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1 Introduction

Given an LCA group X, let E(X) denote the ring of all continuous endo-
morphisms of X. The very pleasant facts that, with respect to the compact-open
topology, E(X) is a complete Hausdorff topological ring and the evaluation map
(u, x) → u(x) from E(X)×X to X is continuous, where E(X)×X is taken with the
product topology, provide a felicitous setting for the study of interconnections be-
tween the algebraic-topological properties of X and those of E(X). Similar problems
for discrete X constituted the subject of an enormous number of investigations.

The present paper is concerned with the following question:

For which LCA groups X is the ring E(X) commutative?

The prototype of this problem, corresponding to the case when X is discrete,
is listed in Fuchs’ book [6] as problem 46(a), and was studied for the first time by
T. Szele and J. Szendrei. In [14], they have completely solved the case of torsion
groups and have obtained some partial results for the case of mixed groups. In the
case of torsionfree groups a solution, due to L. C. A. van Leeuwen [9], has been
obtained only for very special groups.

This paper is intended to be the first of several investigating the structure of
LCA groups X with a commutative ring E(X). We begin our study by examining
the case of topological torsion LCA groups, which represent a natural generalization
of discrete torsion abelian groups within the class of all LCA groups. In contrast
with the case of discrete torsion groups, this new situation is much more complicated
and we do not settle it completely. Though we are unable to give a full description
of topological torsion LCA groups X having a commutative ring E(X), we give such
a description for certain important special cases of this kind of groups.
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2 Notation

In the following, P is the set of prime numbers, N is the set of natural numbers
(including zero), and N0 = N \ {0}.

For p ∈ P, we denote by Qp the group of p-adic numbers, by Zp the group of
p-adic integers (both with their usual topologies), by Z(p∞) the quasi-cyclic group
corresponding to p and by Z(pn), where n ∈ N, the cyclic group of order pn (all with
the discrete topology).

We let L denote the class of locally compact abelian groups, and Lp, where p ∈ P,
the subclass of L consisting of all topological p-primary groups.

Let X be a group in L. For any closed subgroup C of X, X/C will indicate the
quotient group of X by C, equipped with the quotient topology.

We let 1
X
, c(X), d(X), k(X), m(X), t(X), and X∗ denote, respectively, the

identity map on X, the connected component of X, the maximal divisible subgroup
of X, the subgroup of compact elements of X, the smallest closed subgroup K of
X such that the quotient group X/K is torsionfree, the torsion subgroup of X, and
the character group of X.

For n ∈ N, we let

X[n] = {x ∈ X | n · x = 0} and n ·X = {n · x | x ∈ X}.

If p ∈ P, Xp stands the topological p-primary component of X, i. e.

Xp = {x ∈ X | lim
n→∞

pnx = 0}.

If X is a topological torsion group, we let

S(X) = {p ∈ P | Xp 6= 0}.

For a ∈ X and S ⊂ X, o(a) is the order of a, 〈a〉 is the subgroup of X generated
by a, S is the closure of S in X, and

A(X∗, S) = {γ ∈ X∗ | γ(x) = 0 for all x ∈ S}.

For u ∈ E(X), we let u∗ be the transpose of u, i.e. the endomorphism u∗ ∈ E(X∗)
defined by the rule u∗(γ) = γ ◦ u for all γ ∈ X∗.

If Y is another group in L, then H(X,Y ) stands for the group of all continuous
homomorphisms from X into Y. For h ∈ H(X,Y ), we denote by im(h) the image of
h and by ker(h) the kernel of h.

Also, we write X = A⊕B in case X is a topological direct sum of its subgroups
A and B.

Let (Xi)i∈I be a collection of topological groups (rings) indexed by a set I. We
write

∏

i∈I Xi for the direct product of the family (Xi)i∈I , taken with the product
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topology. In case each Xi is a discrete abelian group,
⊕

i∈I Xi denotes the external
direct sum of the family (Xi)i∈I , taken with the discrete topology. If each Xi = X
for some fixed X, then

∏

i∈I Xi is denoted by XI and
⊕

i∈I Xi by X(I).

Suppose, in addition, that for each i ∈ I we are given an open subgroup (subring)
Ui of Xi. The local direct product of the family (Xi)i∈I with respect to (Ui)i∈I will
be indicated by

∏

i∈I(Xi;Ui). Recall that the group (ring)
∏

i∈I(Xi;Ui) consists of
all (xi)i∈I ∈

∏

i∈I Xi such that xi ∈ Ui for all but finitely many i and is topologized
by declaring all neighborhoods of zero in the topological group (ring)

∏

i∈I Ui to be
a fundamental system of neighborhoods of zero in

∏

i∈I(Xi;Ui).

The symbol ∼= denotes topological group (ring) isomorphism.

3 Some technical lemmas

We collect here several facts which will be frequently used in the sequel.

Lemma 3.1. For any X ∈ L, the mapping u→ u∗ is a topological ring antiisomor-

phism from E(X) onto E(X∗).

Lemma 3.2. Let X be a group in L such that X = A⊕B for some subgroups A,B of

X. If εA ∈ E(X) is the canonical projection of X onto A, then E(A) ∼= εAE(X)εA,
where εAE(X)εA carries the induced topology.

Definition 3.3. A closed subgroup C of a group X ∈ L is said to be topologically

fully invariant in X if u(C) ