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Abstract. We describe here the locally compact abelian (LCA) groups all of whose
closed polythetic, respectively, copolythetic subgroups have commutative rings of con-
tinuous endomorphisms. We also determine the LCA groups all of whose polythetic,
respectively, copolythetic quotients by closed subgroups have commutative rings of
continuous endomorphisms.
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1 Introduction

The problem of characterizing the abelian groups with commutative endo-
morphism ring was first considered by T. Szele and J. Szendrei in [11], where,
among other things, certain important special cases were completly solved. Later
L. C. A. van Leeuwen [7] noted that, if X is an abelian group, then every finitely
generated subgroup of X has a commutative endomorphism ring if and only if X is
isomorphic to a subgroup of Q or of Q/Z.

Inspired by the above mentioned paper of T. Szele and J. Szendrei, we initiated
in [10] the study of LCA groups with commutative ring of continuous endomor-
phisms. In the present paper, we continue in the same direction by extending the
L. C. A. van Leeuwen’s result to this more general setting. Some other results
of this nature will also be established. To be more explicit, we need a couple of
definitions.

Definition 1.1. An LCA group X is said to be

(i) polythetic if it contains a dense finitely generated subgroup.

(ii) copolythetic if there exists a continuous injective homomorphism from X into

a group of the form Tn for some n ∈ N.

Let L be the class of LCA groups. For X ∈ L, we let E(X) denote the ring of
continuous endomorphisms of X.
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Our aim here is to determine the groups X ∈ L such that every closed polythetic,
respectively, copolythetic subgroup G of X has a commutative ring E(G). We also
determine the groups X ∈ L such that every polythetic, respectively, copolythetic
quotient of X by a closed subgroup G, indicated as usual by X/G, has a commutative
ring E(X/G).

2 Notation

Since this paper continues the work of [10], we employ here the notation and
terminology introduced there.

In addition, L0 will denote the subclass of L consisting of those groups which
have a compact open subgroup, and ∔ will stand for the algebraic direct sum.

For any p ∈ P and X ∈ L, we let tp(X) denote the p-primary component of X,
and

S0(X) = {q ∈ P | tq(X) 6= {0}}.

Given a family (Ai)i∈I of subgroups of X,
∑

i∈I Ai will designate the minimal
subgroup of X containing

⋃
i∈I Ai.

If M is a set, |M | will stand for the cardinality of M.

We shall also use the groups of integers, Z, and of rationals, Q, both taken
discrete, and the groups of reals, R, and of reals modulo one, T, both taken with
their usual topologies.

3 Polythetic subgroups

In this section we characterize completly the groups X ∈ L such that every closed
polythetic subgroup G of X has a commutative ring E(G). By use of duality, we
obtain also the characterization of those groups X ∈ L which have the property that
for every closed subgroup G of X such that X/G is copolythetic, the ring E(X/G)
is commutative.

We start with some preparatory lemmas.

Lemma 3.1. Let X ∈ L. For any a, b ∈ X such that a ∈ k(X) and 〈a〉 ∩ 〈b〉 = {0},
we have 〈a, b〉 ∼= 〈a〉 × 〈b〉.

Proof. Since 〈a〉 is compact, 〈a〉 + 〈b〉 is closed in X [6, (4.4)]. It is then easy to
see that 〈a, b〉 = 〈a〉 + 〈b〉, so that 〈a, b〉 = 〈a〉 ∔ 〈b〉, and hence 〈a, b〉 = 〈a〉 ⊕ 〈b〉
by [1, Proposition 6.5]. 2

Lemma 3.2. Any group X ∈ L with {0} 6= k(X) 6= X has a closed polythetic

subgroup G such that E(G) is not commutative.

Proof. Pick any a ∈ k(G) and b ∈ X \ k(G). Since 〈b〉 ∼= Z [6, (9.1)], we have
〈a〉 ∩ 〈b〉 = {0}, so that 〈a, b〉 = 〈a〉 × 〈b〉 by Lemma 3.1. We can take G = 〈a, b〉. 2
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Lemma 3.3. Let X ∈ L and S = {p ∈ P | Xp 6= {0}}. If every closed polythetic

subgroup of X has a commutative ring of continuous endomorphisms, then, for each

p ∈ S, either Xp is torsion and X[p] is isomorphic to Z(p) or Xp is torsionfree and

every its compact subgroup is topologically isomorphic to Zp.

