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A REPUBLICII MOLDOVA. MATEMATICA
Number 1(53), 2007, Pages 59–65
ISSN 1024–7696

Biharmonic curves in Cartan-Vranceanu
(2n+1)-dimensional spaces
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Abstract. Biharmonic curves in Cartan-Vranceanu spaces of dimension 2n+1 are
characterized and an example of such curve is given.
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1 Preliminaries

First we should recall some notions and results related to the biharmonic maps
between Riemannian manifolds, as they are presented in [6] and in [7].

Harmonic maps f : (M,g) → (N,h) between a compact Riemannian manifold,
(M,g), and a Riemannian manifold, (N,h), are the critical points of the energy
functional E(f) = 1

2

∫

M
|df |2νg and it is proved (in [4]) that the corresponding Euler-

Lagrange equation is τ(f) = trace∇df , where τ(f) is called the tension field of f .
If the manifold M is not compact f is said to be harmonic if τ(f) = 0. The critical
points of the bienergy functional E2(f) = 1

2

∫

M
|τ(f)|2νg are called biharmonic maps.

In [6] the Euler-Lagrange equation for E2 is given

τ2(f) = −∆τ(f) − traceRN (df, τ(f))df = 0,

where RN (X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ]. The equation τ2(f) = 0 is called the
biharmonic equation. Note that the harmonic maps are also biharmonic. Then the
main interest is to find the non-harmonic biharmonic maps, which are called proper
biharmonic maps.

2 Cartan-Vranceanu spaces

Let us consider the following two-parameter family of Riemannian metrics, called
the Cartan-Vranceanu metrics,

ds2
l,m =

n
∑

i=1

dx2
i + dy2

i

[1 + m(x2
i + y2

i )]
2

+
[

dz +
l

2

n
∑

i=1

yidxi − xidyi

1 + m(x2
i + y2

i )

]2
(1)
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defined on (2n+1)-dimensional manifold M , where M = R2n+1 if m ≥ 0, and

M =
{

(x1, y1, x2, y2, ..., xn, yn, z) ∈ R2n+1|x2
i + y2

i � − 1

m
, i = 1, n

}

if m � 0. The biharmonic curves in 3-dimensional Cartan-Vranceanu spaces are
characterized in [2] and, moreover, their explicit parametrizations is given in the
cited paper. For the 3-dimensional case another results are obtained if m = 0, l 6= 0
and if l = 1, m 6= 0. Thus, if m = 0, l 6= 0 then (M,ds2

l,m) is the Heisenberg group,
H3, and the biharmonic curves in this space are studied in [1]. If l = 1, m 6= 0
the biharmonic curves are studied in [3]. In (2n+1)-dimensional case, if m = 0,
l 6= 0 then (M,ds2

l,m) is the generalized Heisenberg group, H2n+1, and a study of
biharmonic curves in this space was given in [5].

In the following let us consider a (2n+1)-dimensional Cartan-Vranceanu space
(M,ds2

l,m), with m 6= 0, and the elements of M are of the form X = (x1, y1, x2, y2, ...

..., xn, yn, z). We can define a global orthonormal frame field on M by

E2i−1 = Fi
∂

∂xi

− lyi

2

∂

∂z
, E2i = Fi

∂

∂yi

+
lxi

2

∂

∂z
, E2n+1 =

∂

∂z
,

for i = 1, n, where Fi = 1 + m(x2
i + y2

i ). The Levi-Civita connection of the metric
ds2

l,m is given by,







































∇E2i−1E2j−1 = 2δijmyiE2i,

∇E2i
E2j = 2δijmxiE2i−1,

∇E2i−1E2j = δij(−2myiE2i−1 + l
2E2n+1),

∇E2i
E2j−1 = δij(−2mxiE2i−1 − l

2E2n+1),

∇E2n+1E2i−1 = ∇E2i−1E2n+1 = − l
2E2i,

∇E2n+1E2i = ∇E2i
E2n+1 = l

2E2i−1,

∇E2n+1E2n+1 = 0,

(2)

for i, j = 1, n. Also, one obtains







[E2i−1, E2j−1] = 0, [E2i, E2j ] = 0,
[E2i−1, E2n+1] = 0, [E2i, E2n+1] = 0,
[E2i−1, E2j ] = δij(2mxiE2i − 2myiE2i−1 + lE2n+1),

The curvature tensor field of ∇ is

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

and the Riemann–Christoffel tensor field is

R(X,Y,Z,W ) = g(R(X,Y )W,Z),

where X,Y,Z,W ∈ χ(R2n+1). We will use the notations

Rabc = R(Ea, Eb)Ec, Rabcd = R(Ea, Eb, Ec, Ed),
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where a, b, c, d = 1, 2n + 1. Then the non-zero components of the curvature tensor
field and of the Riemann-Christoffel tensor field are, respectively











































































R(2i−1)(2j−1)(2k) = − l2

4 δjkE2i + l2

4 δikE2j ,

R(2i−1)(2j)(2j−1) = l2

4 E2i, i 6= j,

R(2i−1)(2i)(2k−1) = δik(
l2

4 − 4m)E2i + l2

2 E2k,

R(2i−1)(2j)(2i) = − l2

4 E2j−1, i 6= j,

R(2i−1)(2i)(2k) = −δik(
l2

4 − 4m)E2i−1 − l2

2 E2k−1,

R(2i−1)(2n+1)(2i−1) = − l2

4 E2n+1,

R(2i−1)(2n+1)(2n+1) = l2

4 E2i−1,

R(2i)(2j)(2k−1) = − l2

4 δjkE2i−1 + l2

4 δikE2j−1,

R(2i)(2n+1)(2i) = − l2

4 E2n+1,

R(2i)(2n+1)(2n+1) = l2

4 E2i,

(3)







































R(2i−1)(2j−1)(2i)(2j) = − l2

4 , i 6= j,

R(2i−1)(2j)(2j−1)(2i) = − l2

4 , i 6= j,

R(2i)(2i−1)(2i−1)(2i) = 3l2

4 − 4m,

R(2i)(2i−1)(2j−1)(2j) = l2

2 , i 6= j,

R(2n+1)(2i−1)(2i−1)(2n+1) = − l2

4 ,

R(2n+1)(2i)(2i)(2n+1) = − l2

4 ,

(4)

for i, j, k = 1, n.

3 Biharmonic curves in (2n+1)-dimensional
Cartan–Vranceanu spaces

Let γ : I ⊂ R → (M,ds2
l,m) be a non-inflexionar curve, parametrized by its arc

length. Let {T,N1, ..., N2n} be the Frenet frame in (M,ds2
l,m) defined along γ, where

T = γ′ is the unit tangent vector field of γ, N1 is the unit normal vector field of
γ, with the same direction as ∇T T and the vectors N1, ..., N2n are the unit vectors
obtained from the following Frenet equations for γ.























∇T T = χ1N1

∇T N1 = −χ1T + χ2N2

. . . . . . . . .

∇T N2n−1 = −χ2n−2N2n−2 + χ2n−1N2n

∇T N2n = −χ2n−1N2n−1

(5)

where χ1 = ‖∇T T‖ = ‖τ(γ)‖, and χ2 = χ2(s), ..., χ2n = χ2n(s) are real valued
functions, named the curvatures of γ, where s is the arc length of γ.

In [2] is proved the following result

Proposition 3.1. Let γ : I ⊂ R → (Nn, h), n ≥ 2, be a curve parametrized by arc
length from an open interval of R into a Riemannian manifold (N, g). Then γ is



62 DOREL FETCU

biharmonic if and only if























χ1χ
′
1 = 0

χ′′
1 − χ3

1 − χ1χ
2
2 + χ1R(T,N1, T,N1) = 0

2χ′
1χ2 + χ1χ

′
2 + χ1R(T,N1, T,N2) = 0

χ1χ2χ3 + χ1R(T,N1, T,N3) = 0
χ1R(T,N1, T,Nk) = 0, k = 4, n.

