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Power sets of n-ary quasigroups

G. Belyavskaya

Abstract. In the theory of latin squares and in the binary quasigroup theory the
notion of a latin power set (a quasigroup power set) is known. These sets have a good
property, and namely, they are orthogonal sets. Such sets were studied and methods
of their construction were suggested in different articles (see, for example, [1–5]).
In this article we introduce (k)-powers of a k-invertible n-ary operation (with respect
to the k-multiplication of n-ary operations) and (k)-power sets of n-ary quasigroups,
n ≥ 2, 1 ≤ k ≤ n, prove pairwise orthogonality of such sets and consider distinct
posibilities of their construction with the help of binary groups, in particular, using
n − T -quasigroups and n-ary groups.
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1 Introduction

In the theory of latin squares the notion of a power set of latin squares or a
latin power set is known. In the articles [1–4] some properties and different methods
of constructing such sets , in particular, sets based and not based on groups, were
considered. In [5] an algebraic approach to the study of latin power set was used
and a new method of constructing quasigroup power sets based on cyclic S-systems
(such systems correspond to a particular case of latin power sets [6]) and on pairwise
balanced block designs of index one (BIB(v,b,r,k,1)) [7] was suggested.

Any power set of latin squares (of quasigroups) is an orthogonal set and can be
used in applications, in particular, by the construction of some codes and ciphers.
Such a ciphering device whose algorithm is based on a latin power set has been
patented [8]. In [4] it was noticed, ” It is obvious that latin power sets based on
non-group tables are more preferable to those based on group tables because the
greater irregularity makes the cipher safer”.

In this article we introduce and study the power sets of n-ary quasigroups, in
particular, prove pairwise orthogonality of such sets, consider distinct posibilities of
their construction.

2 Necessary notions and results

We recall some notations, concepts and results which are used in the article. At
first remember the following denations and notes from [9]. By x

j
i we will denote
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the sequence xi, xi+1, . . . , xj , i ≤ j. If j < i, then x
j
i is the empty sequence, 1, n =

{1, 2, . . . , n} . Let Q be a finite or an infinite set, n ≥ 2 be a positive integer and let
Qn denote the Cartesian power of the set Q.

An n-ary operation A (briefly, an n-operation) on a set Q is a mapping A : Qn →
Q defined by A(xn

1 ) → xn+1, and in this case we write A(xn
1 ) = xn+1.

A finite n-groupoid (Q,A) of order m is a set Q with one n-ary operation A

defined on Q, where |Q| = m.
An n-ary quasigroup (n-quasigroup) is an n-groupoid such that in the equality

A(xn
1 ) = xn+1

each of n elements from xn+1
1 uniquely defines the (n + 1)-th element. Usually a

quasigroup n-operation A is itself considered as an n-quasigroup.
The n-operation Ei, 1 ≤ i ≤ n, on Q with Ei(x

n
1 ) = xi is called the i-th identity

operation (or the i-th selector) of arity n.
An n-operation A on Q is called i-invertible for some i ∈ 1, n if the equation

A(ai−1
1 , xi, a

n
i+1) = an+1

has a unique solution for each fixed n-tuple (ai−1
1 , an

i+1, an+1) ∈ Qn.

For an i-invertible n-operation there exists the i-inverse n-operation (i)A defined
in the following way:

(i)A(xi−1
1 , xn+1, x

n
i+1) = xi ⇔ A(xn

1 ) = xn+1

for all xn+1
1 ∈ Qn+1.

