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Minimum Cost Multicommodity Flows

in Dynamic Networks

and Algorithms for their Finding

Maria Fonoberova,∗ Dmitrii Lozovanu †

Abstract. We consider the minimum cost multicommodity flow problem in dynamic
networks with time-varying capacities of arcs and transit times on arcs that depend on
the sort of commodity entering them. We assume that cost functions, defined on arcs,
are nonlinear and depend on time and flow, and the demand function also depends on
time. Moreover, we study the problem in the case when transit time functions depend
on time and flow. The modification of the time-expanded network method and new
algorithms for solving the considered classes of problems are proposed.

Mathematics subject classification: 90B10, 90C35, 90C27.
Keywords and phrases: Network flows, dynamic networks, multicommodity flows,
dynamic minimum cost flow problem.

1 Introduction and Problem Formulation

In this paper we study the dynamic version of the nonlinear minimum cost multi-
commodity network flow problem, which generalizes the classical static flow problem
and extends some dynamic problems considered in [1,3,4]. We consider this problem
on dynamic networks with time-varying capacities of arcs and transit times on arcs
that depend on the sort of commodity entering them, what means that the transit
time functions on the set of arcs for different commodities can be different. We
assume that cost functions, defined on arcs, are nonlinear and depend on time and
flow. Moreover, we assume that the demand function also depends on time. To
solve the considered dynamic problem, we reduce it to the static one on a special
time-expanded network, the structure of which differs from the standard one intro-
duced by Ford and Fulkerson in [3]. We propose algorithms for solving the general
minimum cost multicommodity flow problem and its variants with different forms of
restrictions by parameters of network and time. We also consider dynamic networks
with transit time functions that depend on flow and time and elaborate methods for
solving problems on such networks.
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The minimum cost multicommodity dynamic flow problem asks to find the flow
of a set of commodities through a network with given time horizon, satisfying all
supplies and demands with minimum cost such that link capacities are not exceeded.
We consider the discrete time model, in which all times are integral and bounded
by horizon T . The time horizon is the time until which the flow can travel in the
network and defines the makespan T = {0, 1, . . . , T} of time moments we consider.
Time is measured in discrete steps, so that if one unit of flow of commodity k leaves
node u at time t on arc e = (u, v), one unit of flow arrives at node v at time t + τk

e ,
where τk

e is the transit time on arc e for commodity k. Without loosing generality,
we assume that no arcs enter sources or exit sinks. Accordingly the sources are
nodes through which flow enters the network and the sinks are nodes through which
flow leaves the network.

We consider a directed network N = (V,E,K,w, u, τ, d, ϕ) with set of vertices
V , set of arcs E and set of commodities K = {1, 2, . . . , q} that must be routed
through the same network. A dynamic network N consists of capacity function
w: E × K × T → R+, mutual capacity function u: E × T → R+, transit time
function τ : E × K → R+, demand function d: V × K × T → R and cost function
ϕ: E×R+×T → R+. So, τe = (τ1

e , τ2
e , . . . , τ

q
e ) is a vector, each component of which

reflects the transit time on arc e for commodity k ∈ K. Such formulation of the
problem extends models studied in [1, 2, 4, 5]. The demand function dk

v(t) satisfies
the following conditions:

a) there exists v ∈ V for every k ∈ K with dk
v(0) < 0;

b) if dk
v(t) < 0 for a node v ∈ V for commodity k ∈ K then dk

v(t) = 0,
t = 1, 2, . . . , T ;

c)
∑

t∈T

∑

v∈V

dk
v(t) = 0,∀k ∈ K.

Nodes v ∈ V with
∑

t∈T dk
v(t) < 0, k ∈ K, are called sources for commodity k,

nodes v ∈ V with
∑

t∈T dk
v(t) > 0, k ∈ K, are called sinks for commodity k and

nodes v ∈ V with
∑

t∈T dk
v(t) = 0, k ∈ K, are called intermediate for commodity k.

