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Consider two-dimensional differential system with homogeneities of the 4th order

dxj

dt
= a

j
αβγδx

αxβxγxδ (j, α, β, γ, δ = 1, 2), (1)

where the coefficient tensor a
j
αβγδ is symmetrical in lower indices in which the comp-

lete convolution holds.
Consider also the group of center-affine transformations GL(2, R) given by the

equalities

x̄1 = αx1 + βx2, x̄2 = γx1 + δx2, ∆ = det

(

α β

γ δ

)

6= 0.

Further will use the notations

a1
1111 = a, a1

1112 = b, a1
1122 = c, a1

1222 = d, a1
2222 = e, a2

1111 = f, a2
1112 = g,

a2
1122 = h, a2

1222 = k, a2
2222 = l, x1 = x, x2 = y. (2)

According to [1] and taking into consideration (2) the representation operators
of the group GL(2, R) in the space of coefficients and variables of the system (1) will
take the form

X1 = x
∂

∂x
− 3a

∂

∂a
− 2b

∂

∂b
− c

∂

∂c
+ e

∂

∂e
− 4f

∂

∂f
− 3g

∂

∂g
− 2h

∂

∂h
− k

∂

∂k
;

X2 = y
∂

∂x
+ f

∂

∂a
+ (g − a)

∂

∂b
+ (h − 2b)

∂

∂c
+ (k − 3c)

∂

∂d
+ (l − 4d)

∂

∂e
−
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−f
∂

∂g
− 2g

∂

∂h
− 3h

∂

∂k
− 4k

∂

∂l
;

X3 = x
∂

∂y
− 4b

∂

∂a
− 3c

∂

∂b
− 2d

∂

∂c
− e

∂

∂d
+ (a − 4g)

∂

∂f
+

+(b − 3h)
∂

∂g
+ (c − 2k)

∂

∂h
+ (d − l)

∂

∂k
+ e

∂

∂l
;

X4 = y
∂

∂y
− b

∂

∂b
− 2c

∂

∂c
− 3d

∂

∂d
− 4e

∂

∂e
+ f

∂

∂f
− h

∂

∂h
− 2k

∂

∂k
− 3l

∂

∂l
. (3)

The operators (3) form a four-dimensional reductive Lie algebra [1].

Let ã = (a, b, ..., l) ∈ E10(ã), where E10(ã) is Euclidean space of the coefficients
of the right-hand sides of the system (1). Denote by ã(q) the point from E10(ã)
that corresponds to the system, obtained from the system (1) with coefficients ã by
a transformation q ∈ GL(2, R).

Definition 1. Call the set O(ã) = {ã(q)|q ∈ GL(2, R)} the GL(2, R)-orbit of the
point ã for the system (1).

Definition 2. Call the set M ⊆ E10(ã) the GL(2, R)-invariant if for any point
ã ∈ M its orbit O(ã) ⊆ M .

It is known from [1] that

dimRO(ã) = rankM1, (4)

where M1 is the following matrix

M1 =









3a 2b c 0 −e 4f 3g 2h k 0
−f a − g 2b − h 3c − k 4d − l 0 f 2g 3h 4k

4b 3c 2d e 0 4g − a 3h− b 2k − c l − d −e

0 b 2c 3d 4e −f 0 h 2k 3l









,

(5)

constructed on coordinate vectors of operators (3).

Will use the following notations for the matrix M1: denote by ∆ijkl the minor

of the 4th order constructed on columns i, j, k, l, (i, j, k, l = 1, 10); denote by ∆ijk
lmn

the minor of the 3rd order constructed on lines i, j, k, (i, j, k = 1, 4) and columns
l, m, n, (l,m, n = 1, 10); and by ∆ij

kl will be denoted the minor of the 2nd order
constructed on lines i, j, (i, j = 1, 4) and columns k, l, (k, l = 1, 10).