It is evident that

A(xi−1
1 , (i)A(xn

1 ), xn
i+1) = (i)A(xi−1

1 , A(xn
1 ), xn

i+1) = xi

and (i)[(i)A] = A for i ∈ 1, n.
Let Ωn be the set of all n-ary operations on a finite or infinite set Q. On Ωn

define a binary operation ⊕
i

(the i-multiplication) in the following way:

(A ⊕
i

B)(xn
1 ) = A(xi−1

1 , B(xn
1 ), xn

i+1),

A,B ∈ Ωn, xn
1 ∈ Qn. Shortly this equality can be written as

A ⊕
i

B = A(Ei−1
1 , B,En

i+1)

where Ei is the i-th selector.
In [10] it was proved that (Ωn;⊕

i
) is a semigroup with the identity Ei. If Λi is

the set of all i-invertible n-operations from Ωn for some i ∈ 1, n, then (Λi;⊕
i
) is a

group. In this group Ei is the identity, the inverse element of A is the operation
(i)A ∈ Λi, since A ⊕

i
Ei = Ei ⊕

i
A, A ⊕

i

(i)A = (i)A ⊕
i

A = Ei.
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An n-ary quasigroup (Q,A) (or simply A), is an n-groupoid with an i-invertible
n-operation for each i ∈ 1, n [9].

Let (xn
1 )k denote the (n − 1)-tuple (xk−1

1 , xn
k+1) ∈ Qn−1 and let A be an

n-operation, then the (n − 1)-operation Aa:

Aa(x
n
1 )k = A(xk−1

1 , a, xn
k+1)

is called the (n− 1)-retract of A, defined by position k, k ∈ 1, n, with the element a

in this position (with xk = a) [9].

An n-ary operation A on Q is called complete if there exists a permutation ϕ on
Qn such that A = E1ϕ (that is A(xn

1 ) = E1ϕ(xn
1 )). If a complete n-operation A is

finite and has order m, then the equation A(xn
1 ) = a has exactly mn−1 solutions for

any a ∈ Q [10].

Any i-invertible (for some fixed i, i ∈ 1, n) n-operation A is complete, but there
exist complete n-operations which are not i-invertible for each i ∈ 1, n [10].

For n ≥ 2, an n-dimensional hypercube (briefly, an n-hypercube) of order m is
an m × m × · · · × m

︸ ︷︷ ︸

n

array with mn points based upon m distinct symbols [11].

A hypercube is a generalization of a latin square, which in the case of squares
of order m, is an m × m array in which m distinct symbols are arranged so that
each symbol occurs once in each row and column. A latin square is a 2-dimensional
hypercube of a special type.

In [12] the connection between n-hypercubes and (algebraic)
n-ary operations was established. In addition we note that a k-invertible opera-
tion AH corresponds to an n-hypercube H with the following property: whenever
n− 1 of the n coordinates, except the k-th coordinate, are fixed, each of the m sym-
bols appears exactly one time in that subarray (in that k-th column). In this case
the mapping L(a)k

= AH(ak−1
1 , x, an

k+1) is a permutation on Q for each (a)k ∈ Qn−1

where (a)k = (ak−1
1 , an

k+1). In the theory of n-quasigroups this permutation is called
the k-th translation of the n-quasigroup (Q,AH) defined by the (n−1)-tuple (a)k [9].

In the case of n-ary operations for n > 2 it is possible to consider different
versions of orthogonality. The weakest is the notion of the pairwise orthogonality.

Definition 1 [12]. Two n-ary operations (n ≥ 2) A and B given on a set Q of order
m are called orthogonal (shortly, A ⊥ B) if the system {A(xn

1 ) = a,B(xn
1 ) = b} has

exactly mn−2 solutions for any a, b ∈ Q.

This concept corresponds to two orthogonal n-dimensional hypercubes [12]. Two
n-hypercubes H1 and H2 of order m are orthogonal if when superimposed, each of
the m2 ordered pairs appears mn−2 times [15],[11].

Definition 2 [12]. A set Σ = {At
1}, t ≥ 2, of n-operations is called pairwise

orthogonal if any pair of distinct n-operations from Σ is orthogonal.

In [13] the following criterion of orthogonality of two finite k-invertible
n-operations was established.
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Theorem 1 [13]. Let k be a fixed number from 1, n. Two finite k-invertible
n-operations A and B on a set Q are orthogonal if and only if the (n−1)-retract Ca

of the n-operation C = B ⊕
k

(k)A, defined by xk = a, is complete for every a ∈ Q.

