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Pareto approximation of the tail

by local exponential modeling

Ion Grama, Vladimir Spokoiny

Abstract. We give a new adaptive method for selecting the number of upper order
statistics used in the estimation of the tail of a distribution function. Our approach
is based on approximation by an exponential model. The selection procedure consists
in consecutive testing for the hypothesis of homogeneity of the estimated parameter
against the change-point alternative. The selected number of upper order statistics
corresponds to the first detected change-point. Our main results are non-asymptotic.
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1 Introduction

This paper is concerned with the adaptive estimation of the tail of a distribution
function (d.f.) F. A popular estimator for use in the extreme value theory was
proposed by Hill (1975). Given a sample X1, ...,Xn from the d.f. F the Hill estimator
is defined as

α̂n,k =
1

k

k∑

i=1

log
Xn,i

Xn,k+1
,

where Xn,1 ≥ ... ≥ Xn,n are the order statistics pertaining to X1, ...,Xn and k is the
number of upper order statistics used in the estimation. There is a vast literature
on the asymptotic properties of the Hill estimator. Suppose that d.f. F is regu-
larly varying with index of regular variation β [see for example Bingham, Goldie
and Teugels (1987)]. Weak consistency for estimating β was established by Mason
(1982), under the conditions that k → ∞ and k/n → 0 as n → ∞. Asymptotic
normality of the Hill estimator was proved by Hall (1982). A strong consistency
result can be found in Deheuvels, Haeusler and Mason (1988). Further properties
concerning the efficiency have been studied in Drees (2001). For extensions to de-
pendent observations see, for instance, Resnik and Starica (1998) and the references
therein. The asymptotic results mentioned above do not give any recipe about se-
lecting the parameter k in practical applications, while the behavior of the error
estimation depends essentially on it. Different approaches for data driven choices of
k have been proposed in the literature, mainly based on the idea of balancing the
bias and the asymptotic variance of the Hill estimator. We refer to Hall and Welsh
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(1985), Danielson, de Haan, Peng, Vries (2001), Beirlant, Teugels and Vinysaker
(1996), Resnik and Starica (1997), Drees and Kaufman (1998), among many oth-
ers. However the bias of the Hill estimator for estimating the parameter of regular
variation as a rule diminishes very slowly, which makes any choice of the parameter
k not very efficient from the practical point of view. A striking example is the so
called Hill Horror plot (see Figure 1, left).
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Figure 1. Left: 100 realizations of the Hill estimator for Pareto-log d.f. F (x) = 1 −
(x/e)−1/β log x, x ≥ e, where the parameter β = 1 is expected to be estimated. Right: 100

realizations of the Hill estimator for Pareto-log d.f. and the fitted Pareto parameter. Here

the dark lines represent the fitted Pareto index computed from the approximation formulas

(3.5), (3.1) and the light ones are the corresponding Hill plots.

For more insight on the problem the reader is referred to the book by Embrechts,
Klüppelberg and Mikosch (1997), from which we cite on the page 351: ”On various
occasions we hinted at the fact that the determination of the number k of upper
order statistics finally used remains a delicate point in the whole set-up. Various
papers exist which offer a semi-automatic or automatic, so-called ”optimal”, choice
of k. ... We personally prefer a rather pragmatic approach realizing that, whatever
method one chooses, the ”Hill horror plot” ... would fool most, if not all. It also
serves to show how delicate a tail analysis in practice really is.” An interesting
exchange of opinions on this subject may be found in the survey paper by Resnik
(1997) and in the supplied discussion.

The aim of the present paper is to give a natural resolution to the ”Hill horror
plot” paradox and to rehabilitate the Hill estimator, for finite sample sizes, by
looking at the problem from the point of view of selecting an appropriate tail. In
Section 3 we shall see that, for finite sample sizes, the Hill estimator is close to
another quantity which can be interpreted as the parameter of the approximating
Pareto distribution and which we shall call the fitted Pareto index [see (2.4) for the
definition of this quantity]. In Figure 1, right, we give a simulation for the Pareto-
log d.f.; other examples are presented in the Appendix 8. The importance of this
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interpretation, perhaps, is justified by the fact that it allows new approaches for
selecting the number k of retained upper order statistics. For estimating the fitted
Pareto index we propose a method based on successive testing of the hypothesis that
the first k normed log-spacings follow exponential distributions with homogeneous
parameters. The idea goes back to Spokoiny (1998). However our procedure is
different in several aspects. First, our test is based on the likelihood ratio test
statistic for testing homogeneity of the estimated parameters against the change-
point alternative. Second, in our procedure the number k is selected to be the
detected change-point. We also refer the reader to Picard and Tribouley (2002)
where the change point Pareto model (see Pareto-CP d.f. in the Appendix) is used
for estimation in the parametric context.

Our main results are non-asymptotic. We establish an ”oracle” inequality for
the adaptive estimator of the fitted index. The result claims that the risk of the
adaptive estimator is only within some constant factor worse than the risk of the
best possible estimator for the given model.

The paper is organized as follows. In Sections 2 and 3 we formulate the problem
and give the approximation by the exponential model. The adaptive procedure
is presented in Section 4. Section 5 illustrates the numerical performances of the
method on some artificial data sets. The results and the proofs are given in Sections
6 and 7.