A multicommodity dynamic flow in N is a function x: E×T → R+ that satisfies
the following conditions:

∑

e∈E+(v)

t−τk
e ≥0

xk
e(t − τk

e ) −
∑

e∈E−(v)

xk
e(t) = dk

v(t), ∀ t ∈ T , ∀ v ∈ V, ∀k ∈ K; (1)

∑

k∈K

xk
e(t) ≤ ue(t), ∀ t ∈ T , ∀e ∈ E; (2)

0 ≤ xk
e(t) ≤ wk

e (t), ∀ t ∈ T , ∀ e ∈ E, ∀k ∈ K; (3)

xk
e(t) = 0, ∀ e ∈ E, t = T − τk

e + 1, T , ∀k ∈ K, (4)

where E−(v) = {(v, z) | (v, z) ∈ E}, E+(v) = {(z, v) | (z, v) ∈ E}.
Here the function x defines the value xk

e(t) of flow of commodity k entering arc
e at time t. It is easy to observe that the flow of commodity k does not enter arc
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e at time t if it will have to leave the arc after time T ; this is ensured by condition
(4). Capacity constraints (3) mean that at most wk

e (t) units of flow of commodity k

can enter arc e at time t. Mutual capacity constraints (2) mean that at most ue(t)
units of flow can enter arc e at time t. Conditions (1) represent flow conservation
constraints.

To model transit costs, which may change over time, we define the cost function
ϕe(x

1
e(t), x

2
e(t), . . . , x

q
e(t), t) which indicates the cost of shipping flows over arc e

entering arc e at time t. The total cost of the dynamic multicommodity flow x is
defined as follows:

c(x) =
∑

t∈T

∑

e∈E

ϕe(x
1
e(t), x

2
e(t), . . . , x

q
e(t), t).

The object of the minimum cost multicommodity dynamic flow problem is to find a
flow that minimizes this objective function.

It is important to notice that in many practical cases the cost functions are
presented in the following form:

ϕe(x
1
e(t), x

2
e(t), . . . , x

q
e(t), t) =

∑

k∈K

ϕk
e(x

k
e(t), t). (5)

The case when τk
e = 0, ∀ e ∈ E, ∀ k ∈ K and T = 0 can be considered as the

static minimum cost multicommodity flow problem.

2 The Main Results

We show that the minimum cost multicommodity flow problem on network N

can be reduced to a static problem on an auxiliary network NT , which we name
the time-expanded network. The advantage of this approach is that it turns the
problem of determining a minimum cost dynamic flow problem into a classical static
minimum cost flow problem on the time-expanded network, which we regard as a
static representation of the dynamic network.

2.1 Constructing the Time-Expanded Network for the General

Case of the Problem

So, we study the general case of the considered minimum cost flow problem when
transit times on an arc are different for different commodities. We define the time-
expanded network NT = (V T , ET ,K, dT , wT , uT , ϕT ) as follows:

1. V
T
: = {v(t) | v ∈ V, t ∈ T };

2. Ṽ T : = {e(v(t)) | v(t) ∈ V
T
, e ∈ E−(v), t ∈ T \ T};

3. V T : = V
T
∪ Ṽ T ;
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4. ẼT : = {ẽ(t) = (v(t), e(v(t))) | v(t) ∈ V
T

and corresponding e(v(t)) ∈ Ṽ T , t ∈
T \ T};

5. E
T
: = {ek(t) = (e(v(t)), z(t+τk

e )) | e(v(t)) ∈ Ṽ T , z(t+τk
e ) ∈ V

T
, e = (v, z) ∈

E, 0 ≤ t ≤ T − τk
e , k ∈ K};

6. ET : = E
T
∪ ẼT ;

7. dk
v(t)

T
: = dk

v(t) for v(t) ∈ V
T
, k ∈ K;

dk
e(v(t))

T
: = 0 for e(v(t)) ∈ Ṽ T , k ∈ K;

8. wl
ek(t)

T
: =

{
wk

e (t), if l = k for ek(t) ∈ E
T
, k ∈ K;

0, if l 6= k for ek(t) ∈ E
T
, k ∈ K

and wl
ee(t)