Proof. Fix any p ∈ S. If Xp were mixed, we could find two elements a, b ∈ Xp such

that 1 < o(a) < ∞ and o(b) = ∞, i.e. such that 〈a〉 ∼= Z(pn) for some n ∈ N0 and
〈b〉 ∼= Zp [1, Lemma 2.11]. It would then follow from Lemma 3.1 that

〈a, b〉 ∼= Z(pn) × Zp,

which would contradict the hypothesis because Z(pn) × Zp is polythetic and
E(Z(pn) × Zp) is not commutative. Consequently, Xp must be either torsion or
torsionfree. In the former case, we conclude from [4, Ch. 2, §4, Théorème 2] that

X[p] ∼= Z(p)(α) × Z(p)β

for some cardinal numbers α, β with α + β ≥ 1. But, in view of the hypothesis,
X can contain no copy of Z(p) × Z(p). Therefore we must have α + β = 1, and
so X[p] ∼= Z(p). In the second case, let G be a nonzero compact subgroup of Xp.
Then G ∼= Z

γ
p for some nonzero cardinal number γ [6, (24.25)]. Since our hypothesis

ensures that X contains no copy of Zp × Zp, we must have γ = 1, so G ∼= Zp. 2

We now can dispose of the important case of topological primary groups in L.

Theorem 3.4. Let p ∈ P. For a topological p-primary group X ∈ L, the following

statements are equivalent:

(i) Every closed polythetic subgroup of X has a commutative ring of continuous

endomorphisms.

(ii) X is topologically isomorphic with one of the groups Qp, Zp, Z(p∞) or Z(pn)
for some n ∈ N.

Proof. Assume X is nonzero and satisfies condition (i). By Lemma 3.3, we know
that either X is torsion and X[p] is isomorphic to Z(p) or X is torsionfree and every
its compact subgroup is topologically isomorphic to Zp.

If the former case occurs, we claim that X is isomorphic with either Z(p∞)
or Z(pn) for some n ∈ N. To see this, it will be enough, in view of L.C.A. van
Leeuwen’s result mentioned in the introduction, to show that X is discrete. Pick
a compact open subgroup V of X. By the structure theorem for torsion compact
abelian groups [6, (25.9)], V is topologically isomorphic to a group of the form∏

i∈I Z(pni), where the set {ni | i ∈ I} is finite. As

V [p] ⊂ X[p] ∼= Z(p),

it follows that I cannot contain more than one element, so V is finite, and hense X
is discrete. This establishes the claim.
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In the latter case, fix a compact open subgroup W of X and a topological group
isomorphism f from W onto Zp. Also let η denote the canonical injection of Zp into
Qp. Since Qp is divisible and W is open in X, η ◦ f extends to a continuous open
homomorphism h from X into Qp [6, (A.7)]. Pick any x ∈ ker(h). Since X is a
topological p-primary group, pmx ∈ W for sufficiently large m ∈ N. We then have

pmx ∈ ker(f) = {0},

so x = 0 because X is torsionfree. It follows that h induces a topological isomorphism
of X onto an open subgroup of Qp, and hence X is topologically isomorphic with
either Qp or Zp. This proves that (i) implies (ii).

The converse implication is clear in view of [7] and the fact that every nontrivial
closed subgroup in the groups Zp and Qp is topologically isomorphic with Zp. 2

As a consequence, we obtain the solution to the considered problem in the case
of topological torsion groups in L.

Corollary 3.5. For a topological torsion group X ∈ L, the following statements are

equivalent:

(i) Every closed polythetic subgroup of X has a commutative ring of continuous

endomorphisms.

(ii) For each p ∈ S(X), Xp is topologically isomorphic with one of the groups Qp,
Zp, Z(p∞) or Z(pnp) for some np ∈ N.

