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Crossed-inverse-property groupoids

V. Izbash, N. Labo

Abstract. The (right, left) crossed-inverse-property in groupoids is investigated.
It is shown that the class of all crossed-inverse-property groupoids is a variety of
quasigroups. Some properties of the right-crossed-property groupoids are established.
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In this paper we investigate (right, left) crossed-inverse-property groupoids. We
concentrate on the problem of proving whether the right-crossed-inverse-property
groupoid is a quasigroup. We establish in this paper several results that bring
nearer the solution of this problem. For quasigroups these notions are considered,
for example, in [1–3].

Let (Q, ·) be a groupoid (i.e. a non-empty set together with a binary ope-
ration ” · ” ).

Definition 1. A groupoid (Q, ·) is called:

(i) a right crossed-inverse-property groupoid (RCIP -groupoid) if for each x ∈ Q,
there exists an element x

′

∈ Q such that (xy)x
′

= y for all y ∈ Q;

(ii) a left crossed-inverse-property groupoid (LCIP -groupoid) if for each x ∈ Q,
there exists an element x

′′

∈ Q such that x
′′

(yx) = y for all y ∈ Q;

(iii) a crossed-inverse-property groupoid (CIP -groupoid) if it satisfies (i)
and (ii).

Note that in Definition 1 the uniqueness of the elements x
′

, x
′′

∈ Q is not re-
quested. Nevertheless we have the following assertion.

Proposition 1. The elements x
′

, x
′′

from Definition 1 are unique for every x ∈ Q.

Proof. Let be u, v ∈ Q and (xy)u = y = (xy)v. Then u = ((xy)u)(xy)
′

=
((xy)v)(xy)

′

= v. The same is valid for x
′′

∈ Q.

For a groupoid (Q, ·) from Definition 1 denote by Ir, Il the mappings x →

x
′

, x → x
′′

respectively. Thus from Proposition 1 the mappings Ir, Il are unique
if exist. So the considered groupoids can be defined as follows.
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Definition 2. A groupoid (Q, ·) is called:

(i) a right crossed-inverse-property groupoid (RCIP -groupoid) if there exists a
mapping Ir of Q such that

(xy)Irx = y (1)

for all x, y ∈ Q, that is shortly denoted by (Q, ·, Ir);

(ii) a left crossed-inverse-property groupoid (LCIP -groupoid) if there exists a
mapping Il of Q such that

Ilx(yx) = y (2)

for all x, y ∈ Q, that is shortly denoted by (Q, ·, Il);

(iii) a crossed-inverse-property groupoid (CIP -groupoid) if it satisfies (i) and
(ii), , that is shortly denoted by (Q, ·, Ir , Il).

Let Lax = ax (Rax = xa) be the left (right) translation by element x in (Q, ·).

Proposition 2. (i) If (Q, ·, Ir) is a RCIP -groupoid, then it is a left cancellable
groupoid, (i. e. (ax = ay) ⇒ (x = y) for all a, x, y ∈ Q, or, equivalently, La is
injective for any a ∈ Q);

(ii) If (Q, ·, Il) is a LCIP -groupoid, then it is a right cancellable groupoid, i. e.
(xa = ya) ⇒ (x = y) for all a, x, y ∈ Q, or, equivalently, Ra is injective for any
a ∈ Q);

(iii) If (Q, ·, Ir, Il) is a CIP -groupoid, then it is a cancellable groupoid;

Proof. (i) Let be a, x1, x2 ∈ Q such that ax1 = ax2. Then (ax1)Ira = (ax2)Ira, so
x1 = x2 by Definition 2. Similarly for (ii) and (iii).

Proposition 3. Let be ϕ,ψ arbitrary mappings and χ bijection on the set Q:

(i) If ϕψ = χ then ψ is injective and ϕ is surjective;

(ii)If ϕψ = χ and ϕ is injective, then ϕ,ψ are bijections on Q.

Proof. (i) For x, y ∈ Q we have (ψx = ψy) ⇒ (ϕ(ψx) = ϕ(ψy)) ⇒ (χx = χy) ⇒
(x = y). So ψ is injective. Since ϕψ = χ then ϕψy = χy and ϕψχ−1y = y for every
y ∈ Q, hence ϕ is surjective.

(ii) By (i) ϕ is surjective, so it is a bijection. Then ψ is a bijection by ϕψ = χ.

