Biharmonic curves in Cartan-Vranceanu (2n+1)-dimensional spaces

Dorel Fetcu *

Abstract. Biharmonic curves in Cartan-Vranceanu spaces of dimension 2n+1 are characterized and an example of such curve is given.

Mathematics subject classification: 53C43, 53C42. Keywords and phrases: Biharmonic curves, Cartan-Vranceanu space.

1 Preliminaries

First we should recall some notions and results related to the biharmonic maps between Riemannian manifolds, as they are presented in [6] and in [7].

Harmonic maps $f: (M,g) \to (N,h)$ between a compact Riemannian manifold, (M,g), and a Riemannian manifold, (N,h), are the critical points of the energy functional $E(f) = \frac{1}{2} \int_M |df|^2 \nu_g$ and it is proved (in [4]) that the corresponding Euler-Lagrange equation is $\tau(f) = trace \nabla df$, where $\tau(f)$ is called the tension field of f. If the manifold M is not compact f is said to be harmonic if $\tau(f) = 0$. The critical points of the bienergy functional $E_2(f) = \frac{1}{2} \int_M |\tau(f)|^2 \nu_g$ are called biharmonic maps. In [6] the Euler-Lagrange equation for E_2 is given

$$\tau_2(f) = -\Delta \tau(f) - trace R^N(df, \tau(f))df = 0,$$

where $R^N(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$. The equation $\tau_2(f) = 0$ is called the biharmonic equation. Note that the harmonic maps are also biharmonic. Then the main interest is to find the non-harmonic biharmonic maps, which are called proper biharmonic maps.

2 Cartan-Vranceanu spaces

Let us consider the following two-parameter family of Riemannian metrics, called the Cartan-Vranceanu metrics,

$$ds_{l,m}^{2} = \sum_{i=1}^{n} \frac{dx_{i}^{2} + dy_{i}^{2}}{[1 + m(x_{i}^{2} + y_{i}^{2})]^{2}} + \left[dz + \frac{l}{2}\sum_{i=1}^{n} \frac{y_{i}dx_{i} - x_{i}dy_{i}}{1 + m(x_{i}^{2} + y_{i}^{2})}\right]^{2}$$
(1)

© Dorel Fetcu, 2007

*The author was supported by the Grant A, 2741/2006, CNCSIS (ROMANIA).

defined on (2n+1)-dimensional manifold M, where $M = \mathbb{R}^{2n+1}$ if $m \ge 0$, and

$$M = \left\{ (x_1, y_1, x_2, y_2, ..., x_n, y_n, z) \in \mathbb{R}^{2n+1} | x_i^2 + y_i^2 \leq -\frac{1}{m}, i = \overline{1, n} \right\}$$

if $m \leq 0$. The biharmonic curves in 3-dimensional Cartan-Vranceanu spaces are characterized in [2] and, moreover, their explicit parametrizations is given in the cited paper. For the 3-dimensional case another results are obtained if $m = 0, l \neq 0$ and if $l = 1, m \neq 0$. Thus, if $m = 0, l \neq 0$ then $(M, ds_{l,m}^2)$ is the Heisenberg group, \mathbb{H}_3 , and the biharmonic curves in this space are studied in [1]. If $l = 1, m \neq 0$ the biharmonic curves are studied in [3]. In (2n+1)-dimensional case, if $m = 0, l \neq 0$ then $(M, ds_{l,m}^2)$ is the generalized Heisenberg group, \mathbb{H}_{2n+1} , and a study of biharmonic curves in this space was given in [5].