Definition 3. We shall say that an n-operation C, given on a set Q, has the
k-property if its (n− 1)-retract Ca, defined by xk = a, is complete for every a ∈ Q.

Note that any n-quasigroup has the k-property for each k ∈ 1, n since any its
(n − 1)-retract is an (n − 1)-quasigroup.

3 Power sets of n-ary quasigroups and pairwise orthogonality

Let L be a latin square of order m, given on a set Q by its rows α1, α2, . . . , αm

(which are permutations of Q). Then power l of L is defined as

Ll = (αl
1, α

l
2, . . . , α

l
m).

If L,L2, . . . , Ls are all latin squares, then the set {L,L2, . . . , Ls} is called a latin
power set of size s.

It is known that a binary quasigroup (Q,A) corresponds to every latin square L

given on a set Q and if {L,L2, . . . , Ls} is a latin power set, then {A,A2, . . . , As} is
the corresponding quasigroup power set where Al= A ·A · ... ·A (l times), 1 ≤ l ≤ s,
(A · A)(x, y) = A2(x, y) = A(x,A(x, y)) [5].

Consider an analog of powers for n-operations. Let k be a fixed number of 1, n,
A be a k-invertible n-operation.

The power Al = A ⊕
k

A ⊕
k

. . . ⊕
k

A (l times) with respect to the k-multiplication

of n-ary operations is called the (k)-power l of A.
Note that if all (k)-powers A,A2, . . . , As are n-quasigroups, then they are dif-

ferent, that is form a set, since the equality At = Ar, t, r ∈ 1, s, t > r, implies
At−r = Ek for t − r < s.

Definition 4. A set Σk = {A,A2, . . . , As}k, s ≥ 2, is called a (k)-power set of
n-quasigroups if all (k)-powers of A from Σk are n-quasigroups.

Note that index k after a set shows additionally that the powers in this set are
taken with respect to the k-multiplication of operations.

Using Theorem 1 it is easy to prove the following statement for any k-invertible
n-operations, in particular, for n-quasigroups.

Theorem 2. Let A be a finite k-invertible n-operation and the (k)-powers
A,A2, . . . , As, s ≥ 2, of A be different. Then the set Σk = {A,A2, . . . , As}k is
a pairwise orthogonal if and only if each of the n-operations A,A2, . . . , As−1 has the
k-property.

Proof. At first we remember that all k-invertible n-operations, given on a set Q,
form a group with the identity Ek with respect to the k-multiplication, (k)A is the
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inverse element of A in this group and ((k)A)l =(k) (Al). Let 1 ≤ i ≤ s−1, i < j ≤ s.
By Theorem 1 Aj ⊥ Ai if and only if the n-operation Aj ⊕

k
((k)A)i = Aj−i has the

k-property for any 1 ≤ j − i ≤ s − 1. �

For a binary operation A on a set Q 2-invertibility means that the equation
A(a, y) = b has a unique solution for any a, b ∈ Q. If A has the 2-property, then the
equation A(x, a) = b has a unique solution for any a, b ∈ Q, that is A is 1-invertible
also. Thus, in Theorem 2 all (2)-powers A,A2, . . . , As−1 of a binary (2)-invertible
operation A must be quasigroups, As can be only (2)-invertible and is true the
following

Corollary 1. Let A be a finite 2-invertible binary operation and the (2)-powers
A,A2, . . . , As, s ≥ 2, of A are different. Then the set Σ2 = {A,A2, . . . , As}2 is
orthogonal if and only if A,A2, . . . , As−1 are quasigroups.

In [1] the following result (Corollary 5a) with respect to latin power sets which
we shall formulate in the language of quasigroups was proved, where A−1 = (2)A is
the right inverse quasigroup for A (A−1(x, y) = z ⇔ A(x, z) = y).

