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Infinitely many functional pre-complete classes

of formulas in the propositional provability

intuitionistic logic

A. Rusu

Abstract. We consider the propositional provability intuitionistic logic I
∆, intro-

duced by A.V. Kuznetsov [2]. We prove that there are infinitely many classes of
formulas in the calculus of I

∆, which are pre-complete with respect to functional ex-
pressibility in I

∆. This result is stronger than an ealier one stated by the author in
[1].
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In the present paper we extend the result established in [1] to a wider class of
logics, which includes the provability-intuitionistic logic I∆ itself. The last one is the
logic of propositional provability-intuitionistic calculus I∆ proposed and formalized
by A.V. Kuznetsov [2, 3]. It is based on formulas built in an usual way from
propositional variables p, q, r, . . . (may be indexed) by means of logical connectives
&,∨,⊃,¬,∆. The axioms of I∆ consist of well-known axioms of the intuitionistic
propositional calculus and three additional ∆-axioms:

(p ⊃ ∆p), (1)

((∆p ⊃ p) ⊃ p), (2)

(((p ⊃ q) ⊃ p) ⊃ (∆q ⊃ p)). (3)

Its rules of inference consist of traditional rules of substitution, and modus ponens
and the rule of necessitation A

∆A
. An extension L of the logic I∆ is defined as usual

as any set of formulas which contains the axioms of I∆ and is closed with respect
to the rules of inference of the calculus I∆. In the following let us denote by L any
extension of I∆ if other things are not stated. By equivalence of formulas A and B,
denoted A ∼ B, in the logic L we understand the formula ((A ⊃ B)&(B ⊃ A)).

Let us remind the notion of ∆-pseudo-Boolean algebra [2, 3] as a system of type
A =< E; &,∨,⊃,¬,∆ >, where < E; &,∨,⊃,¬ > is a pseudo-Boolean algebra and
operation ∆ satisfies the relations

x ≤ ∆x, (∆x ⊃ x) = x, ∆x ≤ y ∨ (y ⊃ x).

These algebras serve as algebraic models for logic I∆ [2, 3]. Valid formulas on the
algebra A are defined as usual. It is also known that the set of valid formulas on
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A constitutes an extension of I∆ [3], it is called the logic of the algebra A, and it is
denoted by LA.

We consider the ∆-pseudo-Boolean algebra C =< E; &,∨,⊃,¬,∆ >, where E
is the chain of elements 0 = τ0 < τ1 < · · · < 1, and for any elements α and β of
C we assume that α&β = min(α, β), α ∨ β = max(α, β), α ⊃ β = 1 when α ≤ β,
α ⊃ β = β when α > β, ¬α = α ⊃ 0, ∆τi = τi+1 for i = 0, 1, . . . , and ∆1 = 1.

By a formula realization [5, 6] of the ∆-pseudo-Boolean algebra A into the proof
(provability) logic L we undestand a mapping f from the algebra A into the set of
formulas such that if we examine the formulas up to equivalent ones, then f is an
isomorphism between the algebra A and some subalgebra of the Lindenbaum algebra
of the logic L. Let us build a formula realization of the algebra C into the logic I∆.
So, we have first of all to map each element of C into the set of formulas. Consider
the mapping f is as follows:

f(0) = 0, f(1) = 1,

f(τi) = ∆i0, i = 1, 2, . . .

Let us prove the following

Lemma 1. For any elements β and γ of the algebra C the next deductions in the
I∆ logic take place

⊢ (f(β&γ) ∼ (f(β)&f(γ))), (4)

⊢ (f(β ∨ γ) ∼ (f(β) ∨ f(γ))), (5)

⊢ (f(β ⊃ γ) ∼ (f(β) ⊃ f(γ))), (6)

⊢ (f(¬β) ∼ ¬f(β)), (7)

⊢ (f(∆β) ∼ ∆f(β)). (8)

Proof. Let us consider arbitrary elements β and γ of the algebra C. Let prove first
the relation (4). If β = 1 or γ = 1 then the statement (4) is obvious. Let β 6= 1 and
γ 6= 1. Since elements β and γ are arbitrary we can consider that β = τi and γ = τj ,
where i < j. Then β&γ = τi&τj = τi. So,

f(β&γ) = f(β) = f(τi) = ∆i0. (9)

The axiom (1) admits the following generalization

⊢ p ⊃ ∆kp, where k = 0, 1, 2, . . . (10)

Taking into consideration the last relation (10) we have the following sequence of
equalities

(f(β)&f(γ)) = (f(τi)&f(τj)) = ∆i0&∆j0 = ∆i0. (11)

So the relation (4) follows from (10) and (11).
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The proof of the statement (5) is analogous to the proof of the deduction (4).
Let us prove the relation (6). We will consider two possible cases for elements β

and γ, when a) β ≤ γ, and b) β > γ.
Let β ≤ γ. Then obviously β ⊃ γ = 1, and f(β ⊃ γ) = f(1) = 1 = (p ⊃ p).