For the system (1) two comitants of the first order with respect to its coefficients
are known from [2]

F3 = (a + g)x3 + 3(b + h)x2y + 3(c + k)xy2 + (d + l)y3,

F5 = −fx5 + (a− 4g)x4y + (4b − 6h)x3y2 + (6c − 4k)x2y3 + (4d− l)xy4 + ey5. (6)

According to [3], write a transvectant of index k for binary forms f and ϕ as
follows
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(f, ϕ)(k) =
(r − k)!(ρ − k)!

r!ρ!

k
∑

h=0

(−1)hCh
k

∂kf

∂xk−h∂yh

∂kϕ

∂xh∂yk−h
, (7)

where r and ρ are degrees of these forms with respect to x and y correspondingly.

According to [4], the transvectant (7) on two comitants of the system (1) is a
comitant (invariant) of this system too.

Taking into consideration the above mentioned, the following comitants and
invariants of the system (1) were constructed in [2]:

L1 = (F5, F5)
(2), L2 = (F5, F5)

(4), L3 = (F3, F3)
(2),

L4 = (F3, F5)
(1), L5 = (F3, F5)

(2), L6 = (F3, F5)
(3),

L7 = (L2, F5)
(2), B1 = (L3, L3)

(2), B2 = (L1, L1)
(6),

B3 = (L1, L4)
(6), B4 = (L3, L6)

(2), B5 = (L5, L5)
(4),

B6 = ((L3, L5)
(2), L3)

(2), B7 = ((L7, L7)
(2), L2)

(2),

B8 = ((((F3, L4)
(2), F3)

(2), L5)
(2), L5)

(4),

B9 = (((L7, L7)
(2), L7)

(1), L7)
(3),

C2 = (L1, L1)
(2). (8)

Lemma 1. For F5 ≡ 0 the rang of matrix M1 is equal to four if and only if B1 6= 0,
where B1 is from (8).

Proof. Taking into consideration (6) from F5 ≡ 0 we obtain

e = f = 0, a = 4g, b =
3

2
h, k =

3

2
c, l = 4d. (9)

As conditions (9) hold the matrix M1 takes the form

M
(1)
1 =









12g 3h c 0 0 0 3g 2h 3
2c 0

0 3g 2h 3
2c 0 0 0 2g 3h 6c

6h 3c 2d 0 0 0 3
2h 2c 3d 0

0 3
2h 2c 3d 0 0 0 h 3c 12d









. (10)

As conditions (9) hold the invariant B1 takes the form

B1 = −
625

8
(S2 − 4TR), (11)

where
R = 2cg − h2, S = 4dg − ch, T = 2dh − c2. (12)

We note that all nonzero minors of the 4th order of matrix M
(1)
1 up to an constant

factor coincide with ∆1234 = −
108

625
B1.



28 E. NAIDENOVA, M.N. POPA, V. ORLOV

Hence, for F5 ≡ 0, B1 6= 0 the rang of the matrix (5) is equal to four. Lemma 1
is proved.

Lemma 2. For F5 ≡ 0 the rang of matrix M1 is equal to three if and only if holds

B1 = 0, L3 6≡ 0, (13)

where B1, L3 are from (8).

Proof. As conditions (9) hold, considering (1) and (2) the comitant L3 takes the
form

L3 =
25

2
(Rx2 + Sxy + Ty2), (14)

where R, S, T are from (12). Calculations yield that any nonzero third order minor
of the matrix (10) up to a constant factor coincides with one of the following minors:

∆123
123 = −36hR + 18gS; ∆123

124 = −27cR; ∆123
134 = −9cS;

∆123
234 = −

9

2
cT ; ∆124

123 = 36gR; ∆124
124 = 27gS;

∆124
134 = 36gT ; ∆124

234 = −
9

4
(−3hT + 2dR);

∆134
123 = −72gT + 27hS; ∆134

124 = 54dR; ∆134
134 = 18dS;

∆134
234 = 9dT ; ∆234

123 = −18hR; ∆234
124 = −

27

2
hS;

∆234
134 = −18hT ; ∆234

234 = −9cT +
9

2
dS. (15)

The necessity of the conditions (13) follows from Lemma 1, (14) and(15). It is
evident that, according to (11) for B1 = 0, S2 = 4TR holds and from L3 6≡ 0 (see
(14)) at least one of R, S and T will be nonzero. This fact with c2 +d2 +g2 +h2 6= 0
ensure that at least one of minors (15) will be nonzero. Lemma 2 is proved.