T
= ∞ for ẽ(t) ∈ ẼT , l ∈ K;

9. uee(t)
T : = ue(t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT ;

uek(t)
T : = ∞ for ek(t) ∈ E

T
, k ∈ K;

10. ϕT
ee(t)(x

1
ee(t)

T
, x2

ee(t)
T
, . . . , x

q

ee(t)
T
): = ϕe(x

1
e(t), x

2
e(t), . . . , x

q
e(t), t) for ẽ(t) =

(v(t), e(v(t))) ∈ ẼT ;

ϕT
ek(t)

(x1
ek(t)

T
, x2

ek(t)

T
, . . . , x

q

ek(t)

T
): = 0 for ek(t) ∈ E

T
, k ∈ K.

The correspondence between flows in the dynamic network and the static time-
expanded network is presented by the following lemma.

Lemma 1. Let xT : ET → R+ be a multicommodity flow in the static network

NT . Then the multicommodity flow x: E × T → R+ in the dynamic network N

can be defined in the following way. Let ek(t) = (e(v(t)), z(t + τk
e )) ∈ E

T
, ẽ(t) =

(v(t), e(v(t))) ∈ ẼT . Then the dynamic flow xe(t) on arc e = (v, z) is determined

as follows: xk
e(t) = xk

ek(t)

T
= xk

ee(t)

T
, ∀k ∈ K, ∀t ∈ T .

If x: E×T → R+ is a multicommodity flow in the dynamic network N , then the

multicommodity flow xT : ET → R+ in the static network NT can be determined as

follows. Let xe(t) be a dynamic multicommodity flow on arc e = (v, z) ∈ E. Then the

tuple (xee(t)
T , xe(t)

T ) = xe(t)
T is a corresponding static multicommodity flow, where

xee(t)
T is a static multicommodity flow on additional arc ẽ(t) = (v(t), e(v(t))) ∈

ẼT , at that xk
ee(t)

T
= xk

e(t), ∀k ∈ K; xe(t)
T = (xe1(t)

T , xe2(t)
T , . . . , xeq(t)

T ) is a q

dimension vector of static multicommodity flows on arcs ek(t) = (e(v(t)), z(t+τk
e )) ∈

E
T
, k ∈ K, at that xk

ek(t)

T
= xk

e(t); xl
ek(t)

T
= 0, l 6= k.

Proof. To prove the first part of the lemma we have to show that conditions (1)–(4)
for defined above x in the dynamic network N are true. These conditions evidently
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result from the following definition of multicommodity flows in the static network
NT : ∑

e(t−τk
e )∈E+(v(t))

xk
e(t−τk

e )

T
−

∑

e(t)∈E−(v(t))

xk
e(t)

T
= dk

v(t)

T
,

∀ t ∈ T , ∀ v(t) ∈ V T , ∀k ∈ K;

(6)

∑

k∈K

xk
e(t)

T
≤ ue(t)

T , ∀e(t) ∈ ET , ∀ t ∈ T ; (7)

0 ≤ xk
e(t)

T
≤ wk

e(t)

T
, ∀ e(t) ∈ ET , ∀ t ∈ T , ∀k ∈ K; (8)

xk
e(t)

T
= 0, ∀ e(t) ∈ E, t = T − τk

e + 1, T , ∀k ∈ K. (9)

In order to prove the second part of the lemma it is sufficient to show that
conditions (6)–(9) hold. Correctness of these conditions results from the procedure
of constructing the time-expanded network, correspondence between flows in static
and dynamic networks and the satisfied conditions (1)–(4). 2

The following theorem holds.

Theorem 2. If x∗T is a static minimum cost multicommodity flow in the static

network NT , then the corresponding according to Lemma 1 dynamic multicommodity

flow x∗ in the dynamic network N is also a minimum cost one and vice-versa.

