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Linear convolution of criteria in the vector p-center

problem ∗

Vladimir A. Emelichev, Evgeny E. Gurevsky

Abstract. We investigate a linear convolution of criteria and possibility of its ap-
plication for finding Pareto set in the vector variant of the well-known combinatorial
p-center problem. The polynomial algorithm which transforms any vector p-center
problem to a solvable problem with the same Pareto set is proposed. An example
which illustrates the work of algorithm is performed.
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1 Introduction

Wide and important class of the best choice problems is the vector (multicriteria)
problems in which the quality of decision making is estimated by several criteria at
once. One of the main method of vector optimization is scalaring. Scalaring is
a process of transforming vector problem of finding best alternatives to a scalar
problem with aggregated (generalized) criterion which is a convolution of criteria.
Such convolution of criteria usually depends on parameters. The central concept in
vector optimization is a Pareto principle of optimality. And an important method of
finding Pareto-optimal solutions (efficient alternatives) is based on linear convolution
of criteria. But this approach cannot always guarantees to find the whole Pareto set.
In these cases we say that the vector problem is unsolvable by ALC. Many classes of
the vector problems which are solvable by ALC were found by Koopmans, Karlin,
Geoffrion, Kuhn, Tucker, Saaty and others. The history review of this question was
presented in [1] (see also [2]).

We investigate the possibility of application of ALC to finding all Pareto set in
vector variant of the well-known combinatorial p-center problem, i. e. the problem
of best locating p facilities (see, for example, [3–5]). In this paper it is shown that
there exist (see, theorem 1) vector p-center problems which are unsolvable by ALC.
Analogous results for various kinds of vector discrete optimization problems (sales-
man problem, optimal spanning tree, perfect matching and others) were obtained
earlier in [6–11].

Using the well-known sufficient condition of solvability [12] we build an algorithm,
which transforms any vector p-center problem to an equivalent solvable problem.
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Earlier in the works [12–15] similar algorithms were built for the vector trajectory
problems with another kinds of partial criteria.

2 Basic definitions and notations

We consider the vector (s-criteria) variant of the p-center problem. Let us use
the following definitions:

Nm = {1, 2, . . . ,m} is the set of possible locating points of facilities (equipment,
warehouses, providers etc.),

Nn is the set of clients,

Dk = [dk
ij ] ∈ Rm×n is a matrix of costs connected with delivery of product from

point i ∈ Nm to point j ∈ Nn by criterion k ∈ Ns.

The vector D = (D1,D2, . . . ,Ds), composed from matrices of costs, is called a
system of costs.

Let 1 ≤ p ≤ m− 1 and T be some system of nonempty subsets (p-centers) of the
set Nm such that

|t| = p, ∀t ∈ T.

As usual (see, for example, [10–14]), all the elements of set T are called trajectories.

We define the vector function on T :

f(t,D) = (f1(t,D1), f2(t,D2), . . . , fs(t,Ds)),

where

fk(t,Dk) = max
j∈Nn

min
i∈t

dk
ij → min

t∈T
, k ∈ Ns.

The s-criteria (vector) m×n-dimensional p-center problem is understood as the
problem of finding Pareto set (the set of efficient trajectories)

P s(T,D) = {t ∈ T : ∀ t′ ∈ T (t ≻
D

t′)},

where ≻
D

is the negation of binary relation ≻
D

, which specifies the Pareto principle of

optimality:

t ≻
D

t′ ⇔ f(t,D) ≥ f(t′,D) & f(t,D) 6= f(t′,D).

This problem is denoted by Zs
m×n(T,D). Scalar (single-criterion) problem Z1

m×n(T,
D), D ∈ Rm×n, can be interpreted as an extremal problem on graphs or on networks.
It consists in locating p facilities and assigning clients to them in order to minimize
the maximum distance between a client and the facility to which it is assigned. If
we want to optimize the location of p facilities by several criteria then it leads us to
the above multicriteria variant of the p-center problem.