Lemma 3. For F5 ≡ 0 the rang of matrix M1 is equal to two if and only if

L3 ≡ 0, F3 6≡ 0, (16)

where F3 is from (6) and L3 is from (8).

Proof. According to (9) from (14) for L3 ≡ 0 we obtain T = R = S = 0, where
R, S, T are from (12). This implies B1 = 0 and from Lemma 2 rangM1 < 3. Will
show that in this case rangM1 = 2 if and only if

F3 = 5gx3 +
15

2
hx2y +

15

2
cxy2 + 5dy3 6≡ 0. (17)
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And this is ensured by the existence of the following second order minors of the

matrix M
(1)
1

∆12
12 = 36g2, ∆34

12 = 9h2, ∆12
34 =

3

2
c2, ∆34

34 = 6d2.

Lemma 3 is proved.
The next result is evident.

Lemma 4. For F5 ≡ 0 the rang of matrix M1 is equal to zero if and only if F3 ≡ 0,
where F3 is from (6).

From Lemmas 1–4 and equality (4) follows

Theorem 5. For F5 ≡ 0 the dimension of GL(2, R)-orbit of the system (1) is equal

to

4 for B1 6= 0;

3 for B1 = 0, L3 6≡ 0;

2 for L3 ≡ 0, F3 6≡ 0;

0 for F3 ≡ 0,

where F3 and F5 are from (6), and B1, L3 are from (8).

Lemma 6. For F3 ≡ 0 the rang of matrix M1 is equal to four if and only if

3L1L2 + 105C2 + 26F5L7 6≡ 0, (18)

where F3 and F5 are from (6), and L1, L2, L7, C2 are from (8).

Proof. Taking into consideration (6) from F3 ≡ 0 we obtain

a = −g, b = −h, c = −k, d = −l. (19)

On the other hand, according to [5] such GL(2, R)-transformation exists that the
comitant F5 will take the form F5 = yF̃4, where F̃4 is the polynomial of the forth
order on variables, corresponding to the system (1) after the transformation. Due
to this we obtain that f = 0. As this holds from conditions (19) we obtain that the
matrix M1 takes the form

M
(2)
1 =









−3g −2h −k 0 −e 0 3g 2h k 0
0 −2g −3h −4k −5l 0 0 2g 3h 4k

−4h −3k −2l e 0 5g 4h 3k 2l −e

0 −h −2k −3l 4e 0 0 h 2k 3l









. (20)

Nonzero 4th order minors of the matrix (20) will coincide up to the numerical factor
with one of the following:

∆1234 = 12eg2k − 9egh2 + 36g2l2 − 129ghkl + 72gk3 + 72h3l − 48h2k2;



30 E. NAIDENOVA, M.N. POPA, V. ORLOV

∆1235 = −48eg2l + 156eghk − 108eh3 − 30ghl2 + 90gk2l − 60h2kl;

∆1236 = 60g3k − 45g2h2;

∆1245 = 24e2g2 + 39eghl + 144egk2 − 144eh2k + 135gkl2 − 120h2l2;

∆1246 = 90g3l − 60g2hk; ∆1256 = −120eg3 − 75g2hl;

∆1345 = 36e2gh + 126egkl + 36eh2l − 96ehk2 + 90gl3 − 60hkl2;

∆1346 = 135g2hl − 120g2k2; ∆1356 = −180eg2h − 150g2kl;

∆1456 = −240eg2k − 225g2l2;

∆2345 = −12e2gk + 27e2h2 − 12egl2 + 114ehkl − 72ek3 + 60hl3 − 45k2l2;