Proof. Assume (i). Since X ∈ L is a topological torsion group, we have

X ∼=
∏

p∈S(X)

(Xp;Up),

where, for each p ∈ S(X), Xp is the topological p-primary component of X and Up

is a compact open subgroup of Xp [1, Theorem 3.13]. Pick any s ∈ S(X), and let G
be a closed polythetic subgroup of Xs. Further, letting

ηs : Xs →
∏

p∈S(X)

(Xp;Up)

denote the canonical injection, put G′ = ηs(G). Then G′ is a closed polythetic
subgroup of

∏
p∈S(X)(Xp;Up), so that E(G′) must be commutative. Since E(G) ∼=

E(G′), E(G) is commutative as well. It follows that every closed polythetic subgroup
of Xs has a commutative ring of continuous endomorphisms, so that, by Theorem
3.4, Xs is topologically isomorphic to one of the groups Qs, Zs, Z(s∞) or Z(sns) for
some ns ∈ N.

Assume (ii), and let G be a closed polythetic subgroup of X. Since k(G) = G,
G is compact [1, (5.40)(c)]. It follows that for each p ∈ S(G), Gp is a compact
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subgroup of Xp, so that Gp is topologically isomorphic with either Zp or Z(pnp) for
some np ∈ N. Since, by [10, Lemma 3.4],

E(G) ∼=
∏

p∈S(G)

E(Gp),

we conclude that E(G) is commutative. 2

The next lemma shows that the case of groups in L consisting entirely of compact
elements and having a nonzero connected component reduces to the case of compact
and connected groups.

Lemma 3.6. Let X be a group in L such that c(X) 6= {0} and k(X) = X. If

every closed polythetic subgroup of X has a commutative ring of continuous endo-

morphisms, then X is compact and connected.

Proof. We shall show first that Xp ⊂ c(X) for all p ∈ P. For this purpose, fix
any p ∈ P and let Cp denote the topological p-primary component of c(X). As is
well known, Cp is dense in c(X) [1, Corollary 4.18(a)], so that Cp and hence Xp is
nonzero. In view of Lemma 3.3, we distinguish two cases.

Case (a): Xp is torsion and X[p] is isomorphic to Z(p). Then X[p] has no non-
trivial subgroups, so that

X[p] = Cp[p] ⊂ c(X).

To apply induction, assume X[pk] ⊂ c(X) for some k ∈ N0, and choose any
a ∈ X[pk+1]. Since pa ∈ X[pk] ⊂ c(X) and since c(X) is divisible, there exists
c ∈ c(X) such that pa = pc, and so

b = a − c ∈ X[p] ⊂ c(X),

whence a = b + c ∈ c(X). As a ∈ X[pk+1] was arbitrarily chosen, X[pk+1] ⊂ c(X).
Consequently, X[pi] ⊂ c(X) for all i ∈ N0, and hence

Xp =
⋃

i∈N0

X[pi] ⊂ c(X).

Case (b): Xp is torsionfree and every its nonzero compact subgroup is topo-
logically isomorphic to Zp. Pick an arbitrary nonzero x ∈ Xp. We assert that

〈x〉 ∩ c(X) 6= {0}. For if not, then choosing any nonzero x′ ∈ Cp we would cer-

tainly have 〈x〉 ∩ 〈x′〉 = {0}. By Lemma 3.1, this would imply that

〈x, x′〉 ∼= 〈x〉 × 〈x′〉,

which contradicts the hypothesis because 〈x〉 ∼= Zp
∼= 〈x′〉. Consequently, we must

have 〈x〉 ∩ c(X) 6= {0}, and hence

〈x〉 ∩ c(X) = pm〈x〉
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for some m ∈ N. In particular pmx ∈ c(X), and so pmx = pmz for some z ∈ c(X),
because of the divisibility of c(X). Then x − z ∈ t(Xp) = {0}, and hence x = z ∈
c(X). Since x ∈ Xp was arbitrary, we have Xp ⊂ c(X). Thus either case leads us to
the conclusion that Xp ⊂ c(X).

We now are ready to show that X is compact and connected. Let

V = {V | V is a compact open subgroup of X}.