Following [7–9], the problem Zs
m×n(T,D), s ≥ 2, is called solvable by ALC if

P s(T,D) = Ξs(T,D),
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where
Ξs(T,D) =

⋃

λ∈Λs

T (λ),

Λs = {λ = (λ1, λ2, . . . , λs) :

s
∑

k=1

λk = 1, λk > 0, k ∈ Ns},

T (λ) = Argmin{〈λ, f(t,D)〉 : t ∈ T}

and 〈λ, f(t,D)〉 =
s

∑

k=1

λkfk(t,Dk) is a linear convolution of criteria fk(t,Dk), k ∈ Ns.

Thus, the problem Zs
m×n(T,D) is solvable if for any efficient trajectory t∗ ∈

P s(T,D) there exists a vector λ∗ ∈ Λs such that

〈λ∗, f(t∗,D)〉 = min{〈λ∗, f(t,D)〉 : t ∈ T},

i. e. any trajectory t∗ ∈ P s(T,D) can be found as a solution of a scalar minimiza-
tion problem with function which is a linear convolution of partial criteria with an
appropriate vector λ∗ ∈ Λs.

Otherwise, if there exists a trajectory t∗ ∈ P s(T,D) such that for any vector
λ ∈ Λs the inequality

〈λ, f(t∗,D)〉 > min{〈λ, f(t,D)〉 : t ∈ T}

holds, then the problem Zs
m×n(T,D) is called unsolvable by ALC. It is evident, that

in this case we have
Ξs(T,D) ⊂ P s(T,D).

3 Insolubility

The set of trajectories T is called primitive if the following two conditions hold:
1) there exist three pairwise different trajectories t1, t2 and t3 such that

i ∈ ti \ t0, i = 1, 2, 3,

where
t0 =

⋃

1≤r1<r2≤3

(tr1 ∩ tr2),

2) for any trajectory t ∈ T \ {t1, t2, t3} the equality

t ∩ N3 = ∅

holds.
Thus, in the case, where the set T is primitive, the number of possible locating
points of facilities m ≥ 4.

Theorem 1. For any primitive set of trajectories T there exists a system of costs
D such that the p-center problem Zs

m×n(T,D), p ≥ 1, s ≥ 2, m ≥ 4, n ≥ 1, is
unsolvable by ALC.
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Proof. First we consider the case where s = 2. Let t1, t2, t3 be the three trajectories
of set T described above. Let the matrices Dk = [dk

ij ] ∈ Rm×n, k = 1, 2, have the
following form

D1 =

















0 0 . . . 0
a a . . . a
b b . . . b
c c . . . c

. . . . . . . . . . . .
c c . . . c

















, D2 =

















a a . . . a
0 0 . . . 0
b b . . . b
c c . . . c

. . . . . . . . . . . .
c c . . . c

















,

where c > a > b > a/2 > 0.

Then, taking into account the primitivity of set T , we obtain the vector evalua-
tions of trajectories of T :

f(t1,D) = (0, a),

f(t2,D) = (a, 0),

f(t3,D) = (b, b),

f(t,D) = (c, c) ∀ t ∈ T \ {t1, t2, t3}.

Therefore we have P 2(T,D) = {t1, t2, t3} and for any vector λ ∈ Λ2 the following
relations hold

〈λ, f(t3,D)〉 = b > a/2 ≥ min{〈λ, f(ti,D)〉 : i = 1, 2} ≥ min{〈λ, f(t,D)〉 : t ∈ T}.
(1)

It follows that the theorem is valid in the case s = 2.

Finally, the theorem (s > 2) can be proved if the matrices D1 and D2 are the
same as before, and

Dk = D2, k ∈ 3, 4, . . . , s.

As a result we obtain the following vector evaluations of trajectories:

f(t1,D) = (0, a, a, . . . , a) ∈ Rs,

f(t2,D) = (a, 0, 0, . . . , 0) ∈ Rs,

f(t3,D) = (b, b, b, . . . , b) ∈ Rs,

f(t,D) = (c, c, . . . , c) ∈ Rs ∀ t ∈ T \ {t1, t2, t3}.

Therefore we have P s(T,D) = {t1, t2, t3} and any vector λ ∈ Λs satisfies relations
(1).

Theorem 1 has been proved.
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4 Algorithm

Each of five stages of algorithm Ψ, which builds a transformed system of costs
D̃ consists of s steps (s ≥ 2).