In the following let us consider a (2n+1)-dimensional Cartan-Vranceanu space $(M, ds_{l,m}^2)$, with $m \neq 0$, and the elements of M are of the form $X = (x_1, y_1, x_2, y_2, ..., x_n, y_n, z)$. We can define a global orthonormal frame field on M by

$$E_{2i-1} = F_i \frac{\partial}{\partial x_i} - \frac{ly_i}{2} \frac{\partial}{\partial z}, \quad E_{2i} = F_i \frac{\partial}{\partial y_i} + \frac{lx_i}{2} \frac{\partial}{\partial z}, \quad E_{2n+1} = \frac{\partial}{\partial z},$$

for $i = \overline{1, n}$, where $F_i = 1 + m(x_i^2 + y_i^2)$. The Levi-Civita connection of the metric $ds_{l,m}^2$ is given by,

$$\begin{pmatrix}
\nabla_{E_{2i-1}}E_{2j-1} = 2\delta_{ij}my_iE_{2i}, \\
\nabla_{E_{2i}}E_{2j} = 2\delta_{ij}mx_iE_{2i-1}, \\
\nabla_{E_{2i-1}}E_{2j} = \delta_{ij}(-2my_iE_{2i-1} + \frac{l}{2}E_{2n+1}), \\
\nabla_{E_{2i}}E_{2j-1} = \delta_{ij}(-2mx_iE_{2i-1} - \frac{l}{2}E_{2n+1}), \\
\nabla_{E_{2n+1}}E_{2i-1} = \nabla_{E_{2i-1}}E_{2n+1} = -\frac{l}{2}E_{2i}, \\
\nabla_{E_{2n+1}}E_{2i} = \nabla_{E_{2i}}E_{2n+1} = \frac{l}{2}E_{2i-1}, \\
\nabla_{E_{2n+1}}E_{2n+1} = 0,
\end{pmatrix}$$
(2)

for $i, j = \overline{1, n}$. Also, one obtains

$$\begin{cases} [E_{2i-1}, E_{2j-1}] = 0, [E_{2i}, E_{2j}] = 0, \\ [E_{2i-1}, E_{2n+1}] = 0, [E_{2i}, E_{2n+1}] = 0, \\ [E_{2i-1}, E_{2j}] = \delta_{ij}(2mx_iE_{2i} - 2my_iE_{2i-1} + lE_{2n+1}), \end{cases}$$

The curvature tensor field of ∇ is

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

and the Riemann–Christoffel tensor field is

$$R(X, Y, Z, W) = g(R(X, Y)W, Z),$$

where $X, Y, Z, W \in \chi(\mathbb{R}^{2n+1})$. We will use the notations

$$R_{abc} = R(E_a, E_b)E_c, \quad R_{abcd} = R(E_a, E_b, E_c, E_d),$$

where $a, b, c, d = \overline{1, 2n + 1}$. Then the non-zero components of the curvature tensor field and of the Riemann-Christoffel tensor field are, respectively

$$R_{(2i-1)(2j-1)(2k)} = -\frac{l^2}{4} \delta_{jk} E_{2i} + \frac{l^2}{4} \delta_{ik} E_{2j},$$

$$R_{(2i-1)(2j)(2j-1)} = \frac{l^2}{4} E_{2i}, \ i \neq j,$$

$$R_{(2i-1)(2i)(2k-1)} = \delta_{ik} (\frac{l^2}{4} - 4m) E_{2i} + \frac{l^2}{2} E_{2k},$$

$$R_{(2i-1)(2j)(2i)} = -\frac{l^2}{4} E_{2j-1}, \ i \neq j,$$

$$R_{(2i-1)(2i)(2k)} = -\delta_{ik} (\frac{l^2}{4} - 4m) E_{2i-1} - \frac{l^2}{2} E_{2k-1},$$

$$R_{(2i-1)(2n+1)(2i-1)} = -\frac{l^2}{4} E_{2n+1},$$

$$R_{(2i-1)(2n+1)(2n+1)} = \frac{l^2}{4} E_{2i-1},$$

$$R_{(2i)(2j)(2k-1)} = -\frac{l^2}{4} \delta_{jk} E_{2i-1} + \frac{l^2}{4} \delta_{ik} E_{2j-1},$$