Proposition 4. (i) The mapping Ir of a RCIP -groupoid (Q, ·, Ir) is an endomor-
phism of (Q, ·) and

yIr(xy) = Irx (3)

for all x, y ∈ Q;

(ii) The mapping Il of a LCIP -groupoid (Q, ·, Il) is an endomorphism of (Q, ·)
and

Il(yx)y = Ilx (4)
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for all x, y ∈ Q;

(iii) The image Ir(Q) of a RCIP -groupoid (Q, ·, Ir) is a concellable RCIP -
groupoid. In the groupoid (Ir(Q), ·, Ir) the translations Lx, RIrx are bijections for all
x ∈ Ir(Q), Ir is injective and

y(xIry) = x (5)

holds for all x, y ∈ Ir(Q);

(iv) The image Il(Q) of LCIP -groupoid (Q, ·, Il) is a cancellable LCIP -groupoid.
In the groupoid (Il(Q), ·, Il) the translations Rx, LIlx

are bijections for all x ∈ Il(Q),
Il is injective and

(Ilyx)y = x (6)

holds for all x, y ∈ Il(Q);

Proof. (i). From (1), we have ((xy)Irx)Ir(xy) = yIr(xy), that is yIr(xy) = Irx, by
(1). Then (yIr(xy))Iry = IrxIry, so Ir(xy) = IrxIry i. e. Ir is an endomorphism.

(ii). The proof is similar to that of (i).

(iv). The homomorphic image of a groupoid is a groupoid. For any x ∈ Il(Q) it
holds Il(x) ∈ Il(Q). Thus (Il(Q), ·, Il) is a LCIP -groupoid.

If elements a, b, x ∈ Q and xa = b then x = Ila ·b by (2). Now suppose a, b, c ∈ Q

such that (Ila · b)a = c. Then by (2) we have Ila · b = Ila · c = d for some d ∈ Q and
Ilb · d = Ila = Ilc · d from which Ilb = Ilc by the right cancellability in the groupoid
(Q, ·).

The following implications

((Ila · b)a = c) ⇒ (Il((Ila · b)a)) = Ilc) ⇒ ((I2

l a ·Ilb)Ila = Ilc) ⇒ ((I2

l a ·Ilb)Ila = Ilb)

are valued for all a, b ∈ Q, thus (6) is proved. From (2) and (6) we get LIlx
Rx =

ε = RxLIlx
, so Rx, LIlx

are bijections for any x ∈ Il(Q) by Proposition 3.

Let be x1, x2 ∈ Il(Q) such that Ilx1 = Ilx2. Then LIlx1 = LIlx2 and Ilx1(yx1) =
y = Ilx2(yx2), for all y ∈ Il(Q). Put here y = Ila for an arbitrary fixed a ∈ Il(Q).
We obtain Ilx1(Ila · x1) = Ila = Ilx2(Ila · x2), or LIlx1LIla

x1 = LIlx2LIla
x2. Thus

x1 = x2 and Il is injective.
Now for all a, x1, x2, c ∈ Il(Q) we have

(ax1 = ax2 = c) ⇒ (Ilx1 · c = a = Ilx2 · c) ⇒ (Ilx1 = Ilx2) ⇒ (x1 = x2)

by the right cancellability in the groupoid (Q, ·) and injectivity of Il. So Il(Q) is a
cancellable LCIP -groupoid.

(iii). The proof is similar to that of (iv).

Definition 3. A quasigroup (Q, ·) is called a RCIP− (LCIP−, CIP−) quasigroup
if it is a RCIP− (LCIP−, CIP−) groupoid.
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Theorem 1. The following statements are equivalent for a groupoid (Q, ·):

(i) (Q, ·, Ir) is a RCIP -groupoid and the mapping Ir is a bijection;

(ii) (Q, ·, Il) is a LCIP -groupoid and the mapping Il is a bijection;

(iii) (Q, ·, Ir , Il) is a CIP -quasigroup.

Proof. (iii) ⇒ (i). If (Q, ·) is a CIP -quasigroup then La and Ra are bijections
for all a ∈ Q. Let be x1, x2 ∈ Q such that Irx1 = Irx2. Then RIrx1 = RIrx2 and
(x1y)Irx1 = y = (x2y)Irx2, for all y ∈ Q. Put here y = Ira for an arbitrary fixed
a ∈ Q. We obtain (x1Ira)Irx1 = Ira = (x2Ira)Irx2, or RIrx1RIrax1 = RIrx2RIrax2.
Thus x1 = x2 and Ir is injective.

For all a, b ∈ Q there exists a unique x ∈ Q such that (xb)a = b. Also we have
(xb)Irx = b and then Irx = a by the cancellability in the quasigroup (Q, ·). So, the
mapping Ir is a bijection.

(iii) ⇒ (ii). The proof is similar.