Stage 1. Step k ∈ Ns. For any number j ∈ Nn we sort all the elements
dk

ij , i ∈ Nm, of j-th column of matrix Dk:

dk
i1j ≥ dk

i2j ≥ . . . ≥ dk
imj.

Stage 2. Step k ∈ Ns. We delete all the elements of the following sequence
from matrix Dk

dk
i1j , dk

i2j , . . . , dk
iqj, j ∈ Nn, (2)

where q = p − 1.

Stage 3. Step k ∈ Ns. We sort the rest of elements of matrix Dk in ascending
order:

bk
1 ≤ bk

2 ≤ . . . ≤ bk
u, (3)

where u = n(m − p + 1). Of course, all the elements stay on the same places in
matrix Dk.

Stage 4. Step k ∈ Ns. We transform the elements of (3) by the following
recurring formula

b̃k
r =











bk
r , if r = 1, 2,

b̃k
r−1

, if ∆k(r, r − 1) = 0, r = 3, 4, . . . , u,

bk
r + s(b̃k

r−1 − b̃k
1) + b̃k

1 , if ∆k(r, r − 1) > 0, r = 3, 4, . . . , u,

(4)

where ∆k(v,w) = bk
v − bk

w. As a result we obtain b̃k
1
, b̃k

2
, . . . , b̃k

u.

Stage 5. Step k ∈ Ns. Instead of elements of sequence (2), deleted on the step
2, we write the number b̃k

u + 1, i. e. for any j ∈ Nn we set

d̃k
i1j = d̃k

i2j = . . . = d̃k
iqj = b̃k

u + 1.

As a result of the work of the algorithm Ψ the system of costs D is replaced by
D̃ = (D̃1, D̃2, . . . , D̃s), where D̃k = [d̃k

ij ]m×n.

Remark 1. It is easy to see that for any number k ∈ Ns and for any trajectory t,
the inequality fk(t, D̃k) < b̃k

u + 1 holds.

5 Substantiation of algorithm

First we prove that the obtained vector problem Zs
m×n(T, D̃) is solvable by ALC.

To prove this we use the known sufficient condition of solvability for the vector dis-
crete problems [12] and formulate it in the form convenient for us. Let us introduce
a new definition.
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For any natural numbers s ≥ 2 and h ≥ 1 the set composed of h pairwise different
numbers is called (s, h)-regular if after sorting these numbers in ascending order

a1 < a2 < . . . < ah

under h ≥ 3 the inequalities

s · δ(r + 1, 1) ≤ δ(r + 2, 1), r ∈ Nh−2

hold, where δ(u, v) = au − av.

Remark 2. It is evident that for any s ≥ 2 the set composed of one or two different
numbers is (s, 1)- or (s, 2)-regular, respectively.

In these terms for any s-criteria discrete problem Zs

fk(t) → min
t∈T

, k ∈ Ns,

where s ≥ 2, fk(t) ∈ R, |T | < ∞, the following known sufficient condition of
solvability is valid.

Theorem 2. ([12]) If for any number k ∈ Ns the set, composed of h(k) differ-
ent values of k-th partial criterion fk(t) on the set T , is (s, h(k))-regular, then the
problem Zs is solvable by ALC.

It is easy to see that for any number k ∈ Ns the set of h(k) different numbers of
sequence

b̃k
1 , b̃k

2 , . . . , b̃k
u,

obtained as a result of the Stage 4 of algorithm Ψ, is (s, h(k))-regular. Hence, taking
into account Remark 1, we conclude that the set of h′(k) (h′(k) ≤ h(k)) different
values of the k-th criterion fk(t, D̃k) on the set T is (s, h′(k))-regular, and therefore
in view of Theorem 2 the problem Zs

m×n(T, D̃) is solvable by ALC.
Taking into account algorithm Ψ, we conclude that for any two trajectories t

and t′ the following formula
t ≻

D
t′ ⇔ t ≻

eD

t′,

holds, which implies that the vector problems Zs
m×n(T,D) and Zs

m×n(T, D̃) are

equivalent, i. e. the equality P s(T,D) = P s(T, D̃) is valid.
It is easy to see that the complexity of Stages 1 and 2 of algorithm Ψ is

O(snm log2 m). Since the Stage 3 is a multi-way merging of ordered numerical
sequences then the complexity of Stage 3 is O(sn(m − p + 1) log2 n) (see, for exam-
ple [16]). The complexity of Stages 4 and 5 of algorithm Ψ are O(sn(m − p + 1))
and O(sn(p − 1)) respectively.