Proof. Taking into account the correspondence between static and dynamic multi-
commodity flows on the basis of Lemma 1, we obtain that costs of multicommodity
flow in the time-expanded network NT and multicommodity flow in the dynamic
network N are equal. Indeed, to solve the minimum cost multicommodity flow
problem in the static time-expanded network NT , we have to solve the following
problem:

cT (x) =
∑

t∈T

∑

e(t)∈ET

ϕT
e(t)(x

1
e(t), x

2
e(t), . . . , x

q

e(t)) → min

subject to (6)–(9). 2

2.2 The Case of the Problem with Separable Cost Functions and

without Mutual Capacity of Arcs

The minimum cost flow problem with separable cost functions (5) and without
mutual capacity constraints for arcs allows us to simplify the procedure of con-
structing the time-expanded network. In this case we don’t have to add a new set
of vertexes Ṽ T and a new set of arcs ẼT . In that way the time-expanded network
NT is defined as follows:

1. V T : = {v(t) | v ∈ V, t ∈ T };

2. ET : = {ek(t) = (v(t), z(t + τk
e )) | e = (v, z) ∈ E, 0 ≤ t ≤ T − τk

e , k ∈ K};
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3. dk
v(t)

T
: = dk

v(t) for v(t) ∈ V T , k ∈ K;

4. wl
ek(t)

T
: =

{
wk

e (t), if l = k for ek(t) ∈ ET , k ∈ K;
0, if l 6= k for ek(t) ∈ ET , k ∈ K;

5. ϕl
ek(t)

T
(xl

ek(t)

T
): =

{
ϕk

e(x
k
e(t), t), if l = k for ek(t) ∈ ET , k ∈ K;

0, if l 6= k for ek(t) ∈ ET , k ∈ K.

The correspondence between flows in the dynamic network N and the static
network NT is defined as follows. Let xT : ET → R+ be a multicommodity flow
in the static network NT . Then the following flow x: E × T → R+, where

xk
e(t) = xk

ek(t)

T
, ∀e ∈ E, ∀k ∈ K, ∀t ∈ T , represents the multicommodity flow

in the dynamic network N . If x: E × T → R+ is a multicommodity flow in the

dynamic network N , then the flow xT : ET → R+, where xk
ek(t)

T
= xk

e(t), xl
ek(t)

T
=

0, ∀ek(t) ∈ ET , ∀k ∈ K, l 6= k, represents the multicommodity flow in the static
network NT .

As above, it can be proved that if x∗T is a static minimum cost multicommodity
flow in the static network NT , then the corresponding dynamic multicommodity
flow x∗ in the dynamic network N is also a minimum cost flow and vice-versa.

2.3 The Case of the Problem with Common Transit Times on Arcs

for Commodities

In the case of the minimum cost flow problem with common transit times for
each commodity the time-expanded network also can be constructed in more simple
way without adding a new set of vertexes Ṽ T and a new set of arcs ẼT . Thus the
time-expanded network NT is defined as follows:

1. V T : = {v(t) | v ∈ V, t ∈ T };

2. ET : = {e(t) = (v(t), z(t + τe)) | e = (v, z) ∈ E, 0 ≤ t ≤ T − τe};

3. dk
v(t)

T
: = dk

v(t) for v(t) ∈ V T , k ∈ K;

4. uT
e(t): = ue(t) for e(t) ∈ ET ;

5. wk
e(t)

T
: = wk

e (t) for e(t) ∈ ET , k ∈ K;

6. ϕT
e(t)(x

1
e(t)

T
, x2

e(t)
T
, . . . , x

q

e(t)
T
): = ϕe(x

1
e(t), x

2
e(t), . . . , x

q
e(t), t) for e(t) ∈ ET .

In this case the correspondence between flows in the dynamic network N and
the static network NT is defined in the following way. Let xT : ET → R+ be a
multicommodity flow in the static network NT . Then the following flow x: E×T →
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R+, where xk
e(t) = xk

e(t)

T
, ∀e ∈ E, ∀k ∈ K, ∀t ∈ T , represents the multicommodity

flow in the dynamic network N . If x: E ×T → R+ is a multicommodity flow in the

dynamic network N , then the flow xT : ET → R+, where xk
e(t)

T
= xk

e(t), ∀e(t) ∈

ET , ∀k ∈ K, ∀t ∈ T , represents the multicommodity flow in the static network NT .

As above, it can be proved that if x∗T is a static minimum cost multicommodity
flow in the static network NT , then the corresponding dynamic multicommodity
flow x∗ in the dynamic network N is also a minimum cost flow and vice-versa.

3 The Algorithm and Examples

On the basis of results from the previous section we can propose the following
algorithm for solving the minimum cost multicommodity dynamic flow problem. In
such a way, to solve the minimum cost multicommodity flow problem in N we have
to build the time-expanded network NT for the given dynamic network N , after
what to solve the classical minimum cost multicommodity flow problem in the static
network NT and then to reconstruct according to Lemma 1 and Theorem 2 the
solution of the static problem in NT to the dynamic problem in N .

In the following we construct in different cases the time-expanded network NT

for the dynamic network N given on Fig. 1 with two commodities.

 
 

1v  

2v  

3v  

1e  3e  

2e  

Figure 1. The dynamic network

The set of time moments we consider is T = {0, 1, 2, 3}. The transit times on
each arc for each commodity are defined in the following way: τ1

e1
= 2, τ2

e1
= 1,

τ1
e2

= 1, τ2
e2

= 3, τ1
e3

= 1, τ2
e3

= 2. The mutual capacity, individual capacity, demand
and cost functions are considered to be known.

The time-expanded network NT for the dynamic network N in the general case
is represented on Fig. 2. The time-expanded network NT for the dynamic network
N in the case of separable cost functions and without mutual capacity of arcs is
represented on Fig. 3. The time-expanded network NT for the dynamic network
N in the case of common transit times for each commodity with τe1 = 1, τe2 = 1,
τe3 = 2 is represented on Fig. 4.
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( )1 1v  ( )1 2v  ( )1 3v

( )2 1v ( )2 3v

( )3 1v ( )3 2v ( )3 3v

( )2 0v  

( )3 0v

( )1 0v

( )2 2v  

( )( )1 1 0e v

 

( )( )2 1 0e v
 

( )( )1 1 1e v  

( )( )2 1 1e v  

( )( )1 1 2e v
 

( )( )2 1 2e v  

( )( )3 2 0e v  ( )( )3 2 1e v
 

( )( )3 2 2e v
 

0t =  1t =  2t =  3t =  

Figure 2. The time-expanded network

Remark 1. The proposed above approach can be used to solve some more general
cases of the minimum cost dynamic multicommodity flow problem such as the prob-
lem when only a part of the flow is dumped into the considered network at the time
0, when flow storage at nodes is allowed and when the cost functions also depend on
the flow at the nodes. The same reasoning to solve the minimum cost flow problem
in the dynamic networks and its generalization can be held in the case when, in-
stead of the condition (3) in the definition of the multicommodity dynamic flow, the
following condition takes place: w′k

e (t) ≤ xk
e(t) ≤ w′′k

e (t), ∀ t ∈ T , ∀ e ∈ E, ∀ k ∈ K,

where w′k
e (t) and w′′k

e (t) are lower and upper bounds of the capacity of the arc e

respectively.

Remark 2.The maximum multicommodity dynamic flow problem also can be solved
by reduction to a static problem in an auxiliary time-expanded network NT , which
is defined as above but without demand and cost functions.

4 Determining the Minimum Cost Flows in Dynamic Networks

with Transit Time Functions that Depend on Flow and Time

In the problems studied in the previous sections the transit time functions are
assumed to be constant at every moment of time for each arc of the network. A
more general class of dynamic multicommodity flow problems can be obtained if the
transit time functions τk

e , ∀e ∈ E, ∀k ∈ K, depend on flows and on time. From
the practical point of view we can state that the transit time function possesses the
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( )1 1v  ( )1 2v  ( )1 3v