∆2346 = −30g2kl + 90gh2l − 60ghk2; ∆2356 = 60eg2k − 135egh2 − 75ghkl;

∆2456 = 30eg2l − 180eghk − 150ghl2; ∆3456 = 45eghl − 120egk2 − 75gkl2. (21)

Also holds the equality

3L1L2 + 105C2 + 26F5L7 = −2∆1236x
8 − 4∆1246x

7y − 2(∆1256 + 3∆1346)x
6y2−

−4(∆1356 + 2∆2346)x
5y3 + 2(−5∆1234 + ∆15610 − 3∆2356)x

4y4−

−4(2∆1235 + ∆2456)x
3y5 − 2(3∆1245 + ∆3456)x

2y6 − 4∆1345xy7 − 2∆2345y
8. (22)

Let prove the necessity of condition (18). Assume the contrary, i.e. for 3L1L2 +
105C2 + 26F5L7 ≡ 0 there exists at least one nonzero 4th order minor of the matrix
M1. Taking into consideration (6), (8), (19) , (21) and (22), from 3L1L2 + 105C2 +
26F5L7 ≡ 0 we obtain the following series of conditions for coefficients of the system
(1):

I. g = h = k = 0; (23)

II. g = h = 0, e = −
5l2

8k
, k 6= 0; (24)

III. g = 0, l =
2k2

3h
, e = −

10k3

27h2
, h 6= 0; (25)

IV. k =
3h2

9g
, l =

h3

2g2
, e = −

5h4

16g3
, g 6= 0. (26)

With the aid of (21) one can verify that while any of the series of the conditions
(23)–(26) holds, all the 4th order minors of the matrix (20) will be equal to zero.
Thus obtained contradiction proves the necessity of condition (18).

The sufficiency of condition (18) is ensured by equality (22). Lemma 6 is proved.

Lemma 7. For F3 ≡ 0 the rang of matrix M1 is equal to three if and only if

3L1L2 + 105C2 + 26F5L7 ≡ 0, L1 6≡ 0, (27)

where F3 and F5 are from (6), and L1, L2, L7, C2 are from (8).
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Proof. In proof we will use the GL(2, R)-transformation from the proof of Lemma
6, and therefore, the equality f = 0 can be assumed. According to Lemma 6, as
first condition from (27) holds for the coefficients of the system (1) besides (19) we
obtain the values (23)–(26).

Consider the conditions (23). The matrix M1 takes the form

M
(3)
1 =









0 0 0 0 −e 0 0 0 0 0
0 0 0 0 −5l 0 0 0 0 0
0 0 −2l e 0 0 0 0 2l −e

0 0 0 −3l 4e 0 0 0 0 3l









(28)

and the comitant L1 takes the form

L1 = −2l2y6. (29)

Hence, it is evident that the condition L1 6≡ 0 is sufficient and necessary.

Consider the conditions (24). The matrix M1 takes the form (with e = −
5l2

8k
)

M
(4)
1 =









0 0 −k 0 −e 0 0 0 k 0
0 0 0 −4k −5l 0 0 0 0 4k
0 −3k −2l e 0 0 0 3k 2l −e

0 0 −2k −3l 4e 0 0 0 2k 3l









(30)

and the comitant L1 takes the form L1 = −3
4(4kx+ ly)2y4. Since k 6= 0, considering

(30) and (24) we obtain L1 6≡ 0 and ∆123
234 = −12k3 6= 0, i.e. rangM

(4)
1 = 3.

Consider the conditions (25). The matrix M1 takes the form (with the values of
the parameters l and e from (25))

M
(5)
1 =









0 −2h −k 0 −e 0 0 2h k 0
0 0 −3h −4k −5l 0 0 0 3h 4k

−4h −3k −2l e 0 0 4h 3k 2l −e

0 −h −2k −3l 4e 0 0 h 2k 3l









(31)

and the comitant L1 takes the form

L1 = −
4

27h2
(3hx + ky)4y2.