$$R_{(2i)(2n+1)(2i)} = -\frac{l^2}{4} E_{2n+1},$$

$$R_{(2i)(2n+1)(2n+1)} = \frac{l^2}{4} E_{2i},$$

$$\begin{cases}
R_{(2i-1)(2j-1)(2i)(2j)} = -\frac{l^2}{4}, \ i \neq j, \\
R_{(2i)(2n+1)(2n+1)} = \frac{l^2}{4} E_{2i}, \ i \neq j, \\
R_{(2i)(2i-1)(2j-1)(2i)(2j)} = -\frac{l^2}{4}, \ i \neq j, \\
R_{(2i)(2i-1)(2j-1)(2i)(2j)} = \frac{3l^2}{4} - 4m, \\
R_{(2i)(2i-1)(2j-1)(2j-1)(2i)} = \frac{3l^2}{4} - 4m, \\
R_{(2i)(2i-1)(2j-1)(2j-1)(2i-1)(2n+1)} = -\frac{l^2}{4}, \ i \neq j, \\
R_{(2n+1)(2i-1)(2i-1)(2n+1)} = -\frac{l^2}{4}, \ i \neq j. \end{aligned}$$

for $i, j, k = \overline{1, n}$.

3 Biharmonic curves in (2n+1)-dimensional Cartan–Vranceanu spaces

Let $\gamma : I \subset \mathbb{R} \to (M, ds_{l,m}^2)$ be a non-inflexionar curve, parametrized by its arc length. Let $\{T, N_1, ..., N_{2n}\}$ be the Frenet frame in $(M, ds_{l,m}^2)$ defined along γ , where $T = \gamma'$ is the unit tangent vector field of γ , N_1 is the unit normal vector field of γ , with the same direction as $\nabla_T T$ and the vectors $N_1, ..., N_{2n}$ are the unit vectors obtained from the following Frenet equations for γ .

$$\begin{cases} \nabla_T T = \chi_1 N_1 \\ \nabla_T N_1 = -\chi_1 T + \chi_2 N_2 \\ \dots & \dots & \dots \\ \nabla_T N_{2n-1} = -\chi_{2n-2} N_{2n-2} + \chi_{2n-1} N_{2n} \\ \nabla_T N_{2n} = -\chi_{2n-1} N_{2n-1} \end{cases}$$
(5)

where $\chi_1 = \|\nabla_T T\| = \|\tau(\gamma)\|$, and $\chi_2 = \chi_2(s), ..., \chi_{2n} = \chi_{2n}(s)$ are real valued functions, named the curvatures of γ , where s is the arc length of γ .

In [2] is proved the following result

Proposition 3.1. Let $\gamma : I \subset \mathbb{R} \to (N^n, h), n \geq 2$, be a curve parametrized by arc length from an open interval of \mathbb{R} into a Riemannian manifold (N, g). Then γ is

biharmonic if and only if

$$\begin{cases} \chi_1\chi_1' = 0 \\ \chi_1'' - \chi_1^3 - \chi_1\chi_2^2 + \chi_1R(T, N_1, T, N_1) = 0 \\ 2\chi_1'\chi_2 + \chi_1\chi_2' + \chi_1R(T, N_1, T, N_2) = 0 \\ \chi_1\chi_2\chi_3 + \chi_1R(T, N_1, T, N_3) = 0 \\ \chi_1R(T, N_1, T, N_k) = 0, \ k = \overline{4, n}. \end{cases}$$
(6)

Using Proposition 3.1 and equations (4), after a straightforward computation, one obtains