2 The model and the problem

Let X1, ...,Xn be i.i.d. observations with common d.f. F (x) supported on
(a,∞), where a > 0 is a fixed real number. Assume that the function F is strictly
increasing and has a continuous density f. Since F (a) = 0, the d.f. F can be
represented as

F (x) = 1 − exp

(
−
∫ x

a
λ (t) dt

)
, x ≥ a, (2.1)

where

λ (x) =
f (x)

1 − F (x)
, x ≥ a

is the hazard rate. Note that if λ (x) = 1
αx , then the d.f. F is Pareto with index

1/α, which is a typical fat tail distribution. To allow more general laws with heavy
tails we shall assume that

λ (x) =
1

α (x)x
, (2.2)

where the function α (x) , x > a, can be approximated by a constant for big values
of x. For instance, this is the case when there exists an β > 0 such that

lim
x→∞

α (x) = β. (2.3)

Many regularly varying at infinity d.f.’s F satisfy the assumptions (2.1), (2.2) and
(2.3), see representation theorems in Seneta (1976) or Bingham, Goldie and Teugels
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(1987). If F is regularly varying at infinity, then the limit in (2.3) is nothing else
but the index of regular variation.

Our problem can be formulated as follows. Let Xn,1 > ... > Xn,n be the order
statistics pertaining to X1, ...,Xn. The goal is to find a natural number k such that
on the set {Xn,1, ...,Xn,k} the function α (x) , x ≥ a, can be well approximated by the
value α (Xn,1) and to estimate this value. The intuitive meaning of this is to find a
Pareto approximation for the tail of the d.f. F on the data set {Xn,1, ...,Xn,k} . Note
that this problem is different from that of estimating the index of regular variation β
defined by the limit (2.3). As it was stressed in the Introduction the main advantage
of the present setting is, perhaps, the fact that it allows new algorithms for the choice
of the nuisance parameter k. The approach adopted in this paper is based on the
approximation by an exponential model which is presented in the next section.

Before to proceed with this, we shall point out the connection of the function
α (·) to the logarithmic mean excess of F :

ν (t) =

∫ ∞

t
log

x

t

F (dx)

1 − F (t)
, t ≥ a. (2.4)

Integration by parts gives, for any t ≥ a,

∫ ∞

t
α (x)

F (dx)

1 − F (t)
= ν (t) . (2.5)

By straightforward calculations it can be seen that the number ν (t) is the minimizer
of the Kullback-Leibler distance between Pareto d.f. Pα (x) = 1− x−1/α, x ≥ 1 and
the excess d.f. F (x|t) = 1− (1 − F (xt)) / (1 − F (t)) , x ≥ 1. Thus the number ν (t)
can be interpreted as the parameter of the best Pareto fit to the tail of the d.f. F
on the interval [t,∞). We shall call the function ν (t) , t ≥ a the fitted Pareto index.

3 Approximation by exponential model

The function α (·) will be estimated from the approximating exponential model.
Our motivation is somewhat similar to that of Hill (1975) [see also Beirlant, Dier-
skx, Goegebeur et Matthys (2000) for another exponential approximation]. The
construction of the approximating exponential model employs the following lemma,
called Renyi representation of order statistics.

Lemma 3.1. Let X1, ...,Xn be i.i.d. r.v.’s with common strictly increasing d.f. F
and Xn,1 > ... > Xn,n be the order statistics pertaining to X1, ...,Xn. Then the r.v.’s

ξi = i log
1 − F (Xn,i+1)

1 − F (Xn,i)
, i = 1, ..., n − 1.

are i.i.d. standard exponential.

Proof. See for instance Reiss (1989) or Example 4.1.5 in Embrechts, Klüppelberg
and Mikosch (1997)]. 2
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Let Yi = i log
Xn,i

Xn,i+1
, i = 1, ..., n − 1. Then Yi = αiξi, i = 1, ..., n − 1, where

αi = − log
Xn,i

Xn,i+1
/ log

1 − F (Xn,i)

1 − F (Xn,i+1)
. (3.1)

It is easy to see that the function α (x) is defined through the d.f. F by the equations

1

α (x)
= xλ (x) =

xf (x)

1 − F (x)
= −

d
dx log (1 − F (x))

d
dx log x

, x ≥ a. (3.2)

By identity (3.2) the value αi can be regarded as an approximation of the value
of the function α (·) at the point Xn,i+1. More precisely, the mean value theorem
implies

αi = α (Xn,i+1 + θn,i+1 (Xn,i − Xn,i+1)) ,

with some θn,i+1 ∈ [0, 1], for i = 1, ..., n − 1. These simple considerations reduce the
original model to the following inhomogeneous exponential model

Yi = αiξi, i = 1, ..., n − 1, (3.3)

where α = (α1, ..., αn−1) is a vector of unknown parameters. We assume local
homogeneity of this model which stipulates that the components αi’s nearly equal
α1 within some interval I = [1, k]. In the sequel finding the Pareto approximation
for the tail of the d.f. F will be viewed as the problem of choosing the interval
I = [1, k] and of estimating the component α1 from the observations (3.3).

Under the assumption that

α1 = ... = αk, (3.4)

the maximum likelihood estimator of α1 is the sample mean

α̂k =
1

k

k∑

i=1

Yi,

which is the well-known Hill estimator. Our main concern is to choose appropriately
the number k of upper order statistics used in the estimation.