If β 6= 1 and γ 6= 1, then we can consider as above that there exist i and j, where
i, j = 0, 1, 2, . . . and i ≤ j, such that β = ∆i0 and γ = ∆j0. Thus we have that
f(β) = ∆i0, f(γ) = ∆j0, (f(β) ⊃ f(γ)) = ∆i0 ⊃ ∆j0 = 1.

Now let β > γ. Then β ⊃ γ = γ, and f(β ⊃ γ) = f(γ). Obviously, γ 6= 1.
So, there exists an integer positive j such that γ = ∆j0, and thus f(β ⊃ γ) = ∆j0.
Now, let us evaluate f(β) ⊃ f(γ). If β = 1, then, obviously, f(β) ⊃ f(γ) = 1 ⊃
∆j0 = ∆j0. Suppose β 6= 1. Then there exists an i > j such that β = ∆i0, and
f(β) ⊃ f(γ) = ∆i0 ⊃ ∆j0 = ∆j0.

Now let us to prove the relation (7). If β = 1 then f(β) = 1, ¬β = 0, ¬f(β) =
¬1 = 0. Suppose β 6= 1. Then there is an i such that β = ∆i0. Obviously, ¬β = 0,
and ¬f(β) = ¬∆i0 = 0.

Finally, let us look at the last statement (8) of the lemma. If β = 1 then (8)
follows obviously. Suppose β 6= 1. Then there exists an i such that β = ∆i0, and
f(∆β) = f(∆∆i0) = f(∆i+10) = ∆i+10, ∆f(β) = ∆f(∆i0) = ∆∆i0 = ∆i+10.
Comparing the last two sequences of statements we conclude (8). Lemma is proved.

Next lemma is a generalization of the previous lemma.

Lemma 2. For any formula F (p1, . . . , pn) of the provability-intuitionistic logic I∆

and for any elements β1, . . . , βn of the algebra C the following relation is true in I∆

⊢ f(F [p1/β1, . . . , pn/βn]) ∼ F [p1/f(β1), . . . , pn/f(βn)].

The proof can be easily done by induction over the structure of the formula F
and using the relations proved in Lemma 1.

On the basis of Lemma 2 we conclude that examining formulas up to equivalent
ones in the logic I∆ the mapping f is an isomorphism between the algebra C and some
subalgebra of the Lindenbaum’s algebra of the logic I∆. This fact means that f is
a formula realization of the algebra C into the logic I∆. We see from the definition
of this formula realization that it puts into correspondence only unary formulas
to elements of C. So, we get next theorem as a consequence from Lemma 1 and
Lemma 2.

Theorem 1. The mapping f defined above is a formula realization of the algebra C

into the provability-intuitionistic logic I∆.

Next lemma ilustrates a usefull property of the formula realization f defined
above.

Lemma 3. The formula realization f of the algebra C into the logic I∆ puts into
correspondence to any element β of C such unary formula f(β) that the equality
holds

f(β)[γ] = β. (12)
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Proof. Really, let element β be someone from C. Then, obviously, it is either equal
to the unit 1 of the algebra, or there exists an index k such that β = τk. Recalling
that f(τk) = ∆k(p&¬p) we get that the result of substitution ∆k(p&¬p)[γ] does not
depend on the element γ, and, moreover,

∆k(p&¬p)[γ] = τk.

The last relation together with the fact that element β is an arbitrary element of C

ensure us the validness of (12) from the lemma. The lemma is proved.

Definitions regarding expressibility in logics were proposed by A.V. Kuznetsov
[7, 8, 9]. A system of formulas Σ is said to be complete (with respect to functional
expessibility) in the logic L if any formula of the language of logic L can be obtained
from variables and formulas of Σ applying a finite number of times the following two
rules: the weak rule of substitution and the rule of replacement by equivalent formula
in L. The system of formulas Σ is called pre-complete (with respect to functional
expressibility) in the logic L if it is incomplete in L, and for any formula F , which
is not expressible in L via Σ the system Σ ∪ {F} is complete in L. They say the
formula F (p1, . . . , pn) conserves on the algebra A the predicate R(x1, . . . , xm) if for
any elements αij ∈ A (i = 1, . . . ,m; j = 1, . . . , n) the relations

R[α11, . . . , αm1], . . . , R[α1n, . . . , αmn]

imply the truth of the predicate

R[F [α11, . . . , α1n], . . . , F [αm1, . . . , αmn]].

In the following let L be any extension of the provability-intuitionistic logic I∆,
which satisfies the relation I∆ ⊆ L ⊆ LC. Let us denote by Ki the class of all
formulas that preserves on the algebra C the predicate x ≤ τi (i = 0, 1, . . . ).

Lemma 4. The classes K0,K1, . . . are two by two distinct with respect to set
inclusion.