Theorem 3.2. Let $\gamma : I \subset \mathbb{R} \to (M, ds_{l,m}^2)$ be a curve parametrized by its arc length. Then γ is a proper biharmonic curve if and only if

$$\begin{cases} \chi_{1} \in \mathbb{R} \setminus \{0\}, \\ \chi_{1}^{2} + \chi_{2}^{2} = -\eta_{1}, \\ \chi_{2}^{\prime} = \eta_{2}, \\ \chi_{2}\chi_{3} = \eta_{3}, \\ \eta_{k} = 0, \ k = \overline{4, 2n}, \end{cases}$$
(7)

with η_k , $k = \overline{1, 2n}$, given by

$$\eta_1 = -R(T, N_1, T, N_1) = -4m \sum_{i=1}^n (T_{2i-1}N_1^{2i} - T_{2i}N_1^{2i-1})^2 +$$
(8)

$$+\frac{3l^2}{4} \left[\sum_{i=1}^n (T_{2i}N_1^{2i-1} - T_{2i-1}N_1^{2i})\right]^2 - \frac{l^2}{4} (T_{2n+1}^2 + (N_1^{2n+1})^2)$$

and

$$\eta_k = -R(T, N_1, T, N_k) =$$
 (9)

$$= -4m \sum_{i=1}^{n} (T_{2i-1}N_1^{2i} - T_{2i}N_1^{2i-1})(T_{2i-1}N_k^{2i} - T_{2i}N_k^{2i-1}) + \frac{3l^2}{4} \sum_{i=1}^{n} (T_{2i}N_1^{2i-1} - T_{2i-1}N_1^{2i}) \sum_{i=1}^{n} (T_{2i}N_k^{2i-1} - T_{2i-1}N_k^{2i}) - \frac{l^2}{4}N_1^{2n+1}N_k^{2n+1},$$

for $k = \overline{2, 2n}$, where $T = \sum_{a=1}^{2n+1} T_a E_a$ and $N_k = \sum_{a=1}^{2n+1} N_k^a E_a$.

From the second equation of (7) follows immediately

n

Corollary 3.3. If l = 0 and $m \le 0$ then all biharmonic curves of $(M, ds_{l,m}^2)$ are geodesics.

In order to find a proper biharmonic curve $\gamma : I \subset \mathbb{R} \to (M, ds_{l,m}^2), \quad \gamma = (x_1(s), y_1(s), x_2(s), y_2(s), ..., x_n(s), y_n(s), z(s))$, let us suppose that the components of its tangent vector $T(s) = \gamma'(s)$ are $T_{2i-1}(s) = \frac{\cos\beta_i(s)\sin\alpha}{\sqrt{n}}, T_{2i}(s) = \frac{\sin\beta_i(s)\sin\alpha}{\sqrt{n}}, T_{2n+1}(s) = \cos\alpha$, for $i = \overline{1, n}$, where β_i are smooth functions, s being the arc

length of γ , and $\alpha \in (0, \pi)$ is a constant. Working this way is suggested by the fact that T is a unitary vector field and by the paper [2], where it is proved that, in dimension 3, the tangent vector is of this form for all proper biharmonic curves of Cartan–Vranceanu spaces.

The covariant derivative of the vector field T is given by

$$\nabla_T T = \sum_{i=1}^n \left[(T'_{2i-1} - 2my_i T_{2i} T_{2i-1} + 2mx_i T_{2i}^2 + lT_{2i} T_{2n+1}) E_{2i-1} + (T'_{2i} - 2mx_i T_{2i} T_{2i-1} + 2my_i T_{2i-1}^2 - lT_{2i-1} T_{2n+1}) E_{2i} \right] + T'_{2n+1} E_{2n+1} = \sum_{i=1}^n \frac{\sin \alpha}{\sqrt{n}} (-A_i \sin \beta_i E_{2i-1} + A_i \cos \beta_i E_{2i}),$$

where

$$A_i = \beta'_i - 2mx_i \frac{\sin \beta_i \sin \alpha}{\sqrt{n}} + 2my_i \frac{\cos \beta_i \sin \alpha}{\sqrt{n}} - l \cos \alpha.$$