So, as h 6= 0 we get L1 6≡ 0 as well as ∆123
123 = −24h3 6= 0.

Consider the conditions (26).

The matrix M1 takes the form M
(2)
1 (with the values of the parameters k, l and

e from (26)), and the comitant L1 takes the form

L1 = −
1

32g4
(2gx + hy)6.

Since g 6= 0 we obtain L1 6≡ 0 and ∆123
126 = 30g3 6= 0, i.e. rangM

(2)
1 = 3.

Lemma 7 is proved.
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Lemma 8. For F3 ≡ 0 the rang of matrix M1 is equal to two if and only if

L1 ≡ 0, F5 6≡ 0, (32)

where F3 and F5 are from (6), and L1 is from (8).

Proof. As C2 = (L1, L1)
(2) (see (8)) it is evident that from L1 ≡ 0 follows C2 ≡ 0.

Moreover, as L1 is the Hessian of the comitant F5 then, for L1 ≡ 0 it follows
F5 = (αx + βy)5, a, b ∈ R (see [3]). Considering (8) it is easy to verify that the
transvectant L7 = (((αx+βy)5, (αx+βy)5)4, (αx+βy)5)2 = 0. Hence, the condition
L1 ≡ 0 implies 3L1L2 + 105C2 + 26F5L7 ≡ 0 and then from Lemma 7 follows the
necessity of the conditions (32).

Let prove the sufficiency. Assume L1 ≡ 0, i.e. F5 must be of the form F5 =
(αx + βy)5 (see above). On the other hand, as it was mentioned in the proof of
Lemma 6, we assume f = 0 due to a GL(2, R)-transformation. Hence α = 0 and
considering (19) and (6) we obtain g = h = k = l = 0, F5 = ey5. In this case the
matrix M1 takes the form

M
(6)
1 =









0 0 0 0 −e 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 e 0 0 0 0 0 −e

0 0 0 0 4e 0 0 0 0 0









. (33)

It is evident that for F5 ≡ 0 all 2nd order minors of the matrix M
(6)
1 will be equal

to zero, and for F5 6≡ 0 the 2nd order minor ∆13
45 = e2 will be nonzero.

Lemma 8 is proved.
With the aid of Lemmas 4-8 and equality (4) is proved

Theorem 9. For F3 ≡ 0 the dimension of GL(2, R)-orbit of the system (1) is equal

to

4 for 3L1L2 + 105C2 + 26F5L7 6≡ 0;

3 for 3L1L2 + 105C2 + 26F5L7 ≡ 0, L1 6≡ 0;

2 for L1 ≡ 0, F5 6≡ 0;

0 for F5 ≡ 0,

where F3 and F5 are from (6), and L1, L2, L7, C2 are from (8).

Lemma 10. For F3F5 6≡ 0 the rang of matrix M1 is equal to four if and only if

12L2
4 − 3L3F

2
5 + 6L1F

2
3 6≡ 0, (34)

where F3, F5 are from (6) and L1, L3, L4 are from (8).

Proof. The sufficiency of the condition (34) follows from the equality

12L2
4−3L3F

2
5 +6L1F

2
3 = (∆1267+∆1678)x

12+(4∆1268+2∆1367+2∆1679+4∆2678)x
11y+

+(∆1236 +5∆1269 +10∆1278 +9∆1368 +∆1467 +∆16710 +3∆1689 +2∆2367 +8∆2679+
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+6∆3678)x
10y2+(4∆1237+2∆1246+2∆12610+16∆1279+12∆1369+24∆1378+6∆1468+