If the condition (3.4) is not satisfied, then from the definition of the model (3.3)
it follows that the Hill estimator α̂k approximates without bias the quantity

αk =
1

k

k∑

i=1

αi, (3.5)

which, in turn, is an approximation of the fitted Pareto index (2.4): αk ≈ ν (Xn,k+1) ,
for k big enough. The assumption of local homogeneity implies that the quantities
αk, αk and α1 = α1 are close to each other and thus under this assumption the
Hill estimator also approximates the fitted Pareto parameter ν (t) at the point t =
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Xn,k+1. The simulations show a good concordance between the two latter quantities
(see Figures 1, 4 and 5).

Although the above considerations shed some light on what does the Hill esti-
mator estimate, the main problem, how to choose an appropriate value of k (even
for the fitted Pareto index ν (Xn,k+1) or equally for αk) still remains open. Model
selection based on the penalization terms [see Barron, Birge and Massart (1999)]
could be a reasonable alternative for defining the optimal and adaptive values of
k. In this paper we take another adaptive approach which is presented in the next
section. To avoid difficult interpretations with the choice of the optimal value k for
the parameter αk we shall consider that the Hill estimator estimates the value α1,
which may be regarded as a constant approximation of the values αi, i = 1, ..., k.

4 Adaptive selection of the parameter k

This section presents a method of selecting the parameter k in a data driven way.
Throughout the paper we shall denote by |I| the number of elements of the set I.

4.1 The adaptive procedure

Let I be a family of intervals of the form I = [1, k], where k ∈ {1, ..., n−1}, such
that |I| ≥ 2m0, for a prescribed natural number m0, where m0 is much smaller than
(n − 1) /2. A special case of the family I is given by the set of all the intervals I =
[1, k], satisfying this condition. Another example used later on in the simulations,
is the set I = Iq of intervals I = [1, k], with k approximately lying in the geometric
grid

{
l : l ≤ n, l = [m0 + m0q

j ], j = 1, 2, ...
}

, where q > 1. In the latter case the
numbers m0 and q will be parameters of the procedure.

The family I is naturally ordered by the length |I| of I ∈ I . The idea of our
method is to test successively the hypothesis of no change-point within the interval
I and to select k equal to the first detected change-point. The formal steps of the
procedure for selecting the adaptive interval Î read as follows:

INITIALIZATION Start with the smallest interval I = I0 ∈ I.

STEP 1 Take the next interval I ∈ I.

STEP 2 From observations (3.3) test on homogeneity the vector α within the in-
terval I against the change-point alternative, as described in Section 4.2.

STEP 3 If the change point was detected for the interval I, then define Î as the
interval from one to the detected change-point and stop the procedure, other-
wise repeat the procedure from the Step 1. If there was no change-point for
all I ∈ I, then define Î = [1, n − 1].

The adaptive estimator is defined as α̂ = α̂bI , where

α̂I =
1

|I|
∑

i∈I

Yi, (4.1)
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for any interval I. The essential point in the above procedure is the Step 2 which
stipulates testing the hypothesis of homogeneity for the interval I. It consists in
applying the classical change-point test which is described in the next section.

4.2 Test of homogeneity against the change-point alternative

The test of homogeneity against the change-point alternative is based on the
likelihood ratio test statistic. For any interval I ∈ I denote by JI the set of all
subintervals J ⊂ I, J ∈ I, such that |I| /2 ≤ |J | ≤ |I| − m0. For every interval
J ∈ JI consider the problem of testing the hypothesis of homogeneity αi = θ, i ∈ I
against the change-point alternative αi = θ1, i ∈ J and αi = θ2, i ∈ I \ J with
θ1 6= θ2. The likelihood ratio test statistic is defined by

TI,J = sup
θ1

L (YJ , θ1) + sup
θ2

L
(
YI\J , θ2

)
− sup

θ
L (YI , θ)

= L (YJ , α̂J) + L
(
YI\J , α̂I\J

)
− L (YI , α̂I) ,

where α̂I is the corresponding maximum likelihood estimator defined by (4.1) and

L (YI , θ) =
∑

i∈I

log p (Yi, θ) .

Since in the case under consideration p (y, θ) = exp (−y/θ) /θ, one gets

TI,J = −
∑

i∈J

[
log

α̂J

α̂I
− Yi

(
1

α̂I
− 1

α̂J

)]
+
∑

i∈I\J

[
log

α̂I\J
α̂I

− Yi

(
1

α̂I
− 1

α̂I\J

)]

= |J |G
(

α̂J

α̂I
− 1

)
+ |I \ J |G

(
α̂I\J
α̂I

− 1

)
, (4.2)

where G (x) = x − log (1 + x) , x > −1. The use of Taylor’s expansion gives the
approximating test statistic

T I,J =
|J |
2

(
α̂J

α̂I
− 1

)2

+
|I \ J |

2

(
α̂I\J
α̂I

− 1

)2

.