Next, assume that $A_i = A$, for any $i = \overline{1, n}$ (that is the values of A_i 's are the same for all indices). It follows, from the first Frenet equation, that χ_1 is given by

$$\chi_1 = \|\nabla_T T\| = |A\sin\alpha|.$$

Suppose that $A \sin \alpha \ge 0$. Then

$$\chi_1 = A \sin \alpha \tag{10}$$

and

$$N_1 = \sum_{i=1}^n \frac{1}{\sqrt{n}} (-\sin\beta_i E_{2i-1} + \cos\beta_i E_{2i}).$$

The system $T = \gamma'$ is equivalent with

$$\begin{cases} \frac{x_i'}{1+m(x_i^2+y_i^2)} = \frac{\cos\beta_i \sin\alpha}{\sqrt{n}}, \\ \frac{y_i'}{1+m(x_i^2+y_i^2)} = \frac{\sin\beta_i \sin\alpha}{\sqrt{n}}, \quad i = \overline{1, n}, \\ z' = \cos\alpha + \frac{l}{2} \frac{\sin\alpha}{\sqrt{n}} \sum_1^n (x_i \sin\beta_i - y_i \cos\beta_i). \end{cases}$$
(11)

Assume that $\beta'_i \neq 0$, for any $i = \overline{1, n}$. By derivation of (10), taking into account that χ_1 must to be constant, one obtains

$$\beta_i'' = \frac{2mx_ix_i' + 2my_iy_i'}{1 + m(x_i^2 + y_i^2)} \cdot \beta_i', \quad i = \overline{1, n}.$$

From the last equations we have

$$b_i \beta'_i = 1 + m(x_i^2 + y_i^2), \quad i = \overline{1, n},$$

where b_i are constants. If we take $b_i = b$ to be independent of i, one obtains

$$\begin{aligned} x_i(s) &= \frac{b \cos \beta_i \sin \alpha}{\sqrt{n}}, \\ y_i(s) &= -\frac{b \sin \beta_i \sin \alpha}{\sqrt{n}}, \quad i = \overline{1, n}, \\ z(s) &= (\cos \alpha)s + \frac{lb}{2n} (\sin^2 \alpha)s. \end{aligned}$$
(12)

Again using the facts that χ_1 is a constant and the terms A_i do not depend on i it follows that β'_i must be constants which values are the same for all indices. Hence

$$\beta_{i}' = C = \frac{1 + m(x_{i}^{2} + y_{i}^{2})}{b} = \frac{n + mb^{2} \sin^{2} \alpha}{bn}, \ i = \overline{1, n}.$$
$$\beta_{i}(s) = \frac{n + mb^{2} \sin^{2} \alpha}{bn} \cdot s + d_{i}, \tag{13}$$

where d_i are constants.

From expressions of χ_1 , T and N_1 we have, after a straightforward computation,

$$\nabla_T N_1 + \chi_1 T = \sum_{i=1}^n \frac{B \cos \alpha}{\sqrt{n}} (\cos \beta_i E_{2i-1} + \sin \beta_i E_{2i}) + \left(\frac{l}{2} \sin \alpha + A \sin \alpha \cos \alpha\right) E_{2n+1},$$

where $B = (-\frac{1}{b} + \frac{mb}{n}\sin^2\alpha + l\cos\alpha)\cos\alpha - \frac{l}{2} = -A\cos\alpha - \frac{l}{2}$. From the second Frenet equation we have $\chi_2^2 = \|\nabla_T N_1 + \chi_1 T\|^2 = B^2\cos^2\alpha + (\frac{l}{2}\sin\alpha + A\sin\alpha\cos\alpha)^2$. It follows that χ_2 is a constant. Now, since $-\eta_1 = (\frac{4m}{n} - l^2)\sin^2\alpha + \frac{l^2}{4}$ and $\eta_k = 0$, $k \ge 2$, the curve γ is biharmonic and non-geodesic if and only if the second and the fourth equations of (7) hold. From the second equation, after a straightforward computation, one obtains that

$$A^{2} + Al\cos\alpha - (\frac{4m}{n} - l^{2})\sin^{2}\alpha = 0.$$
 (14)