Since k(X) = X, it is clear that X =
⋃

V ∈V
V. We will be done if we show that every

V ∈ V coincides with c(X). To this end, pick an arbitrary V ∈ V and let r0 denote
the torsionfree rank of the discrete group V ∗. We have r0 6= 0, since otherwise it
would follow that V ∗ is torsion, and so V would be totally desconnected [6, (24.26)],
which is however impossible because c(X) ⊂ V. By [5, §16] or [9, §3], there exists an
injective homomorphism f : Z(r0) → V ∗ such that V ∗/ im(f) is torsion. The adjoint
mapping f∗ is then a continuous open homomorphism from V onto Tr0 [6, (24.40)].
Letting K = ker(f∗), it follows that V/K ∼= Tr0 [3, Ch. 3, §2, Proposition 24], and
hence V/K is connected. Also, since

K = A(V, im(f)) ∼= (V ∗/ im(f))∗

[6, (24.38) and (23.25)] and V ∗/ im(f) is torsion, K is totally disconnected
[6, (24.26)]. It follows that K ∼=

∏
p∈S(K) Kp [1, Proposition 3.10], and thus

K =
∑

p∈S(K)

Kp

[6, (6.2)], whence K ⊂ c(X) because by the above every Kp is contained in c(X).
Taking account of [6, (5.34)], we then have

V/c(X) ∼= (V/K)/(c(X)/K),

so that V/c(X) must be connected. Since V/c(X) is certainly totally disconnected
[6, (7.3)], this can occur only when V = c(X), and the proof is complete. 2

We now consider the case of compact and connected groups in L.

Theorem 3.7. Let X ∈ L be compact and connected. The following statements are

equivalent:

(i) Every closed polythetic subgroup of X has a commutative ring of continuous

endomorphisms.

(ii) X is topologically isomorphic to a quotient of Q∗ by a closed subgroup.

Proof. Assume X is nonzero and satisfies (i). If t(X) = {0}, then X ∼= (Q∗)α

for some cardinal number α ≥ 1 [6, (25.8)]. We must have α = 1, since otherwise
X would contain a copy of Q∗ × Q∗, which is a contradiction because Q∗ × Q∗ is
polythetic [1, (5.40)(b)] but E(Q∗ × Q∗) is not commutative.
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Now suppose t(X) 6= {0}, and pick any p ∈ P with tp(X) 6= {0}. We know from
Lemma 3.3 that Xp = tp(X) and X[p] ∼= Z(p). Since Xp is dense in X [1, Corollary

4.18(a)], it follows that X = tp(X). Also, since X is divisible [6, (24.25)], tp(X)
is divisible too, so that tp(X) is algebraically isomorphic to Z(p∞) [9, Lemma, p.
33]. To see that X is topologically isomorphic to a quotient of Q∗ by a closed
subgroup, it will be enough in view of [6, (24.11)] and Pontryagin duality theorem
to show that X∗ is isomorphic to a subgroup of Q, i. e. that X∗ is of rank 1. Pick
any nonzero γ ∈ X∗. Since o(γ) = ∞, we will be done if we show that X∗/〈γ〉 is
torsion [9, Proposizione 1, p. 23]. But

(X∗/〈γ〉)∗ ∼= A(X, 〈γ〉)

[6, (23.25)], so that in order to show that X is topologically isomorphic to a quotient
of Q∗ by a closed subgroup, it will suffice to show that A(X, 〈γ〉) is totally discon-
nected [6, (24.26)]. Assume not, and let C = c(A(X, 〈γ〉)). By [1, Corollary 4.18(a)],
Cp is then a nonzero subgroup of Xp = tp(X), so that Cp = tp(C), and hence Cp is
divisible. As tp(X) is algebraically isomorphic to Z(p∞), we must have Cp = tp(X),
and so

X = tp(X) = Cp = c(A(X, 〈γ〉)),

whence X = A(X, 〈γ〉), which contradicts our assumption that γ 6= 0. Consequently,
X must be topologically isomorphic to a quotient of Q∗ by a closed subgroup.

For the converse, assume (ii). It follows from [6, (24.11)] that X∗ is topologi-
cally isomorphic to a subgroup of Q. Let G be a closed polythetic subgroup of X.
Since G∗ ∼= X∗/A(X∗, G) and since every quotient of Q by a nonzero subgroup is
isomorphic to a divisible subgroup of Q/Z, we conclude that G∗ is isomorphic either
to a subgroup of Q or to a subgroup of Q/Z. By the result of [7] mentioned in the
introduction, it follows that in either case E(G∗) is commutative, so that in view
of [10, Lemma 3.1] E(G) is commutative as well. The proof is complete. 2

We are now ready to prove the main theorem of this section, which describes the
groups X ∈ L such that every closed polythetic subgroup G of X has a commutative
ring E(G).

