C1/I ⊆ . . . ⊆ Ct/I =

= (aR + I)/I ∧ ∀i ∈ {1, 2, . . . , t} : (Ci/I)/(Ci−1/I) ∈ [G]

for some C0, C1, . . . , Ct ∈ Lr(R).
It is obviour that R/(I : a) ∼= (aR + I)/I. Taking this into account we obtain

that (I : a) ∈ EG.

G3. Let I ∈ EG, J ⊆ I, J ∈ Lr(R), ∀a ∈ I : (J : a) ∈ EG. It is obvious that
R/J is noetherian as a factor-module of the right noetherian module R. Hence I/J
is also noetherian as a submodule of R/J . It is clear that

∑

a∈I

(aR + J)/J = I/J .

Since I/J is finitely generated as a noetherian module,

(a1R + J)/J + (a2R + J)/J + . . . + (asR + J)/J = I/J

for some {a1, a2, . . . , as} ⊆ I.

Then I/J ∼=
( s

⊕

h=1

(ahR + J)/J
)

/S for some submodule S of
s

⊕

h=1

(ahR + J)/J .

Since

∀h ∈ {1, 2, . . . , s} : (ahR + J)/J ∼= R/(J : ah) ∧ (J : ah) ∈ EG,

∀h ∈ {1, 2, . . . , s} ∃{Bh,i | Bh,i ≤ (ahR + J)/J, i ∈ {0, 1, . . . , ph}} : 0 = Bh,0 ⊆
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⊆ Bh,1 ⊆ . . . ⊆ Bh,ph
= (ahR + J)/J ∧ ∀i ∈ {1, 2, . . . , ph} : Bh,i/Bh,i−1 ∈ [G].

It follows from this that

0 = B1,0 ⊆ B1,1 ⊆ . . . ⊆ B1,p1 ⊕ B2,1 ⊆ . . . ⊆ B1,p1 ⊕ B2,p2 ⊆ . . .

. . . ⊆ B1,p1 ⊕ B2,p2 ⊕ . . . ⊕ Bs,ps
=

s
⊕

h=1

(ahR + J)/J

is a composition series for
s

⊕

h=1

(ahR + J)/J with all factors belonging to [G]. Since

0 ⊆ S ⊆
s

⊕

h=1

(ahR + J)/J , by Corollary 3.5.3 [4], there exists a composition series

0 ⊆ L0/S ⊆ L1/S ⊆ . . . ⊆ Lu/S =
( s

⊕

h=1

(ahR + J)/J
)

/S with all factors belonging

to [G] (where S ≤ L0 ≤ L1 ≤ . . . ≤ Lu =
s

⊕

h=1

(ahR+J)/J). Now taking into account

I/J ∼=
( s

⊕

h=1

(ahR + J)/J
)

/S, it is easy to see that there exists a composition series

0 = M0/J ⊆ M1/J ⊆ . . . ⊆ Mu/J = I/J with all factors belonging to [G]. But since
I ∈ EG, there exists a composition series 0 = N0/I ⊆ N1/I ⊆ . . . ⊆ Nv/I = R/I
with all factors belonging to [G]. Therefore 0 = M0/J ⊆ M1/J ⊆ . . . ⊆ Mu/J ⊆
N1/J ⊆ . . . ⊆ Nv/J = R/J is a composition series with all factors belonging to [G].
Therefore J ∈ EG. �

Lemma 2. Let R be a domain. If ∀i ∈ {1, 2, . . . , n} : ai ∈ R\{0}∧aiR is a maximal

right ideal of R, then

L0 ⊆ L1 ⊆ . . . ⊆ Ln−1 ⊆ Ln

is a composition series for Ln, where

Ls := a1a2 . . . an−sR/a1a2 . . . anR, s ∈ {0, 1, . . . , n − 1}, Ln := R/a1a2 . . . anR.

Proof. It is clear that

Ls+1/Ls
∼= R/an−sR, s ∈ {0, 1, . . . , n − 1}. �

Therefore we have the following proposition.

Proposition 3. Let R be a right noetherian domain and let P be a similarly-closed

subset of R such that 0 /∈ P. If G ⊆ Specr(R) is a similarly-closed set containing

the set {aR | a ∈ P}, then the radical filter EG contains the set EP .

Let R be a principal ideal domain. An element p ∈ R is said to be an atom in
case p 6= 0 ∧ p /∈ U(R) ∧ (∀a, b ∈ R : (p = ab ⇒ a ∈ U(R) ∨ b ∈ U(R))). The
set of all atoms of R will be denoted by ΩR .
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Taking into account Theorem 1 and the proof of Lemma 1 we obtain
(see [3, p.69–70] and [4, Corollary 3.5.3]).

Corollary 4 [5]. Let R be a principal ideal domain. If P ⊆ ΩR is a similarly-closed

set then EP is a radical filter.

Corollary 5. Let R be a Dedekind domain. If G ⊆ Specr(R) is similarly-closed

then TG := {I ∈ Lr(R) | (∃n ∈ N ∃I1, I2, . . . , In ∈ G : I = I1I2 . . . In) ∨ I = R} is

a radical filter of R.

Proof. It is obvious that

L0 ⊆ L1 ⊆ . . . ⊆ Ln−1 ⊆ Ln

is a composition series for Ln, where

Ls := I1I2 . . . In−s/I1I2 . . . In, s ∈ {0, 1, . . . , n − 1}, Ln := R/I1I2 . . . In,

because
Ls+1/Ls

∼= R/In−s, s ∈ {0, 1, . . . , n}

(see Proposition 17 [6]).
Now apply Theorem l and Corollary 3.5.3 [4]. �
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