Summarizing the said above, we conclude that the following theorem holds.

Theorem 3. The algorithm Ψ transforms any vector p-center problem Zs
m×n(T,

D), s ≥ 2, to the equivalent p-center problem Zs
m×n(T, D̃), which is solvable by ALC,

moreover the complexity of algorithm Ψ is O(sn(m log2 m + (m − p + 1) log2 n)).
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In view of Remark 2 Theorem 3 implies

Corollary 4. The problem Zs
m×n(T,D) is solvable by ALC if for any k ∈ Ns the

inequality h(k) ≤ 2 holds.

In the partial case, where p = 1, the complexity of algorithm Ψ is O(smn log2 mn).

6 Example

We consider 2-criteria 2-center problem with 5 × 2-dimension, i. e. s = 2, p =
2, m = 5, n = 2. Let T = {t1, t2, t3, t4}, t1 = {1, 2}, t2 = {2, 3}, t3 = {3, 4}, t4 =
{4, 5}, D = (D1,D2),

D1 =













4 0
0 6
6 4
10 2
8 1













, D2 =













2 6
1 10
0 4
8 0
10 3













.

Then the problem Z2
5×2(T,D) has the following vector evaluations of trajectories

f(t1,D) = (0, 6),

f(t2,D) = (4, 4),

f(t3,D) = (6, 0),

f(t4,D) = (8, 8).

It is easy to see that P 2(T,D) = {t1, t2, t3}, and the problem Z2
5×2

(T,D) is
unsolvable, because for any vector λ ∈ Λ2 we have

〈λ, f(t2,D)〉 = 4 > 3 ≥ min{〈λ, f(ti,D)〉 : i ∈ N4},

i. e. t2 /∈ Ξ2(T,D).

Using algorithm Ψ, we transform the system of costs D to D̃ = {D̃1, D̃2}.
Stage 1. Let us sort all the elements of each column for each matrix D1 and

D2 in ascending order

D1 =













42 01

01 65

63 44

105 23

84 12













, D2 =













23 64

12 105

01 43

84 01

105 32













.

Stage 2. Delete from each column of matrices D1 and D2 one (q = p − 1 = 1)
maximal number:
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D1 =













42 01

01

63 44

23

84 12













, D2 =













23 64

12

01 43

84 01

32













.

Stage 3. Sort the rest of elements of each matrices D1 and D2 in ascending
order, and put them in matrices B1 and B2, respectively:

D1 =













42 01

01

63 44

23

84 12













, D2 =













23 64

12

01 43

84 01

32













,

B1 = (b1
1, b

1
2, . . . , b

1
8) = (0, 0, 1, 2, 4, 4, 6, 8),

B2 = (b2
1, b

2
2, . . . , b

2
8) = (0, 0, 1, 2, 3, 4, 6, 8).

Stage 4. Transform the numbers of matrices B1 and B2 according to the formula
(4):

B̃1 = (b̃1
1, b̃

1
2, . . . , b̃

1
8) = (0, 0, 1, 4, 12, 12, 30, 68),

B̃2 = (b̃2
1, b̃

2
2, . . . , b̃

2
8) = (0, 0, 1, 4, 11, 26, 58, 124).

Stage 5. In each column of matrix D1 on the deleted number place (Stage 2)
we put the number

b̃1
u + 1 = b̃1

8 + 1 = 69,

and in each column of matrix D2 we put the number

b̃2
u + 1 = b̃2

8 + 1 = 125.

As a result we obtain the problem Z2
5×2(T, D̃), where

D̃1 =













12 0
0 69
30 12
69 4
68 1













, D̃2 =













4 58
1 125
0 26

124 0
125 11













.