Theorem 3.8. For a group X ∈ L, the following statements are equivalent:

(i) Every closed polythetic subgroup of X has a commutative ring of continuous

endomorphisms.

(ii) X is topologically isomorphic to one of the groups:

(1) R, (2) a subgroup of Q, (3) a quotient of Q∗ by a closed subgroup,

(4)
∏

p∈S(X)(Xp;Up), where, for each p ∈ S(X), Xp is topologically isomorphic

to either Qp, Zp, Z(p∞), or Z(pnp) for some np ∈ N, and Up is a compact open

subgroup of Xp.

Proof. Assume (i). If X /∈ L0, we can write X = V ⊕ Y, where V, Y are closed
subgroups of X such that V ∼= Rd for some d ∈ N0 and Y ∈ L0 [6, (24.30)]. Since V
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is of course polythetic [1, (5.40)(e)], E(V ) must be commutative, so that we must
have d = 1. Also, since X 6= k(X), we deduce from Lemma 3.2 that k(X) = {0}, so
Y is discrete and V is open in X. If Y were not the zero group, it would follow that,
for every nonzero a ∈ Y, V +〈a〉 is an open and hence closed subgroup of X satisfying
V + 〈a〉 ∼= R × Z. This is a contradiction because R × Z is polythetic [1, (5.40)(f)]
and E(R × Z) is not commutative. Consequently, in this case X ∼= R.

Now let X ∈ L0. In view of Lemma 3.2, we must have either k(X) = {0} or
k(X) = X. If the former case occurs, X is discrete and torsionfree, and hence it is
isomorphic to a subgroup of Q, by the result of [7] mentioned in the introduction.
Assume the latter. If c(X) = {0}, it follows from Corollary 3.5 that

X ∼=
∏

p∈S(X)

(Xp;Up),

where, for each p ∈ S(X), Xp is topologically isomorphic to one of the groups
Qp, Zp, Z(p∞) or Z(pnp) for some np ∈ N, and Up is a compact open subgroup of
Xp. Finally, if c(X) 6= {0}, we conclude from Lemma 3.6 that X is compact and
connected, and hence X is topologically isomorphic to a quotient of Q∗ by a closed
subgroup, according to Theorem 3.7.

The converse is clear. 2

Dualizing the preceding theorem, we obtain the description of groups in L all of
whose copolythetic quotients by closed subgroups have commutative rings of conti-
nuous endomorphisms.

Corollary 3.9. For a group X ∈ L, the following statements are equivalent:

(i) Every copolythetic quotient of X by a closed subgroup has a commutative ring

of continuous endomorphisms.

(ii) X is topologically isomorphic to one of the groups:

(1) R, (2) a subgroup of Q, (3) a quotient of Q∗ by a closed subgroup,

(4)
∏

p∈S(X)(Xp;Up), where, for each p ∈ S(X), Xp is topologically isomorphic

to either Qp, Zp, Z(p∞), or Z(pnp) for some np ∈ N, and Up is a compact open

subgroup of Xp.

4 Copolythetic subgroups

In the present section, we characterize the groups X ∈ L such that every closed
copolythetic subgroup G of X has a commutative ring E(G). By utilizing duality,
we also get the description of those groups X ∈ L which have the property that
for each closed subgroup G of X such that X/G is polythetic, the ring E(X/G) is
commutative.

We will obtain these results as a consequence of a number of lemmas. The
first two of these establish, for certain particular types of groups, some necessary
conditions.
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Lemma 4.1. Let X be a group in L such that every its closed copolythetic subgroup

has a commutative ring of continuous endomorphisms. If X = A ⊕ Y, where A is

topologically isomorphic with either R or T, then Y is torsionfree.

Proof. If t(Y ) were nonzero, it would contain a copy of Z(p) for some p ∈ P. Since
A is topologically isomorphic with either R or T, it would then follow from Lemma
3.1 that X contains a copy of either Z × Z(p) or Z(p) × Z(p), a contradiction. 2

Lemma 4.2. Let X be a group in L with t(X) 6= {0}. If every closed copolythetic

subgroup of X has a commutative ring of continuous endomorphisms, then k(X) =
X and X[p] ∼= Z(p) for all p ∈ S0(X).