Proposition 1 [1]. If A,A2, . . . , As, s ≥ 2, are finite quasigroups, then any s succes-
sive quasigroups from (A−1)s, (A−1)s−1, . . . , A−1, A,A2, . . . , As form an orthogonal
set of quasigroups.

Now we prove that for n-ary case, n ≥ 2, an analogous situation takes place.

Theorem 3. If a set Σk = {A,A2, . . . , As}k is a (k)-power set of finite quasigroups,
then in the sequence

((k)A)s, ((k)A)s−1, . . . , ((k)A)2, (k)A,A,A2, . . . , As

every s-tuple of successive n-quasigroups is a pairwise orthogonal set.

Proof. Let 1 ≤ i, j ≤ s, i < j, then Aj ⊕
k

((k)A)i = Aj ⊕
k

(k) (Ai)= Aj−i ∈ Σk, so the

n-operation Aj−i is an n-quasigroup, all its (n− 1)-retracts are (n− 1)-quasigroups
too, so they have the k-property and by Theorem 2 we have Ai ⊥ Aj. On the
other hand, by the same restrictions on i, j we obtain (k)(Ai) ⊕

k
Aj = Aj−i ∈ Σk, so

(k)(Ai) ⊥(k) (Aj) by Theorem 2.

Let 1 ≤ i ≤ s − 1, 1 ≤ j ≤ s − i, then Ai ⊕
k

(k) ((k)(Aj)) = Ai ⊕
k

Aj = Ai+j ∈ Σk,

so Ai ⊥(k) (Aj) by Theorem 2 (see the previous case). �

Corollary 2. If in Theorem 3, in addition, s + 1 is the smallest exponent such that
As+1 = Ek, then the sequence from the theorem is A,A2, . . . , As.

Proof. Indeed, by these conditions ((k)A)i = As+1−i for all i ∈ 1, s. �

Theorem 4. Let (Q,A) be a finite n-quasigroup of the form

A(xn
1 ) = α1x1 · ... · αk−1xk−1 · xk · αk+1xk+1 · ... · αnxn
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for some fixed k ∈ 1, n, where αi is a permutation of Q for every i ∈ 1, n, i 6= k, (Q, ·)
is a binary group. Then Σk = {A,A2, . . . , As}k is a (k)-power set of n-quasigroups if
and only if in the group (Q, ·) the mapping x → xl is a permutation for each l ∈ 2, s.

Proof. Let an n-quasigroup (Q,A) have the form of the theorem, then

A2(xn
1 ) = A(xk−1

1 , A(xn
1 ), xn

k+1) = α1x1 · ... · αk−1xk−1·

(α1x1 · ... · αk−1xk−1 · xk · αk+1xk+1 · ... · αnxn) · αk+1xk+1 · ... · αnxn =

(α1x1 · ... · αk−1xk−1)
2 · xk · (αk+1xk+1 · ... · αnxn)2.

Taking into account that Al(xn
1 ) = Al−1(xk−1

1 , A(xn
1 ), xn

k+1) we shall obtain by
the same way

Al(xn
1 ) = (α1x1 · ... · αk−1xk−1)

l · xk · (αk+1xk+1 · ... · αnxn)l (1)

for any l ∈ 1, s.
Let Al be a finite n-quasigroup for some l, 2 ≤ l ≤ s, then it is i-invertible for

each i ∈ 1, n, that is for any (n − 1)-tuple (an
1 )i ∈ Qn−1,

Al(ai−1
1 , x, an

i+1) = Al(ai−1
1 , y, an

i+1) ⇔ x = y. (2)

If i ∈ 1, k − 1, then we have

(α1a1 · ... · αi−1ai−1 · αix · αi+1ai+1 · ... · αk−1ak−1)
l · ak · (αk+1ak+1 · ... · αnan)l =

(α1a1 · ... · αi−1ai−1 · αiy · αi+1ai+1 · ... · αk−1ak−1)
l · ak · (αk+1ak+1 · ... · αnan)l