(6)

Using Proposition 3.1 and equations (4), after a straightforward computation,
one obtains

Theorem 3.2. Let γ : I ⊂ R → (M,ds2
l,m) be a curve parametrized by its arc

length. Then γ is a proper biharmonic curve if and only if























χ1 ∈ R \ {0},
χ2

1 + χ2
2 = −η1,

χ′
2 = η2,

χ2χ3 = η3,

ηk = 0, k = 4, 2n,

(7)

with ηk, k = 1, 2n, given by

η1 = −R(T,N1, T,N1) = −4m

n
∑

i=1

(T2i−1N
2i
1 − T2iN

2i−1
1 )2+ (8)

+
3l2

4

[

n
∑

i=1

(T2iN
2i−1
1 − T2i−1N

2i
1 )

]2
− l2

4
(T 2

2n+1 + (N2n+1
1 )2)

and
ηk = −R(T,N1, T,Nk) = (9)

= −4m
n

∑

i=1

(T2i−1N
2i
1 − T2iN

2i−1
1 )(T2i−1N

2i
k − T2iN

2i−1
k )+

+
3l2

4

n
∑

i=1

(T2iN
2i−1
1 − T2i−1N

2i
1 )

n
∑

i=1

(T2iN
2i−1
k − T2i−1N

2i
k ) − l2

4
N2n+1

1 N2n+1
k ,

for k = 2, 2n, where T =
∑2n+1

a=1 TaEa and Nk =
∑2n+1

a=1 Na
k Ea.

From the second equation of (7) follows immediately

Corollary 3.3. If l = 0 and m ≤ 0 then all biharmonic curves of (M,ds2
l,m) are

geodesics.

In order to find a proper biharmonic curve γ : I ⊂ R → (M,ds2
l,m), γ =

(x1(s), y1(s), x2(s), y2(s), ..., xn(s), yn(s), z(s)), let us suppose that the components

of its tangent vector T (s) = γ′(s) are T2i−1(s) = cos βi(s) sin α√
n

, T2i(s) = sin βi(s) sinα√
n

,

T2n+1(s) = cos α, for i = 1, n, where βi are smooth functions, s being the arc
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length of γ, and α ∈ (0, π) is a constant. Working this way is suggested by the fact
that T is a unitary vector field and by the paper [2], where it is proved that, in
dimension 3, the tangent vector is of this form for all proper biharmonic curves of
Cartan–Vranceanu spaces.

The covariant derivative of the vector field T is given by

∇T T =
n

∑

i=1

[(T ′
2i−1 − 2myiT2iT2i−1 + 2mxiT

2
2i + lT2iT2n+1)E2i−1+

+(T ′
2i − 2mxiT2iT2i−1 + 2myiT

2
2i−1 − lT2i−1T2n+1)E2i] + T ′

2n+1E2n+1 =

=

n
∑

i=1

sin α√
n

(−Ai sin βiE2i−1 + Ai cos βiE2i),

where

Ai = β′
i − 2mxi

sin βi sin α√
n

+ 2myi

cos βi sin α√
n

− l cos α.

Next, assume that Ai = A, for any i = 1, n (that is the values of Ai’s are the
same for all indices). It follows, from the first Frenet equation, that χ1 is given by

χ1 = ‖∇T T‖ = |A sin α|.

Suppose that A sin α 
 0. Then

χ1 = A sin α (10)

and

N1 =

n
∑

i=1

1√
n

(− sin βiE2i−1 + cos βiE2i).

The system T = γ′ is equivalent with






























x′
i

1 + m(x2
i + y2

i )
=

cos βi sin α√
n

,

y′i
1 + m(x2

i + y2
i )

=
sin βi sin α√

n
, i = 1, n,

z′ = cos α + l
2

sin α√
n

∑n
1 (xi sinβi − yi cos βi).

(11)

Assume that β′
i 6= 0, for any i = 1, n. By derivation of (10), taking into account

that χ1 must to be constant, one obtains

β′′
i =

2mxix
′
i + 2myiy

′
i

1 + m(x2
i + y2

i )
· β′

i, i = 1, n.