Proof. Pick any p ∈ S0(X). By [4, Ch. 2, §4, Théorème 2], we have

X[p] ∼= Z(p)(α) × Z(p)β

for some cardinal numbers α, β with α + β ≥ 1. Since X cannot contain copies
of Z(p) × Z(p), we must have α + β = 1, and so X[p] ∼= Z(p). If there existed
x ∈ X \ k(X), it would then follow from Lemma 3.1 that X contains a copy of
Z × Z(p), contradicting the hypothesis. 2

We continue with two simple lemmas that will be usefull in the sequel.

Lemma 4.3. If G ∈ L0 is copolythetic and contains no copy of T, then G is discrete.

Proof. By the definition of copolythetic groups, there exists for some n ∈ N0 an
injective h ∈ H(G, Tn). Let K be a compact open subgroup of G. Then h(K) is
closed in Tn, and hence h(K) is topologically isomorphic to a group of the form
Tm × F, where m is an integer satisfying 0 ≤ m ≤ n and F is a direct sum of at
most n−m finite cyclic groups [3, Ch. VII, §1, Proposition 11]. Since h is injective,
its restriction to K establishes a topological isomorphism of K onto h(K) [2, Ch. I,
§9, Théorème 2, Corollaire 2], and so

K ∼= Tm × F.

As G does not contain copies of T, we must have m = 0, so that K is finite, and
hence G is discrete. 2

Lemma 4.4. Let K be a closed subgroup of an abelian topological group Y such that

K = A ⊕ B for some subgroups A,B of K. For any closed subset C of A, C + B is

closed in Y.

Proof. Let ϕ denote the canonical projection of K onto A. We have C+B = ϕ−1(C),
so that C + B is closed in K and hence in Y. 2

The following two lemmas establish, for certain particular types of groups, some
sufficient conditions.

Lemma 4.5. If X is a torsionfree group in L all of whose nonzero discrete subgroups

are of rank one, then every closed copolythetic subgroup of X has a commutative ring

of continuous endomorphisms.
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Proof. Let G be a nonzero closed copolythetic subgroup of X. If G /∈ L0, we can
write G = A ⊕ B, where A ∼= Rd for some d ∈ N0 and B ∈ L0. We must have
d = 1, since otherwise G would contain discrete subgroups of rank greater than one.
Further, being torsionfree, X contains no copy of T. As B is clearly copolythetic, it
then follows from Lemma 4.3 that B is discrete, so that either B = {0} or B is of
rank one. But the latter is impossible. To see this, assume the contrary and pick
any nonzero a ∈ A. Since 〈a〉 is closed in A, it follows from Lemma 4.4 that 〈a〉+ B
is closed in X. As 〈a〉 + B is countable, we deduce from [8, Corollary, p. 23] that
〈a〉+B is discrete, a contradiction because 〈a〉+B is, in our case, of rank two. Thus
B = {0}, and hence E(G) is commutative.

In case G ∈ L0, it follows again from Lemma 4.3 that G is discrete, and hence
of rank one, so that E(G) is commutative.

Lemma 4.6. If X = A × Y, where A ∼= T and Y is a torsionfree group in L with

k(Y ) = Y, then every closed copolythetic subgroup of X has a commutative ring of

continuous endomorphisms.

Proof. Since T is compact, it is clear that X = k(X). We also have

X[p] ∼= A[p] × Y [p] ∼= T[p] ∼= Z(p)

for all p ∈ P. It follows in particular that X cannot contain copies of T×T. Indeed,
if there existed a closed subgroup K of X satisfying K ∼= T × T, then, picking any
p ∈ P, we would have

K[p] ∼= T[p] × T[p] ∼= Z(p) × Z(p),

contardicting the fact that X[p] ∼= Z(p).
Now, fix an arbitrary nonzero closed copolythetic subgroup G of X. If G contains

no copy of T, it follows from Lemma 4.3 that G is discrete, so G = k(G) = t(G).
Since

t(X) ∼= t(A) × t(Y ) ∼= t(T),

we conclude that G is isomorphic to a subgroup of Q/Z, and so E(G) is commutative
by [11, Theorem 1].