By simple algebra we can represent the latter statistic in the form

T I,J =
|J | · |I \ J |

2 |I|

(
α̂J − α̂I\J

α̂I

)2

. (4.3)

Now the test of homogeneity of α on the interval I can be based on the maximum of
all such defined statistics TI,J or T I,J over the set JI . The hypothesis of homogeneity
on the interval I will be rejected if

TI = max
J∈JI

TI,J > tγ , or T I = max
J∈JI

T I,J > tγ ,
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where the critical values tγ and tγ are defined to provide the prescribed rejection
probability γ under the hypothesis of homogeneity within the interval I. These
values can be computed by Monte-Carlo simulations from the homogeneous model
with i.i.d. standard exponential observations Yi, i = 1, ..., n. Here we utilize the fact
that under the hypothesis of homogeneity the distributions of the test statistics TI

and T I do not depend on α.

If the hypothesis of the homogeneity of α is rejected on the interval I then the
detected change-point k∗ corresponds to the length of the interval J∗ ∈ JI for which
the statistic TI attains its maximum, i.e.

k∗ = |J∗| , where J∗ = arg max
J∈JI

TI,J .

5 Simulation study

The aim of the present simulation study is to demonstrate the numerical perfor-
mance of the proposed procedure. We focus on the quality of the selected interval
I and of the corresponding adaptive estimator. The next figures present box-plots
of the length of the selected interval Î and of the adaptive estimator α̂ for different
values of the parameter

√
tγ from 500 observations following Pareto and Pareto-log

d.f.’s (see a list in the Appendix). The box-plots are obtained from 500 Monte-Carlo
realizations. The set I is a geometric grid with parameters m0 = 25, q = 1.1 .
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Figure 2. Box-plots of selected intervals and the adaptive estimators for Pareto d.f. from

500 realization.

In Table 1 the mean absolute error (MAE) of the adaptive estimator α̂ w.r.t.
the value α1 = α(Xn,1) is computed for the d.f.’s introduced above.

The results clearly indicate that the increase of the parameter tγ results in a
smaller variability of the estimator but in a larger bias (in case when the model is
not Pareto). A reasonable compromise is attained for

√
tγ about 2.6 leading to a

relatively stable behavior of the procedure in the Pareto case and to a moderate bias
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Figure 3. Box-plots of selected intervals and the adaptive estimators for Pareto-log d.f.

from 500 realization.

Table 1. MAE computed for 500 realizations

tγ=2.2 tγ=2.4 tγ=2.6 tγ=2.8 tγ=3.0 tγ=3.2 tγ=3.4
Pareto 0.0642 0.0583 0.0546 0.0487 0.0459 0.0433 0.0395

Cauchy-plus 0.1036 0.1076 0.1116 0.1166 0.1204 0.1232 0.1275
Pareto-log 0.1838 0.2039 0.2231 0.2388 0.2581 0.2854 0.3106
Pareto-CP 0.0746 0.0704 0.0697 0.0658 0.0642 0.0626 0.0615

in the non-Pareto case. The numerical simulation for the procedure with the param-
eter

√
tγ = 2.6 for different values of the sample size n and different distributions

(see a list in the Appendix 8) are summarized in Table 2. The other parameters
are kept as in the previous case. In this table MAE is computed w.r.t. the value
α1 = α(Xn,1) for 500 simulations.

In the Appendix 8 we present the box-plots of the length (in %) of the selected
interval Î and of the adaptive estimator α̂ for different values of n from 500 simula-
tions following different d.f.’s.

6 Theoretical results

This section discusses some theoretical properties of the procedure presented in
Section 4. Let tγ > 0 and tγ > 0 be the critical values entering the definition of the
change point tests from Section 4.2.

6.1 Properties of the selected interval

We start with results concerning the choice of the interval of homogeneity. We
will ensure that the following two properties hold:
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Table 2. MAE computed for 500 realizations

n=200 n=300 n=400 n=500 n=800 n=1000 2000 n=3000
Pareto 0.0573 0.0507 0.0473 0.0521 0.0456 0.0495 0.0453 0.0415

Cauchy-plus 0.1483 0.1210 0.1133 0.1155 0.0846 0.0943 0.0720 0.0577
Pareto-log 0.2544 0.2309 0.2274 0.2178 0.1895 0.1828 0.1783 0.1713

GPD 0.2563 0.1829 0.1770 0.1564 0.1488 0.1301 0.1171 0.1095
Hall model 0.2498 0.2448 0.2377 0.2439 0.2344 0.2222 0.1961 0.1699
Pareto-CP 0.1001 0.0881 0.0737 0.0669 0.0566 0.0558 0.0432 0.0321

Standard Normal tail 0.2273 0.1718 0.1438 0.1242 0.0983 0.0941 0.0689 0.0654
Standard Exponential 0.2989 0.2370 0.1913 0.1707 0.1432 0.1373 0.1133 0.1007

A. The intervals of homogeneity are accepted with high probabilities.

B. The intervals of non-homogeneity are rejected with high probabilities at least
in some special cases, for instance, for the change-point model.

Consider first the property A. The assumption that the vector α is constant on
some interval I can be quite restrictive for practical applications. Therefore the
desirable property would be that the procedure accepts any interval I ∈ I for which
αi can be well approximated by a constant within the interval I. Let I be an interval
and let αI be the average of the αi’s over the interval I :

αI =
1

|I|
∑

i∈I

αi.

The non-homogeneity of the αi’s within the interval I can be naturally measured by
the value

∆I = max
i∈I

∣∣∣∣
αi

αI
− 1

∣∣∣∣ .