+2∆16810+4∆1789+12∆2368+4∆26710+12∆2689+12∆3679+4∆4678)x
9y3+(6∆1238+

+8∆1247+∆1256+7∆12710+14∆1289+3∆1346+5∆13610+40∆1379+9∆1469+18∆1478+

+∆1568+∆16910+3∆17810+18∆2369+36∆2378+8∆2468−∆2567+8∆26810+16∆2789−

−2∆3467 + 6∆36710 + 18∆3689 + 8∆4679 + ∆5678)x
8y4 + (4∆1239 + 12∆1248 + 4∆1257+

+8∆12810 + 12∆1347 + 2∆1356 + 18∆13710 + 36∆1389 + 4∆14610 + 32∆1479 + 2∆1569+

+4∆1578 + 2∆17910 + 4∆2346 + 8∆23610 + 64∆2379 + 16∆2469 + 32∆2478 + 4∆26910+

+12∆27810+2∆3567+12∆36810+24∆3789+4∆46710+12∆4689+2∆5679)x
7y5+(∆12310+

+8∆1249 + 6∆1258 + 3∆12910 + 18∆1348 + 8∆1357 + 21∆13810 + ∆1456 + 15∆14710+

+30∆1489 + ∆15610 + 8∆1579 + ∆18910 + 16∆2347 + 3∆2356 + 30∆23710 + 60∆2389+

+8∆24610+64∆2479+3∆2569+6∆2578+8∆27910+6∆3469+12∆3478−3∆3568+6∆36910+

+18∆37810−∆4567 +8∆46810 +16∆4789 +∆56710 +3∆5689)x
6y6 +(2∆12410 +4∆1259+

+12∆1349 + 12∆1358 + 8∆13910 + 4∆1457 + 18∆14810 + 4∆15710 + 8∆1589 + 24∆2348+

+12∆2357 +36∆23810 +2∆2456 +32∆24710 +64∆2489 +2∆25610 +16∆2579 +4∆28910+

+4∆34610+32∆3479+12∆37910−2∆4568+4∆46910+12∆47810+2∆56810+4∆5789)x
5y7+

+(∆12510 + 3∆13410 + 8∆1359 + 6∆1458 + 7∆14910 + 5∆15810 + 16∆2349 + 18∆2358+

+14∆23910 + 8∆2457 + 40∆24810 + 9∆25710 + 18∆2589 + ∆3456 + 18∆34710 + 36∆3489+

+∆35610 + 8∆3579 + 6∆38910 − ∆4569 − 2∆4578 + 8∆47910 + ∆56910 + 3∆57810)x
4y8+

+(2∆13510 +4∆1459 +2∆15910 +4∆23410 +12∆2359 +12∆2459 +16∆24910 +12∆25810+

+4∆3457+24∆34810+6∆35710+12∆3589+4∆48910+2∆57910)x
3y9+(∆14510+3∆23510+

+8∆2459 + 5∆25910 + 6∆3458 + 10∆34910 + 9∆35810 + ∆45710 + 2∆4589+

+∆58910)x
2y10 +(2∆24510 +4∆3459 +4∆35910 +2∆45810)xy11 +(∆34510 +∆45910)y

12,

(35)
where ∆ijkl, (1 ≤< j < k < l ≤ 10) are the minors of the matrix M1.

Let us prove the necessity of the condition (34). Assume the contrary, i.e. sup-
pose that the condition

12L2
4 − 3L3F

2
5 + 6L1F

2
3 ≡ 0 (36)

is satisfied. We claim that in this case all minors ∆ijkl (1 ≤< j < k < l ≤ 10) of the
fourth degree vanish. Indeed, since the comitant F3 6≡ 0 is a cubic binary form in x

and y, via a center-affine transformation [3] it can be brought to one of the following
3 canonical forms (depending on its factorization over C):

(i) Ax(x2 ± y2); (ii) Ax2y; (iii) Ax3,
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where A 6= 0 due to F3 6≡ 0. According to [5], these canonical forms can be used in
order to construct the transformed system (1) via the same center-affine transfor-
mation. We shall consider each case separately.

(i) F3 = Ax(x2 ± y2). Taking into consideration (6) we obtain the following
values for the coefficients of the system (1):

a = A − g, b = −h, c = ±
1

3
A − k, d = −l.

Then considering (36) we get the following relations:

b = d = e = f = h = l = 0, a = 4g =
4

5
A, k =

3

2
c = ±

1

5
A.

However for these values of the coefficients of system (1) we obtain F5 ≡ 0 and this
contradicts to lemma’s condition F3F5 6≡ 0.