(i) ⇒ (iii). Let be a, b ∈ Q. From Proposition 2 La is injective for any a ∈ Q.
Since Ir is a bijection then there exists x ∈ Q such that Irx = b. By (3) it hold
yIr(xy) = Irx = b for any y ∈ Q . We get LaIr(xa) = aIr(xa) = Irx = b and La is
surjective. From (1) we get RIrxLx = ε. Thus Ra is a bijection for any a ∈ Q since
Ir is one. So (Q, ·) is a RCIP -quasigroup. Now (3) with y = I−1

r y and x = I−1
r x

gives

I−1

r y(xy) = x (7)

for all x, y ∈ Q. Thus (Q, ·, Ir , Il) is a CIP -quasigroup with Il = I−1
r .

(ii) ⇒ (iii). The proof is similar.

Corollary 1. If (Q, ·, Ir , Il) is a CIP -quasigroup then Il, Ir are bijections and
Il = I−1

r .

Corollary 2. A finite RCIP - (LCIP -) groupoid is a CIP -quasigroup.

Proof. Let be (Q, ·, Ir) a finite RCIP -groupoid. By Proposition 3 La is injective for
all a ∈ Q, so it is a bijective mapping because of finiteness of Q. From (xy)Irx = y

we obtain RIrxLx = ε, thus RIrx is a bijection for all x ∈ Q.

Similarly as in Theorem 1 we can prove that Ir is injective. Because of finiteness
of Q the mapping Ir is bijective and hence Rx is a bijection for all x ∈ Q. So (Q, ·)
is a quasigroup. The proof is similar when (Q, ·) is a left crossed-inverse-property
groupoid.

Theorem 2. Every CIP -groupoid is a CIP -quasigroup.

Proof. By Definition 2 we have RIrxLx = ε and LIlx
Rx = ε. Thus Rx, Lx are

bijections for all x ∈ Q by Propositions 3 and 4.
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Proposition 5. (i) A homomorphic image of RCIP - (LCIP -, CIP -) groupoid is
a RCIP - (LCIP -, CIP -) groupoid;

(ii) A direct product of two RCIP - (LCIP -, CIP -) groupoids is a RCIP -
(LCIP -, CIP -) groupoid.

Proof. (i) Let (Q, ·) be a RCIP -groupoid for which (xy)Irx = y for all x, y ∈ Q,
and ϕ is a homomorphism of (Q, ·) on a groupoid (G, ⋆). Then (ϕ((xy)Irx) =
ϕy) ⇔ ((ϕx ⋆ ϕy) ⋆ ϕ(Irx) = ϕy) for all x, y ∈ Q. So (ϕx ⋆ z) ⋆ ϕ(Irx) = z

for all x ∈ Q, z ∈ G. Hence for every u, z ∈ G there exists an element u
′

∈ G

such that (u ⋆ z) ⋆ u
′

= z for all u, z ∈ G, that is (G, ⋆) is a RCIP -groupoid by
Definition 1. The proof is similar when (Q, ·) is a LCIP - (CIP -) groupoid. (ii)
Let (Q, ·) and (G, ⋆) be RCIT -groupoids and (x · y) · Irx = y for all x, y ∈ Q,
where Ir is a mapping on Q, and (x ⋆ y) ⋆ Jrx = y for all x, y ∈ G, where Jr

is a mapping on G. Define the mapping Tr : Q × G −→ Q × G by Tr(x, u) :=
(Irx, Jru) for all (x, u) ∈ Q×G. Let (⊗) be the binary operation on Q×G defined
by (x, u) ⊗ (y, v) := (x · y, u ⋆ v) for all (x, u), (y, v) ∈ Q × G. Then we have
((x, u)⊗(y, v))⊗Tr(x, u) = (x·y, u⋆v)⊗(Irx, Jru) = ((x·y)·Irx, (u⋆v)⋆Jru)) = (y, v).
Thus,(Q × G,⊗) is a RCIP -groupoid. The proof is similar when (Q, ·) and (G, ⋆)
are LCIP - (CIP -) groupoids.

Lemma 1. (i)A homomorphic image of CIP -quasigroup is a CIP -quasigroup;

(ii) A subquasigroup of a CIP -quasigroup is a CIP -quasigroup.

Proof. Let (Q, ·) be a CIP -quasigroup for which (xy)Irx = y for all x, y ∈ Q, and
ϕ be a homomorphism of (Q, ·) on a groupoid (G, ⋆).

(i) It is well known that (G, ⋆) is a groupoid with division. By Propositions 5
and 2 (G, ⋆) is a cancellable groupoid.

(ii) Let (P, ·) be a subquasigroup of theCIP -quasigroup (Q, ·). Since (xy)Irx = y

for all x, y ∈ P , then Irx ∈ P for all x ∈ P . Thus (P, ·) is a CIP -quasigroup by
Definition 2.

Theorem 3. The class of all CIP -quasigroups is a variety of quasigroups.

Proof. It follows from Proposition 5 and Lemma 1.
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