We say that I is a ”good” interval if the value ∆I is small. The next result claims
that a ”good” interval I will be accepted by the procedure with a high probability
provided that the critical value tγ was taken sufficiently large.

For every interval I ∈ I, denote

SI =
1

|I|
∑

i∈I

αi (ξi − 1) and V 2
I =

∑

i∈I

α2
i .

For given intervals I ∈ I and J ∈ JI , denote Jc = I�J and, with a real λ > 0,
define the events

ΩI,J =

{
|SI | ≤

λVI

|I| , |SJ | ≤
λVJ

|J | , |SJc | ≤ λVJc

|Jc|

}

and
ΩI =

⋂

J∈JI

ΩI,J .

The function G (x) is defined for all x > −1. We extend it to the whole real line by
defining G (x) = +∞ for x ≤ −1.
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Theorem 6.1. A. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that

λ ≥ 2
√

log 2|JI |+1
γ and

√
m0 > 3

2λ (1 + ∆I) . Then P (ΩI) ≥ 1 − γ.

B. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that λ ≥
2
√

log 2|JI |+1
γ and

√
m0 > 3λ (1 + ∆I) . If ∆I fulfills

G
(
−3∆I − 3λ (1 + ∆I)m

−1/2
0

)
≤ 4tγ

|I| , (6.1)

then on the set ΩI it holds TI ≤ tγ .
C. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that λ ≥

2
√

log 2|JI |+1
γ and

√
m0 > 3λ (1 + ∆I) . If ∆I fulfills

∆I ≤
2
√

2
3 t

1/2
γ |I|−1/2 − λm

−1/2
0

1 + λm
−1/2
0

,

then on the set ΩI it holds T I ≤ tγ .

Remark 6.2. The condition on ∆I from the part C of the theorem is similar to
the condition (6.1) with the function G(u) replaced by u2/2 . Moreover, the con-

dition (6.1) follows from ∆I ≤ (Ct
−1/2
γ |I|−1/2 − λm

−1/2
0 )/(1 + λm

−1/2
0 ) with some

constant C > 2
√

2/3 provided that 3∆I +3λ (1 + ∆I)m
−1/2
0 < 1/2 , see Lemma 7.3.

An immediate corollary of this result is an upper bound of the probability of
rejecting a ”good” interval I.

Corollary 6.3. Under the conditions of the point B or C of Theorem 6.1 it holds
respectively

P (TI > tγ) < γ or P
(
T I > tγ

)
< γ.

Now let us turn to the property B of the intervals of homogeneity. Consider the
special case when the vector α = (α1, ..., αn) is piecewise constant. In this case an
interval I is ”good” if it does not contain a change point. The best choice of I can be
defined as the interval I∗ = [1, k∗], where k∗ is the first change point. Theorem 6.1
claims that the interval I∗ will be accepted with high probability. The next result
shows that all larger intervals will be rejected with high probability, thus implying
that Î approximately equals I∗.

Theorem 6.4. Let γ ∈ (0, 1) and 2
√

log 3
γ ≤ λ ≤ √

m. Assume that αi = α, for

i ∈ I∗, and αi = β, for i ∈ I \ I∗, where I = [1, k∗ + m] and α 6= β. If m satisfies
m ≤ k∗ and √

m ≥ max
{
d−1

(
3
√

tγ + λ
)
, 4tγ

}
, (6.2)

where d = |α − β| / (2α + |α − β|) , then

P (TI ≤ tγ) ≤ γ and P
(
T I ≤ tγ/2

)
≤ γ.
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6.2 Properties of the adaptive estimator α̂.

Let Î be the interval computed by the adaptive procedure described in Section
4.1 with the test statistic TI,J . The next assertions describe the accuracy of the

adaptive estimator α̂ = α̂bI under the condition that Î ⊃ I∗, where I∗ ∈ I is a
”good” interval.

Theorem 6.5. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that

λ ≥ 2
√

log 2|JI |+1
γ and

√
m0 > max

{√
4tγ , 3

2λ (1 + ∆I)
}

. Let the interval I∗ ∈ I be

such that I∗ ∈ JI . If TI ≤ tγ , then on the set ΩI , it holds
∣∣∣∣
α̂I − α̂I∗

α̂I∗

∣∣∣∣ ≤
ρ

1 − ρ
,

where ρ = 2
√

tγ |I∗|−1.

From Theorem 6.5 it follows that if α̂I∗ provides a ”good” estimate of αI∗ , then
the adaptive estimator also provides a ”good” estimate of αI∗ . A precise statement
is given in the next corollary.

Corollary 6.6. Let γ ∈ (0, 1) and I ∈ I. Let the numbers λ and m0 be such that

λ ≥ 2
√

log 2|JI |+1
γ and

√
m0 > max

{√
4tγ , 3

2λ (1 + ∆I)
}

. Let the intervals I∗ ∈ I
and I be such that I∗ ∈ JbI(ω)

and Î (ω) ∈ JI , for any ω ∈ ΩI . Then on the set ΩI

the adaptive estimator α̂ fulfills

|α̂ − αI∗ |
αI∗

≤ 1

1 − ρ

λ (1 + ∆I∗)√
|I∗|

+
ρ

1 − ρ
,

where ρ = 2
√

tγ |I∗|−1.