(ii) F3 = Ax2y. Considering (6) in this case we have

a = −g, b =
1

3
A − h, c = −k, d = −l.

Then from the identity (36) we calculate

a = c = d = e = f = g = k = l = 0, b =
1

3
A − h. (37)

In this case the matrix M1 takes the form

M
(7)
1 =









0 2
3(A − 3h) 0 0 0 0 0 2h 0 0

0 0 2
3A − 3h 0 0 0 0 0 3h 0

4
3(A − 3h) 0 0 0 0 0 −1

3A + 4h 0 0 0
0 1

3(A − 3h) 0 0 0 0 0 h 0 0









and F5 = 2
3 (2A − 15h)x3y2. It is easy to observe that all 4th order minors of the

matrix M
(7)
1 are equal to zero.

(iii) F3 = Ax3. In the same manner as above in this case we obtain

a = A − g, b = −h, c = −k, d = −l.

and then from (36) we get

b = c = d = e = h = k = l = 0, a = A − g. (38)

For these values of the coefficients of system (1) the matrix M1 takes the form

M
(8)
1 =









3(A − g) 0 0 0 0 4f 3g 0 0 0
−f A − 2g 0 0 0 0 f 2g 0 0
0 0 0 0 0 −A + 5g 0 0 0 0
0 0 0 0 0 −f 0 0 0 0








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and F5 = −
[

fx + (5g − A)y]x4. And we observe again that all 4th order minors of

the matrix M
(8)
1 are equal to zero. As all possible cases are considered our claim is

proved. This has completed the proof of Lemma 10.

Lemma 11. For F3F5 6≡ 0 the rang of matrix M1 is equal to three if and only if

12L2
4 − 3L3F

2
5 + 6L1F

2
3 ≡ 0, (39)

where F3, F5 are from (6) and L1, L3, L4 are from (8).

Proof. The necessity follows from Lemma 10.

Let prove the sufficiency. Assume 12L2
4 − 3L3F

2
5 + 6L1F

2
3 ≡ 0. Since F3F5 6≡ 0

from the proof of Lemma 10 it follows that we need to consider only two series of
relations among the coefficients: (37) and (38).

If the relations (37) hold then the sufficiency is ensured by the equality

F3F
2
5 = 3(∆123

123 + 4∆123
129 + 9∆123

138 − 6∆123
378)x

8y5.

In the case when (38) holds then the sufficiency is ensured by the equality

3F3F
2
5 = ∆124

167x
13 + 2(∆124

126 + 3∆124
168 + 4∆124

267)x
12y − (∆123

126 + 3∆123
168 + 4∆123

267)x
11y2.

Lemma 11 is proved.

From Theorems 5, 9 and Lemmas 10–11 follows

Theorem 12. The dimension of GL(2, R)-orbit of the system (1) is equal to

4 for F5 ≡ 0, B1 6= 0, or

F3 ≡ 0, 3L1L2 + 105C2 + 26F5L7 6≡ 0, or

F3F5(12L
2
4 − 3L3F

2
5 + 6L1F

2
3 ) 6≡ 0;

3 for F5 + B1 ≡ 0, L3 6≡ 0, or

F3 + 3L1L2 + 105C2 + 26F5L7 ≡ 0, L1 6≡ 0, or

F3F5 6≡ 0, 12L2
4 − 3L3F

2
5 + 6L1F

2
3 ≡ 0;

2 for F5 + L3 ≡ 0, F3 6≡ 0, or

F3 ≡ L1 ≡ 0, F5 6≡ 0;

0 for F3 ≡ F5 ≡ 0,

where F3 and F5 are from (6), and B1, L1, L2, L3, L4, L7, C2 are from (8).

The authors tender thanks to Professor N.I. Vulpe for effective discussion of the
results of the paper.
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