From the last equations we have

biβ
′
i = 1 + m(x2

i + y2
i ), i = 1, n,
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where bi are constants. If we take bi = b to be independent of i, one obtains


























xi(s) =
b cos βi sin α√

n
,

yi(s) = −b sin βi sin α√
n

, i = 1, n,

z(s) = (cos α)s +
lb

2n
(sin2 α)s.

(12)

Again using the facts that χ1 is a constant and the terms Ai do not depend on i it
follows that β′

i must be constants which values are the same for all indices. Hence

β′
i = C =

1 + m(x2
i + y2

i )

b
=

n + mb2 sin2 α

bn
, i = 1, n.

Thus

βi(s) =
n + mb2 sin2 α

bn
· s + di, (13)

where di are constants.
From expressions of χ1, T and N1 we have, after a straightforward computation,

∇T N1 + χ1T =
n

∑

i=1

B cos α√
n

(cos βiE2i−1 + sinβiE2i)+

+
( l

2
sin α + A sin α cos α

)

E2n+1,

where B = (−1
b

+ mb
n

sin2 α + l cos α) cos α − l
2 = −A cos α − l

2 . From the second

Frenet equation we have χ2
2 = ‖∇T N1+χ1T‖2 = B2 cos2 α+( l

2 sinα+A sin α cos α)2.

It follows that χ2 is a constant. Now, since −η1 = (4m
n

− l2) sin2 α + l2

4 and ηk = 0,
k ≥ 2, the curve γ is biharmonic and non-geodesic if and only if the second and
the fourth equations of (7) hold. From the second equation, after a straightforward
computation, one obtains that

A2 + Al cos α − (
4m

n
− l2) sin2 α = 0. (14)

Assume that m 
 0. If l2 + (16m
n

− 5l2) sin2 α 
 0 then, solving equation (14),
one obtains

A =
−l cos α ±

√

l2 + (16m
n

− 5l2) sin2 α

2
,

and

b =
−

(

nl ±
√

l2 + (16m
n

− 5l2) sin2 α
)

4m sin2 α
± (15)

±

√

(

nl cos α ±
√

l2 + (16m
n

− 5l2) sin2 α
)2

+ 16nm sin2 α

4m sin2 α
.
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Since χ1 6= 0 one obtains A 6= 0. Then 4m
n

− l2 6= 0.
For the values founded for b, from the third Frenet equation, it follows that

χ3 = 0, and then the fourth equation of (7) holds.
We obtained

Proposition 3.4 Let (M,ds2
l,m) be a (2n+1)-dimensional Cartan-Vranceanu space

such that m 
 0 and 4m
n

− l2 6= 0. Let γ : I ⊂ R → (M,ds2
l,m),

γ = (x1(s), y1(s), x2(s), y2(s), ..., xn(s), yn(s), z(s)),

be a curve parametrized by its arc length, given by


























xi(s) =
b cos βi sin α√

n
,

yi(s) = −b sinβi sin α√
n

, i = 1, n,

z(s) = (cos α)s +
lb

2n
(sin α)2s.

where α ∈ (0, π), βi are given by (13), b is given by (15) and l2 +(16m
n

−5l2) sin2 α ≥
0. Then γ is a biharmonic curve and it is not a geodesic.
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2005, 46,N 2, p. 513–521.

[6] Jiang G.Y. 2-harmonic maps and their first and second variational formulas. Chinese Ann.
Math. Ser. A7, 1986, 4, p. 389–402.

[7] Montaldo S., Oniciuc C. A short survey on biharmonic maps between riemannian mani-

folds. arXiv:math.DG/0510636 v1, 2005.

[8] Oniciuc C. Tangency and harmonicity properties. Geometry Balkan Press, E-version, 2003,
p. 87 (in Roumanian).

[9] Urakawa H. Calculus of Variation and Harmonic Maps. American Mathematical Society,
Providence, Rhode Island, Translations of Mathematical Monographs, 1993, viii, p. 251.
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