Similar properties can be established for the statistic T I,J .

7 Proofs of the main results

7.1 Auxiliary statements.

Lemma 7.1. Let ξ1, ..., ξm be i.i.d. standard exponential r.v.’s and the numbers
β1, ..., βm satisfy the condition

∣∣∣∣
βi

β
− 1

∣∣∣∣ ≤ ∆, i = 1, ...,m,

where β = (β1 + ... + βm)/m and ∆ ∈ [0, 1]. Then, for every λ ≤ 2
3

√
m/(1 + ∆),

P

(∣∣∣∣∣

m∑

i=1

βi(ξi − 1)

∣∣∣∣∣ > λVm

)

≤ 2e−λ2/4,

where V 2
m = β2

1 + ... + β2
m.
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Proof. By Chebyshev inequality, for any u > 0,

P

(∣∣∣∣∣

m∑

i=1

βiξi

∣∣∣∣∣ > λVm

)

≤ E exp (u
∑m

i=1 βi (ξi − 1))

exp (uλVm)
.

Since ξ1, ..., ξn are independent, for any u < min
{
β−1

i

}
,

E exp

(
u

m∑

i=1

βi (ξi − 1)

)
=

m∏

i=1

E exp (uβi (ξi − 1)) =
m∏

i=1

exp (−uβi)

1 − uβi
.

Therefore

P

(∣∣∣∣∣

m∑

i=1

βiξi

∣∣∣∣∣ > λVm

)

≤ exp

(

−uλVm − u

m∑

i=1

βi −
m∑

i=1

log (1 − uβi)

)

.

This inequality with u = λ
2Vm

and the elementary inequality − log (1 − x) ≤ x + x2,
for x ≤ 1/3 yield

P

(∣∣∣∣∣

m∑

i=1

βiξi

∣∣∣∣∣ > λVm

)

≤ exp
(
−uλVm − u2V 2

m

)
= exp

(
−λ2

4

)
.

It remains to check that λ ≤ 2
√

m
3(1+∆) implies that u = λ

2Vm
< min

{
β−1

i

}
. Indeed

V 2
m =

∑m
i=1 β2

i ≥ mβ
2

and therefore,

βiu =
λβi

2Vm
≤ λβi

2β
√

m
≤ λ (1 + ∆)

2
√

m
≤ 1

3
,

which proves the lemma. �

In the proofs we shall use the following bounds. Recall that G (x) = +∞, for
x ≤ −1.

Lemma 7.2. For any δ ∈ [0, 1] and any real x, the function G (·) fulfills

δ (1 − δ) G (|x|) ≤ δG ((1 − δ)x) + (1 − δ) G (−δx) ≤ δ (1 − δ) G (− |x|) . (7.1)

Proof. The proof of these bounds is based on the simple fact that the function

H (x) = 2G (x) /x2, x > −1, (7.2)

is monotonously decreasing. �

Lemma 7.3. Let G−1
+ (x) , x ≥ 0 be the inverse of the function G (·) on the interval

[0,∞). Then
G−1

+ (x) ≤ 2
√

x, 0 ≤ x ≤ 1/2.

Let G−1
− (x) , x ≥ 0 be the inverse of the function G (·) on the interval (−1, 0]. Then

−G−1
− (x) ≥

√
x, −1/2 ≤ x ≤ 0.
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Proof. For any a > 0 and x ∈ [0, G(a)] it holds G−1
+ (x) ≤

√
2x

H(a) , where H (·) is

defined by (7.2). Taking a = 1.4 one gets the first inequality. If a ∈ (−1, 0] and

x ∈ [−G (a) , 0] it holds −G−1
− (x) ≥

√
2x

H(a) . The second inequality is obtained by

putting a = −0.7. �

We shall also make use of the following bounds of the statistic TI,J .

Lemma 7.4. Let ε = |J | / |I| and RI,J = bαJ−bαJc

bαI
. Then the statistic TI,J satisfies

ε (1 − ε) |I|G (|RI,J |) ≤ TI,J ≤ ε (1 − ε) |I|G (− |RI,J |) . (7.3)

Proof. The trivial equality |I| α̂I = |J | α̂J + |Jc| α̂Jc implies

α̂J

α̂I
− 1 = (1 − ε) RI,J and

α̂Jc

α̂I
− 1 = −εRI,J . (7.4)

Then the statistic TI,J can be written as

TI,J = |I| [εG ((1 − ε)RI,J) + (1 − ε) G (−εRI,J)] . (7.5)

Using (7.1) one gets the required bounds. �

7.2 Proof of Theorem 6.1

Let I ∈ I. For any J ∈ JI denote Jc = I \ J. In the following J ′ denotes one of
the intervals J, Jc or I. The definition of the sets I and JI implies that |J ′| ≥ m0.

Note that the estimator α̂J ′ can be written as α̂J ′ = αJ ′ + SJ ′ . Then, using
Lemma 7.1, for any λ ≤ 2

3

√
m0/(1 + ∆I), one gets

P (ΩI) ≥ 1 −
∑

J∈JI

P
(
Ωc

I,J

)
≥ 1 − (2 |JI | + 1) exp

(
−λ2/4

)
.