⇔ x = y. Doing the respective cancelation we obtain

(a · αix · b)l = (a · αiy · b)l ⇔ x = y, (LaRbαix)l = (LaRbαiy)l ⇔ x = y,

where a = α1a1 · ... · αi−1ai−1, b = αi+1ai+1 · ... · αk−1ak−1, Lax = a · x, Rbx = x · b.
Changing x (y) with α−1

i R−1
b L−1

a x (α−1
i R−1

b L−1
a y), we obtained

xl = yl ⇔ α−1
i R−1

b L−1
a x = α−1

i R−1
b L−1

a y ⇔ x = y

by each i ∈ 1, k − 1.
Let i ∈ k + 1, n. Then from (2) it follows

(α1a1 · ... · αk−1ak−1)
l · ak · (αk+1ak+1 · ... · αi−1ai−1 · αix · αi+1ai+1 · ... · αnan)l =

(α1a1 · ... · αk−1ak−1)
l · ak · (αk+1ak+1 · ... · αi−1ai−1 · αiy · αi+1ai+1 · ... · αnan)l

⇔ x = y,
(c · αix · d)l = (c · αiy · d)l ⇔ x = y

where c = αk+1ak+1 · ... · αi−1ai−1, d = αi+1ai+1 · ... · αnan. Then xl = yl ⇔ x = y

for all l ∈ 1, s (see the previous case).
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Thus, if all (k)-powers A,A2, A3, . . . , As are n-quasigroups, then in the group
(Q, ·) the mapping x → xl is a permutation for each l ∈ 1, s.

Conversely, let all mappings x → xl, l ∈ 2, s, be permutations in the group (Q, ·).
Then all k-powers A,A2, A3, . . . , As , defined by (1) are different, that is they form
a set. Indeed, if At(xn

1 ) = Ar(xn
1 ), 1 ≤ r, t ≤ s and t > r, then from (1) we have

xtxky
t = xrxky

r, xt−rxky
t−r = xk

for any x, y ∈ Q. Setting y = e (the identity of the group (Q, ·)) in the last equality
we obtain that xt−rxk = xk and xt−r = e for t − r < s and any x ∈ Q. But by the
conditions all mappings x → xl, l ∈ 1, s, are permutations, so we have contradiction.

It remains to show that all (k)-powers are n-quasigroups. For that we can prove
(2) fixing an arbitrary (n − 1)-tuple (an

1 )i of elements of Q and making the inverse
transformations corresponding to the case i ∈ 1, k − 1 (i ∈ k + 1, n). That is every
(k)-power l of the finite n-quasigroup (Q,A) is i-invertible for any i ∈ 1, n, i 6=
k. But the n-operation Al is always k-invertible as a power with respect to the
k-multiplication. Thus, (Q,Al) is an n-quasigroup for each l ∈ 1, s and the set
Σk = {A,A2, . . . As}k is a (k)-power set of n-ary quasigroups. �

Corollary 3. Let (Q,+) be an abelian group of order m, m = p
β1
1 p

β1
2 . . . p

βt

t be
decomposition in prime multipliers, p1 < p2 < ... < pt, p1 ≥ 3, k be a fixed element,
1 ≤ k ≤ n, (Q,A) be an n-quasigroup of the form:

A(xn
1 ) = α1x1 + α2x2 + ... + αk−1xk−1 + xk + αk+1xk+1 + ... + αnxn,

where all αi are permutations. Then Σk = {A,A2, . . . , Ap1−1}k is a (k)-power set of
n-quasigroups.