Since

f(t1, D̃) = (0, 58),

f(t2, D̃) = (12, 26),

f(t3, D̃) = (30, 0),

f(t4, D̃) = (68, 124),
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we have P 2(T,D) = P 2(T, D̃), i. e. the problems Z2
5×2(T,D) and Z2

5×2(T, D̃) are
equivalent. Moreover, suppose

λ1 = (0.9, 0.1),

λ2 = (0.6, 0.4),

λ3 = (0.1, 0.9),

we obtain
〈λ1, f(t1, D̃)〉 = min{〈λ1, f(ti, D̃)〉 : i ∈ N4} = 5.8,

〈λ2, f(t2, D̃)〉 = min{〈λ2, f(ti, D̃)〉 : i ∈ N4} = 17.6,

〈λ3, f(t3, D̃)〉 = min{〈λ3, f(ti, D̃)〉 : i ∈ N4} = 3.

Hence, P 2(T, D̃) = Ξ2(T, D̃), i. e. the problem Z2
5×2

(T, D̃) is solvable by ALC.

References

[1] Podinovsky V.V., Nogin V.D. Pareto-optimal solutions of multiobjective problems. Moscow,
Nauka, 1982 (in Russian).

[2] Nogin V.D. Decision making in multiobjective medium. Quantitative approach. Moscow,
Fizmatlit, 2002 (in Russian).

[3] Christofides N. Graph theory. An algorithmic approach. Academic Press, New York–
London–San Francisco, 1975.

[4] Zambitski D.K., Lozovanu D.D. Algorithms for solving network optimization problems.

Kishinev, Shtiintsa, 1983 (in Russian).

[5] Daskin M. Network and discrete location. Wiley, New York, 1995.

[6] Emelichev V.A., Perepeliza V.A. A multiobjective problems on the spanning trees of a

graph. Soviet Math. Dokl., 1988, 37, N 1, p. 114–117.

[7] Emelichev V.A., Perepeliza V.A. Complexity of vector optimization problems on graphs.

Optimization, 1991, 22, N 6, p. 903–918.

[8] Emelichev V.A., Perepeliza V.A. On insolubility of the vector problems on graphs by the

algorithms of linear convolution. IV Tiraspol symposium of general topology and its applica-
tions. Kishinev, 1991, p. 82–83 (in Russian).

[9] Emelichev V.A., Perepeliza V.A. Complexity of discrete multicriteria problems. Discrete
Math. Appl., 1994, 4, N 2, p. 89–117.

[10] Emelichev V.A., Kravtsov M.K. On the unsolvability of vector discrete optimization prob-

lems on systems of subsets in the class of algorithms involving linear convolution of criteria.

Russian Acad. Sci. Dokl. Math., 1994, 49, N 1, p. 6–9.

[11] Emelichev V.A., Kravtsov M.K. Problems of discrete vector optimization on systems of

subsets which cannot be solved using a linear convolution algorithm. Comp. Maths. Math.
Phys., 1994, 34, N 7, p. 933–942.

[12] Kravtsov M.K., Yanushkevich O.A. Solvability of the vector problem by the linear criteria

convolution algorithm. Mathematical notes. 1997, 62, N 4, p. 420–425.

[13] Emelichev V.A., Kravtsov M.K., Yanushkevich O.A. Solvability of a class of discrete

vector problems by the algorithm of linear convolution of criteria. Comp. Maths. Math. Phys.,
1997, 37, N 11, p. 1362–1365.



82 VLADIMIR A. EMELICHEV, EVGENY E. GUREVSKY

[14] Girlich E., Kovalev M.M., Kravtsov M.K., Yanushkevich O.A. Solvability conditions

of vector problems using a linear convolution of criteria. Kibernetika i sistemny analiz, 1999,
N 1, p. 81–95 (in Russian).

[15] Emelichev V.A., Kravtsov M.K., Yanushkevich O.A. Solvability of the vector trajectory

bottleneck problem using the algorithm of linear convolution of criteria. Dokl. Belarussian
Acad. Sci., 1996, 40, N 4, p. 29–33 (in Russian).

[16] Khuth D.E. The art of computer programming. Sorting and Searching. Volume 3. Second
Edition, Reading, Massachusetts: Addison-Wesley, 1998.

Belarussian State University
av. Nezavisimosti, 4
Minsk 220050, Belarus

E-mail:emelichev@tut.by, eugen eugen@tut.by

Received December 22, 2006