With λ ≥ 2
√

log 2|JI |+1
γ , it holds

P (ΩI) ≥ 1 − γ,

thus proving the part A of the theorem.
For the part B we have to show that on the random set ΩI the statistics TI,J

and T I,J obey |TI,J | ≤ tγ and
∣∣T I,J

∣∣ ≤ tγ , for any J ∈ JI .
For the proof we need some inequalities. Note that each αi satisfies αi ≤

αI (1 + ∆I) , for i ∈ I, and by summing α2
i over i ∈ J ′, it follows

V 2
J ′ ≤ (1 + ∆I)

2 α2
I

∣∣J ′∣∣ . (7.6)

The latter inequality implies that, on the set ΩI , it holds

|SJ ′ | ≤ λVJ ′/
∣∣J ′∣∣ ≤ λαI (1 + ∆I)

∣∣J ′∣∣−1/2
. (7.7)
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The decomposition α̂J ′ = αJ ′ + SJ ′ and the inequality (7.7) imply that, on the set
ΩI , ∣∣∣∣

α̂J ′

αJ ′

− 1

∣∣∣∣ ≤ λ (1 + ∆I)
∣∣J ′∣∣−1/2

. (7.8)

Note that
∣∣∣αJ−αJc

αI

∣∣∣ ≤ 2∆I and |J ′| ≥ m0. Then, under the assumption
√

m0 ≥
3λ (1 + ∆I) , the inequality (7.8) implies

|RI,J | ≤
2∆I + λ (1 + ∆I)

(
|J |−1/2 + |Jc|−1/2

)

1 − λ (1 + ∆I) |I|−1/2

≤ 2∆I + 2λ (1 + ∆I) m
−1/2
0

1 − λ (1 + ∆I)m
−1/2
0

≤ 3∆I + 3λ (1 + ∆I) m
−1/2
0 . (7.9)

We consider first the case of statistic TI . The bounds (7.3) and (7.9) yield

TI,J ≤ ε (1 − ε) |I|G (− |RI,J |) ≤
|I|
4

G
(
−3∆I − 3λ (1 + ∆I) m

−1/2
0

)
≤ tγ ,

and the assertion of Theorem 6.1 concerning TI follows.
In the same way we prove the assertion concerning T I . The inequality |J | · |Jc| ≤

|I|2 /4 implies, on the set ΩI ,

T I,J ≤ |I|
4

[
3∆I + 3λ (1 + ∆I) m

−1/2
0

]2

2
≤ t̂γ .

Theorem 6.1 is proved.

7.3 Proof of Theorem 6.4

To keep the same notations as in Theorem 6.1 denote J = I∗, Jc = I \ J =

[k∗ + 1, k∗ + m]. Using Lemma 7.1, for any λ and m0 satisfying 2
√

log 1
3γ ≤ λ ≤

2
3

√
m0/(1 + ∆I), one gets

P (ΩI,J) ≥ 1 − 3e−λ2/4 ≥ 1 − γ.

It suffices to show that the event ΩI,J implies TI,J ≥ tγ . The lower bound in Lemma
7.4 implies

TI,J ≥ ε (1 − ε) |I|G (|RI,J |) ,

with ε = |J | / |I| and RI,J = bαJ−bαJc

bαI
. Since k∗ ≥ m it follows that ε = k∗/(k∗+m) ≥

1/2. This and 1 − ε = m/ |I| imply

TI,J ≥ 1

2
mG (|RI,J |) , (7.10)
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Note that V 2
J = k∗α2, V 2

Jc = mβ2 and VI ≤ VJ + VJc . Then, similarly to the proof
of Theorem 6.1, on the set ΩI,J , it holds

|RI,J | ≥
|αJ − αJc | − λ

(
α/

√
k∗ + β/

√
m
)

αI + λ
(
α/

√
k∗ + β/

√
m
) .

For the change point model αJ = α, αJc = β and αI = αk∗/ (k∗ + m) +
βm/ (k∗ + m) . This yields

|RI,J | ≥
b − λ

(
1/
√

k∗ + (1 + b) /
√

m
)

1 + b m
k∗+m + λ

(
1/
√

k∗ + (1 + b) /
√

m
) ,

where b =
∣∣∣βα − 1

∣∣∣ . It is easy to see that, for a fixed m, the minimum over k∗ ≥ m

of the latter expression is attained for k∗ = m. Therefore

|RI,J | ≥
b − λ (2 + b) /

√
m

1 + b/2 + λ (2 + b) /
√

m
=

d − λ/
√

m

1/2 + λ/
√

m
,

where d = b/ (2 + b) . Together with (7.10) this yields

TI,J ≥ 1

2
mG

(
d − λ/

√
m

1/2 + λ/
√

m

)
.

Now the assertion of the theorem amounts to prove that the right hand side in the
latter inequality is greater than tγ . This is equivalent to

d − λ/
√

m

1/2 + λ/
√

m
≥ G−1

+

(
2tγ
m

)
.

Since G−1
+ (x) ≤ 2

√
x, for all x ∈ [0, 1/2] and m > 4tγ , it suffices to show that

d − λ/
√

m

1/2 + λ/
√

m
≥ 2

√
tγ
m

.

The latter inequality is implied by the conditions (6.2) and λ ≤ √
m of the theorem.

This concludes the proof.