( )2 1v ( )2 3v

( )3 1v ( )3 2v  ( )3 3v

( )2 0v

( )3 0v

( )1 0v

( )2 2v
 

0t =  1t =  2t =  3t =  

Figure 3. The time-expanded network (case of separable cost functions and without
mutual capacity of arcs)

property of being a non-negative and non-decreasing function. So, we will assume
that the transit time function is a non-decreasing non-negative step function. First
we will describe the method for solving the minimum cost single-commodity flow
problem in dynamic networks with transit time functions that depend on flow and
time. Then the dynamic multicommodity flow problem with transit time functions
that depend on flows and time can be solved by using the similar approach extended
to the multicommodity case of the problem. The detailed elaboration of the time-
expanded network method for such class of the problem can be obtained for the
case of separable transit-time functions τk

e (x1
e, x

2
e, . . . , x

q
e, t) =

∑q
p=1 τk

e (xp
e, t), ∀e ∈

E, ∀t ∈ T , ∀k ∈ K, where the functions τk
e (xp

e, t) satisfy the conditions described
below.

4.1 The Minimum Cost Dynamic Flow Problem with Transit Time

Functions that Depend on Flow and Time

Let us formulate the minimum cost single-commodity flow problem in dynamic
networks with transit time functions that depend on flow and time. Let be given
a directed network N = (V,E, u′, u′′, τ, d, ϕ) with set of vertices V and set of arcs
E, lower and upper capacity functions u′, u′′: E × T → R+, transit time function
τ : E × T × R+ → R+, demand function d: V × T → R and cost function ϕ: E ×
R+×T → R+. As above, we consider the discrete time model, in which all times are
integral and bounded by a time horizon T , which defines the set T = {0, 1, . . . , T} of
time moments we consider. We suppose that all flow is dumped into the network at
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( )1 1v  ( )1 2v  ( )1 3v

( )2 1v ( )2 3v

( )3 1v ( )3 2v  ( )3 3v

( )2 0v

( )3 0v

( )1 0v

( )2 2v
 

0t =  1t =  2t =  3t =  

Figure 4. The time-expanded network (case of common transit times for each com-
modity)

time 0 and the supply is equal to the demand, i.e.
∑

t∈T

∑
v∈V dv(t) = 0. Without

losing generality, we assume that no arcs enter sources or exit sinks.

A dynamic flow in N is represented by a function x: E×T → R+, which defines
the value xe(t) of flow entering arc e at time t. Since we require that all arcs must
be empty after time horizon T , the following implication must hold for all e ∈ E

and t ∈ T : if xe(t) > 0, then t + τe(xe(t), t) ≤ T . The dynamic flow x must satisfy
the flow conservation constraints, which mean that at any time moment t ∈ T for
every vertex v ∈ V the difference between the total amount of flow that leaves
node v and the total amount of flow that enters node v, is equal to dv(t). The
dynamic flow x is called feasible if it satisfies the following capacity constraints:
u′

e(t) ≤ xe(t) ≤ u′′
e(t), ∀ t ∈ T , ∀ e ∈ E.

The total cost of the dynamic flow x is defined as follows:

F (x) =
∑

t∈T

∑

e∈E

ϕe(xe(t), t).

The object of the minimum cost dynamic flow problem is to find a feasible flow that
minimizes this objective function.

4.2 The Method for Solving the Problem

We propose an approach for solving the formulated problem, which is based on re-
duction of this problem to a static one on a special auxiliary time-expanded network
NT . We define the network NT = (V T , ET , dT , u′T , u′′T , ϕT ) as follows:
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1. V
T
: = {v(t) | v ∈ V, t ∈ T };

2. Ṽ T : = {e(v(t)) | v(t) ∈ V
T
, e ∈ E−(v), t ∈ T \ T};

3. V T : = V
T
∪ Ṽ T ;

4. ẼT : = {ẽ(t) = (v(t), e(v(t))) | v(t) ∈ V
T

and corresponding e(v(t)) ∈ Ṽ T , t ∈
T \ T};

5. E
T
: = {ep(t) = (e(v(t)), z(t+τ

p
e )) | e(v(t)) ∈ Ṽ T , z(t+τ

p
e ) ∈ V

T
, e = (v, z) ∈

E, 0 ≤ t ≤ T − τ
p
e , p ∈ P};