Really, suppose r < s and let us consider classes Kr and Ks. Can be checked
the relation

(∆r+10 ⊃ p) ∈ Kr \ Ks, ∆s0 ∈ Ks \ Kr.

So, the classes K0,K1, . . . are two by two distinct with respect to the set inclusion.

Lemma 5. Let f be the formula realization of the algebra C into the logic I∆ that
was defined ealier. Then for any element β of this algebra and for any j = 0, 1, 2, . . .
the formula f(β) belongs to the class Kj if and only if the folowing relation holds

β ≤ ∆j0. (13)
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Proof. Let element β satisfy the relation (13) from the lemma. We have to show
that the formula f(β) conserves the relation Rj on the algebra C. Let an arbitrary
element γ ∈ C conserve the predicate Rj on C, i.e. Rj(γ) holds. Then, using (13) and
the equality f(β)[γ] = β already proved ealier in Lemma 3, we obtain the relation
f(β)[γ] ≤ ∆j0, i.e. the relation Rj(f(β)[γ]. So, we get that f(β) ∈ Kj .

Conversely, let element β do not satisfy the condition (13). Then, since elements
of C form a chain, we get

β > ∆j0.

After that, using again the above mentioned equality (12) we get the inequality

f(β)[γ] > ∆j0,

which is equivalent to the fact that Rj(f(β)[γ]) is false. Subsequently, the formula
f(β) does not belong to the class Kj . The lemma is proved.

Lemma 6. Let L be any logic such that I∆ ⊆ L ⊆ LC. Then the classes of formulas
K0,K1, . . . are pre-complete with respect to expressibility in the logic L.

Really, according to Lemma 4, no one of these classes is complete with respect
to expressibility in the logic L. Let us prove that for any j = 0, 1, . . . the class Kj

is pre-complete in L. Let B(p1, . . . , pn) be any formula which does not belong to
the class Kj . Then, according to the definition of the class Kj there exist elements
β1, . . . , βn of the algebra C such that for any i = 1, . . . , n we have

βi ≤ ∆j0,

but
B[β1, . . . , βn] ≤ ∆j0

is false. Since all elements of C form a chain we get the strict inequality on the
algebra C

∆j0 < B[β1, . . . , βn],

which implies the relation

∆j+10 ≤ B[β1, . . . , βn].

The last statement implies also

(∆j+10 ⊃ B[β1, . . . , βn]) = 1.

In view of the above defined formula realization f of the algebra C in the logic I∆,
the last formula conducts us to the relation

⊢ f(∆j+10 ⊃ B[β1, . . . , βn]) ∼ f(1).

Applying Lemma 2 to the left part of the above equivalence, we get that

⊢ (f(∆j+10) ⊃ f(B[β1, . . . , βn])) ∼ f(1).
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Reminding ourselves that f(∆j+10) is the formula ∆j+10 and f(1) is 1, and applying
once again Lemma 2 to formula B, we get the deduction

⊢ (∆j+10 ⊃ B[f(β1), . . . , f(βn)]) ∼ 1.

The left hand side of the last equivalence can be represented as

⊢ (∆j+10 ⊃ π)[π/B[f(β1), . . . , f(βn)]] ∼ 1.

Let us note that the formula (∆j+10 ⊃ π) belongs to the class Kj . Apart from this,
since elements βi, when i = 1, . . . , n, satisfy the condition βi ≤ ∆j+10, the formulas
f(βi) also belong, according to Lemma 5, to the class Kj . That is why the last
deduction shows that the formula 1 is expressible in the logic I∆ by means of the
formula B and of the formulas of the class Kj . We shall show that any formula F is
expressible in I∆ via system Kj ∪ {1}. Let F do not contain the variable π. Then
it is sufficient to take the formula F&π, which belongs to the class Kj , and to use
the following fact

F ∼ (F&π)[π/1].

Thus it is proved that the system Kj ∪ {B} is complete in I∆, and the more so, it
is also complete in the logic L. So, lemma is proved.

Now we can state the folowing results.

Theorem 2. Let L be any logic such that I∆ ⊆ L ⊆ LC. The classes K0,K1, . . .
constitute a numerable collection of distinct two by two pre-complete in the logic L
classes of formulas.

In 1956 A.V. Kuznetsov [10, 11] have proved that for any finite-valued logic L
there exists an algorithm which permits to recognize whether a system of formulas
is complete with respect to functional expressibility in L. He have shown that there
exists theoretically a finite collection of pre-complete classes of formulas in that
logic. Unfortunately, the proposed algorithm is very computationally inefficient.
Next theorem establishes that even such algorithm is impossible for any logic L that
satisfies the condition I∆ ⊆ L ⊆ LC.

Theorem 3. Let L be any logic such that I∆ ⊆ L ⊆ LC. The traditional formulation
of the theorem of completeness with respect to functional expressibility in terms of a
finite collection of pre-complete classes of formulas in the logic L does not exist.
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