7.4 Proof of Theorem 6.5

To keep the same notations as in the proof of Theorem 6.1 let J = I∗, Jc = I \I∗,
ε = |J | / |I| and RI,J = (α̂J − α̂Jc) /α̂I . It is clear that TI ≤ tγ implies TI,J ≤ tγ .
The bounds (7.1) imply

|I| ε (1 − ε) G (|RI,J |) ≤ TI,J ≤ tγ ,
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from which it follows that

|RI,J | ≤ G−1
+

(
tγ

ε (1 − ε) |I|

)
,

where G−1
+ (x) , x ≥ 0 is the inverse of the function G (·) on the interval [0,∞). Now

by the definition of the set JI one has ε = |J | / |I| ≥ 1/2. Since m0 > 4tγ it holds

tγ
ε (1 − ε) |I| ≤

1
4m0

1
2 |J |

≤ 1

2
.

An applications of the upper bound in Lemma 7.3 yields

|RI,J | ≤ 2

√
tγ

ε (1 − ε) |I| .

From the identities (7.4) it follows that RI,J =
(

bαJ
bαI

− 1
)

/ (1 − ε) , which together

with the previous inequality gives

∣∣∣∣
α̂J

α̂I
− 1

∣∣∣∣ ≤
2
√

(1 − ε) tγ√
ε |I|

≤ 2
√

tγ√
|J |

.

This implies ∣∣∣∣
δ

1 − δ

∣∣∣∣ ≤ 2

√
tγ |J |−1,

where δ = (α̂J − α̂I) /α̂J , which in turn implies |δ| ≤ ρ/ (1 − ρ) , where ρ =

2
√

tγ |J |−1, and the assertion concerning TI follows. The case of the statistic T I

can be handled in the same way.

7.5 Proof of Corollary 6.6

Since ΩI′ ⊂ ΩI , for any I ′ ⊂ I, Theorem 6.5 implies that on the set ΩI ,

|α̂I − α̂I∗ | ≤ α̂I∗
ρ

1 − ρ
.

From this it follows that, on the set ΩI ,

|α̂ − αI∗ | ≤ |α̂ − α̂I∗ | + |α̂I∗ − αI∗ | ≤
ρ

1 − ρ
αI∗ +

1

1 − ρ
|α̂I∗ − αI∗ | .

Since, on the set ΩI ,

|α̂I∗ − αI∗ | = |SI∗| ≤
λVI∗

|I∗| ,

one gets
|α̂ − αI∗ |

αI∗
≤ 1

1 − ρ

λVI∗

αI∗ |I∗|
+

ρ

1 − ρ
.
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The inequality V 2
I∗ ≤ (1 + ∆I∗)

2 α2
I∗ |I∗| (see (7.6)) implies

|α̂ − αI∗ |
αI∗

≤ 1

1 − ρ

λ (1 + ∆I∗)√
|I∗|

+
ρ

1 − ρ
.

8 Appendix

Table 3. The list of distribution functions used in the simulations.

F (x) Parameters

Pareto 1 − x−1/α, x ≥ 1 α = 1

Pareto-log F (x) = 1 − (x/e)−1/α log x, x ≥ e α = 1

Pareto-CP
1 −

“
x
x1

”
−1/α1

, if x1 ≤ x < x2

1 −
“

x2

x1

”
−1/α1

“
x
x2

”
−1/α2

, if x > x2

α1 = 1/2, α2 = 1
x1 = 1, x2 = 5

Cauchy-plus F (x) = 2
π

arctan x, x ≥ 0

GPD 1 − (1 + α x−a
σ

)−1/α, x ≥ a a = 0, σ = 1, α = 1

Hall model 1 − cx−1/α(1 + x−1/β), x ≥ 1 α = 1, β = 1
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Figure 4. 100 realizations of the Hill estimator for Cauchy-plus (left) and Pareto-CP (right)

d.f.’s and the corresponding fitted Pareto parameters. Here the dark lines represent the

fitted Pareto parameter computed from the approximation formula (3.5) and the light ones

are the corresponding Hill plots.
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Figure 5. 100 realizations of the Hill estimator for GPD (left) d.f. and for the Hall model

(right) and the corresponding fitted Pareto parameters. Here the dark lines represent the

fitted Pareto parameter computed from the approximation formula (3.5) and the light ones

are the corresponding Hill plots.
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Figure 6. Box-plots of selected intervals (in %) and the adaptive estimators for Pareto d.f.

from 500 realization for different sample sizes.
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Figure 7. Box-plots of selected intervals (in %) and the adaptive estimators for Cauchy-plus

d.f. from 500 realization for different sample sizes.
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Figure 8. Box-plots of selected intervals (in %) and the adaptive estimators for Pareto-log

d.f. from 500 realization for different sample sizes.
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Figure 9. Box-plots of selected intervals (in %) and the adaptive estimators for Pareto-CP

d.f. from 500 realization for different sample sizes.
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Université de Bretagne Sud
rue Yves Mainguy, Tohannic
56000 Vannes, France
E-mail: ion.grama@univ-ubs.fr

Vladimir Spokoiny

Weierstrass Institute
Mohrenstr. 39
D-10117 Berlin, Germany
E-mail: spokoiny@wias-berlin.de

Received July 12, 2006