Suppose next that G contains closed subgroups topologically isomorphic to T.
Since for any cardinal number ν the group Tν is splitting in L [6, (25.31)(b)], we
can write G = B ⊕ C for some closed subgroups B,C of X with C ∼= T. Now, B
must be torsionfree since otherwise X would contain a copy of Z(p)×Z(p) for some
p ∈ P, in contradiction with the fact that X[p] ∼= Z(p). Moreover, since X cannot
contain copies of T × T, B contains no copy of T. As B is clearly copolythetic, it
follows from Lemma 4.3 that B is discrete. Therefore

B = k(B) = t(B) = {0},

so G ∼= T, and hence E(G) is commutative. 2

We now combine the above results to obtain the desired description of groups
in L all of whose copolythetic subgroups have a commutative ring of continuous
endomorphisms.
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Theorem 4.7. For a group X ∈ L, the following statements are equivalent:

(i) Every closed copolythetic subgroup of X has a commutative ring of continuous

endomorphisms.

(ii) X satisfies one of the following three conditions:

(1) X is torsionfree and every its nonzero discrete subgroup is of rank one.

(2) X ∼= T × Y, where Y is a torsionfree group in L with k(Y ) = Y.

(3) X contains no copy of T, k(X) = X, t(X) 6= {0}, and X[p] ∼= Z(p) for

all p ∈ S0(X).

Proof. Assume (i). We consider first the case when X is torsionfree. Pick an
arbitrary nonzero discrete subgroup G of X, and let M be a maximal free subset of
G. Then

〈M〉 ∼=
⊕

x∈M

〈x〉

[9, Proposizione 1, p. 23]. Note also that every subgroup of G, being discrete, is
closed in X [6, (5.10)]. If G were not of rank one, we would have |M | > 1, so that
X would contain a copy of Z × Z, contradicting the hypothesis. Thus G must be of
rank one. As G was chosen arbitrarily among the nonzero discrete subgroups of X,
we conclude that in this case X satisfies (1).

Next suppose that t(X) 6= {0}. It follows from Lemma 4.2 that k(X) = X and
X[p] ∼= Z(p) for all p ∈ S0(X). Therefore, if X contains no copy of T, we are led
to (3). If, on the other hand, X contains a closed subgroup A ∼= T, we can write
X = A ⊕ Y for some closed subgroup Y of X. Then, for each p ∈ S0(X), we have

X[p] ∼= A[p] ⊕ Y [p] and A[p] ∼= T[p] ∼= Z(p),

so that, in view of the above mentioned fact that X[p] is simple, Y [p] = {0}. It
follows that t(Y ) = {0}, and hence X satisfies (2).

Now assume (ii). If X satisfies (1), then Lemma 4.5 shows that (i) holds. In case
X satisfies (2), the validity of (i) follows from Lemma 4.6. Finally, suppose that
X satisfies (3), and let G be a closed copolythetic subgroup of X. It follows from
Lemma 4.3 that G is discrete, so G = k(G) = t(G), and hence

G ∼=
⊕

p∈S0(G)

Gp.

Since, clearly, Gp[p] = X[p] ∼= Z(p) for all p ∈ S0(G), we conclude that G is
isomorphic to a subgroup of

⊕
p∈S0(G) Z(p∞), so that E(G) is commutative by

[11, Theorem 1]. 2

By use of duality, we obtain the description of groups in L all of whose polythetic
quotients by closed subgroups have commutative rings of continuous endomorphisms.
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Corollary 4.8. For a group X ∈ L, the following statements are equivalent:

(i) Every polythetic quotient of X by a closed subgroup has a commutative ring of

continuous endomorphisms.

(ii) X satisfies one of the following three conditions:

(1) X is densely divisible and every its compact quotient by a proper closed

subgroup is of dimension one.

(2) X ∼= Z× Y, where Y is a densely divisible and totally disconnected group

in L.

(3) X is a totally disconnected group with no quotients by closed subgroups

topologically isomorphic to Z,
⋂

p∈P
pX 6= X, and X/pX ∼= Z(p) for all

p ∈ P such that pX 6= X.
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