Assume that $m \ge 0$. If $l^2 + (\frac{16m}{n} - 5l^2) \sin^2 \alpha \ge 0$ then, solving equation (14), one obtains

$$A = \frac{-l\cos\alpha \pm \sqrt{l^2 + (\frac{16m}{n} - 5l^2)\sin^2\alpha}}{2},$$

and

$$b = \frac{-\left(nl \pm \sqrt{l^2 + (\frac{16m}{n} - 5l^2)\sin^2\alpha}\right)}{4m\sin^2\alpha} \pm$$
(15)
$$\pm \frac{\sqrt{\left(nl\cos\alpha \pm \sqrt{l^2 + (\frac{16m}{n} - 5l^2)\sin^2\alpha}\right)^2 + 16nm\sin^2\alpha}}{4m\sin^2\alpha}.$$

Thus

Since $\chi_1 \neq 0$ one obtains $A \neq 0$. Then $\frac{4m}{n} - l^2 \neq 0$.

For the values founded for b, from the third Frenet equation, it follows that $\chi_3 = 0$, and then the fourth equation of (7) holds.

We obtained

Proposition 3.4 Let $(M, ds_{l,m}^2)$ be a (2n+1)-dimensional Cartan-Vranceanu space such that $m \ge 0$ and $\frac{4m}{n} - l^2 \ne 0$. Let $\gamma : I \subset \mathbb{R} \to (M, ds_{l,m}^2)$,

$$\gamma = (x_1(s), y_1(s), x_2(s), y_2(s), \dots, x_n(s), y_n(s), z(s)),$$

be a curve parametrized by its arc length, given by

$$\begin{cases} x_i(s) = \frac{b \cos \beta_i \sin \alpha}{\sqrt{n}}, \\ y_i(s) = -\frac{b \sin \beta_i \sin \alpha}{\sqrt{n}}, \quad i = \overline{1, n}, \\ z(s) = (\cos \alpha)s + \frac{lb}{2n} (\sin \alpha)^2 s. \end{cases}$$

where $\alpha \in (0, \pi)$, β_i are given by (13), b is given by (15) and $l^2 + (\frac{16m}{n} - 5l^2) \sin^2 \alpha \ge 0$. Then γ is a biharmonic curve and it is not a geodesic.

References

- CADDEO R., ONICIUC C., PIU P. Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. E-version, arXiv:math.DG 0311221 v1, 2003.
- [2] CADDEO R., MONTALDO S., ONICIUC C., PIU P. The clasification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces. E-version, arXiv:math.DG 0510435 v1, 2005.
- [3] CHO J.T., INOGUCHI J., LEE J.-E. Biharmonic curves in 3-dimensional Sasakian space form. Preprint, 2004.
- [4] EELLS J., LEMAIRE L. Selected topics in harmonic maps. Am. Math. Soc, Conf. Board Math. Sci., 1983, 50, p. 83.
- [5] FETCU D. Biharmonic curves in the generalized Heisenberg group. Beiträge Algebra Geom, 2005, 46, N 2, p. 513–521.
- [6] JIANG G.Y. 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A7, 1986, 4, p. 389–402.
- [7] MONTALDO S., ONICIUC C. A short survey on biharmonic maps between riemannian manifolds. arXiv:math.DG/0510636 v1, 2005.
- [8] ONICIUC C. Tangency and harmonicity properties. Geometry Balkan Press, E-version, 2003, p. 87 (in Roumanian).
- [9] URAKAWA H. Calculus of Variation and Harmonic Maps. American Mathematical Society, Providence, Rhode Island, Translations of Mathematical Monographs, 1993, viii, p. 251.
- [10] VRANCEANU G. Leçons de géométrie différentielle. Ed. Acad. Rep. Pop. Roum., 1957, I, Bucharest.

"Gh. Asachi" Technical University of Iasi Romania Received September 5, 2006

E-mail: dfetcu@math.tuiasi.ro