Proof. In an abelian group of order m with the zero 0 all mappings x → 2x,
x → 3x, . . . , (p1 − 1)x are permutations. Otherwise, lx = ly ⇒ l(x− y) = 0 if x 6= y,
2 ≤ l < p1, it means that in the group (Q,+) there exists an element which has
the order smaller than p1. We have contradiction with Lagrange’s Theorem stating
that the order of any subgroup (and the order of any element) divides the order of
a finite group [14]. Now use Theorem 4. �

For a finite elementary abelian group (that is a group which is a direct power of
a group of a prime order [14]) from Corollary 3 immediately follows

Corollary 4. If in Corollary 3 (Q,+) is an elementary abelian group of order
m = pt, p ≥ 3, then Σk = {A,A2, . . . Ap−1}k is a (k)-power set of n-quasigroups.

Corollary 5. Let in Corollary 3 the order of an abelian group (Q,+) be a prime
number p, p ≥ 3 and an n-quasigroup A have the form

A(xn
1 ) = x1 + x2 + ... + xn,

then Σk = {A,A2, . . . , Ap−1}k is a (k)-power set of n-quasigroups for each k ∈ 1, n.
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Remark. Note that in general Σk 6= Σl if k 6= l, since powers of an n-quasigroup A,
taken with respect to the k-multiplication and with respect to the l-multiplication
of n-operations, can be different.

Corollary 6. Let Σk = {A,A2, . . . , Ap−1}k be a (k)-power set of n-quasigroups of
Corollary 4 or 5, then Σ′

k = {Ek, A,A2, . . . , Ap−1}k is a (cyclic) group with respect
to the k-multiplication of n-operations.

Proof. By Theorem 4 the (k)-powers of an n-quasigroup A in these sets have the
form (1). By l = p where p is a prime number in that case we obtain Ap = Ek, since
ap = e in the group (Q, ·) with the identity e for each a ∈ Q. �

Recall that an n-quasigroup (Q,A) is called an n− T -quasigroup if there exist a
binary abelian group (Q,+), its automorphisms α1, α2, . . . , αn and an element a ∈ Q

such that

A(xn
1 ) = α1x1 + α2x2 + ... + αk−1xk−1 + αkxk + αk+1xk+1 + · · · + αnxn + a (3)

for all xn
1 ∈ Qn [16].

Corollary 7. Let (Q,A) be an n − T -quasigroup of (3) with αk = ǫ (the iden-
tity permutation) for some fixed k, k ∈ 1, n, where (Q,A) is an abelian group

of order m = p
β1
1 p

β1
2 . . . p

βt

t , p1 < p2 < · · · < pt, p1 ≥ 3. Then the set
Σk = {A,A2, . . . , Ap1−1}k is a (k)-power set of n-quasigroups.

Proof . Follows from Theorem 4 and Corollary 3, taking into account (with respect
to the element a) that (Q,A) is an abelian group. �

Consider an n-ary group (Q,A) [9]. By Theorem of Gluskin-Hossu this n-group
has the form

A(xn
1 ) = x1 · θx2 · θ

2x3 · ... · θ
n−1xn · a, (4)

where (Q, ·) is a binary group, θ is its automorphism such that θa = a, θn−1x =
axa−1. In this case we say that (Q,A) is an n-group over the binary group (Q, ·).

For an n-group over an abelian group (it is a particular case of n−T -quasigroups)
we have the following

Corollary 8. Let (Q,A) be an n-group of (4) over an abelian group of order m =

p
β1
1 p

β1
2 . . . p

βt

t , p1 < p2 < ... < pt, p1 ≥ 3. Then Σ1 = {A,A2, . . . , Ap1−1}1 is a
(1)-power set of n-quasigroups, Σn = {A,A2, . . . , Ap1−1}n is an (n)-power set of
n-quasigroups. Moreover, if the automorphism θ has order k, 2 ≤ k ≤ n − 1, then
Σlk+1 = {A,A2, . . . , Ap1−1}lk+1 is also a (lk + 1)-power set for each l such that
2 ≤ lk ≤ n − 1.

Proof. In this case θn−1xn = xn and θlk = ǫ for each l such that 1 ≤ lk ≤ n − 1
and all statements are true by Corollary 7. �
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