6. ET : = E
T
∪ ẼT ;

7. dT
v(t): = dv(t) for v(t) ∈ V

T
, k ∈ K;

dT
e(v(t)): = 0 for e(v(t)) ∈ Ṽ T ;

8. u′
ee(t)

T : = u′
e(t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT ;

u′′
ee(t)

T : = u′′
e(t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT ;

u′
ep(t)

T : = x
p−1
e (t) for ep(t) ∈ E

T
, p ∈ P, where x0

e(t) = 0;

u′′
ep(t)

T : = x
p
e(t) for ep(t) ∈ E

T
, p ∈ P ;

9. ϕT
ee(t)(xee(t)

T ): = ϕe(xe(t), t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT ;

ϕT
ep(t)(xep(t)

T ): = εp for ep(t) ∈ E
T
, p ∈ P, where ε1 < ε2 < · · · <

ε|P | are small numbers.

To make the notations more clear we construct a part of the time-expanded
network for the fixed moment of time t for the given arc e = (v, z) with the transit
time function presented by Fig. 5.

 

1 2x =  2 4x =  3 7x =  
0 

( )( ),e ex t tτ  

( )ex t  

1 3τ =  

2 5τ =  

3 8τ =  

Figure 5. The transit time function
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The constructed part of the time-expanded network is given on Fig. 6, where
lower and upper capacities are written above each arc and the cost is written below
each arc.

 
 
 

 
 
 

v(t) e(v(t)) 
 

z(t+3) 

z(t+5) 
 

z(t+8) 
 

( ) ( ),e eu t u t′ ′′  

( )( ),e ex t tϕ  

0, 2 

2, 4 

4, 7 

�
1 �

2 �
3 

Figure 6. The constructed part of the time-expanded network

The following lemma gives the correspondence between flows in the dynamic
network and the time-expanded network.

Lemma 3. Let xT : ET → R+ be a flow in the static network NT . Then the flow

x: E ×T → R+ in the dynamic network N can be defined in the following way. Let

ep(t) = (e(v(t)), z(t + τ
p
e )) ∈ E

T
, ẽ(t) = (v(t), e(v(t))) ∈ ẼT . Then the dynamic

flow xe(t) on arc e = (v, z) is determined as follows: xe(t) = xT
ee(t) = xT

ep(t), ∀t ∈ T ,

where p ∈ P is such that xT
ee(t) ∈ (xp−1

e (t), xp
e(t)].

If x: E×T → R+ is a flow in the dynamic network N , then the flow xT : ET →
R+ in the static network NT can be determined as follows. Let xe(t) be a dynamic

flow on arc e = (v, z) ∈ E. Then the tuple (xee(t)
T , xe(t)

T ) = xe(t)
T is a corresponding

static flow, where xee(t)
T is a static flow on additional arc ẽ(t) = (v(t), e(v(t))) ∈ ẼT ,

at that xT
ee(t) = xe(t); xe(t)

T = (xe1(t)
T , xe2(t)

T , . . . , xe|P |(t)
T ) is a |P | dimensional

vector of static flows on arcs ep(t) = (e(v(t)), z(t + τ
p
e )) ∈ E

T
, p ∈ P , at that

xT
ep(t) = xe(t) if xe(t) ∈ (xp−1

e (t), xp
e(t)] or xT

ep(t) = 0 otherwise.

The proof of this lemma is similar to the proof of Lemma 1.

The following theorem holds.

Theorem 4. If x∗T is a static minimum cost flow in the static network NT , then

the corresponding according to Lemma 3 dynamic flow x∗ in the dynamic network

N is also a minimum cost flow and vice-versa.

In such a way, the minimum cost multicommodity flow problem in the dy-
namic network can be solved by static flow computations in the corresponding time-
expanded network. To solve the minimum cost flow problem in dynamic networks
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with transit time functions that depend on flow and time we construct the time-
expanded network, then solve the static minimum cost flow problem and reconstruct
the solution of the static problem to the dynamic problem.
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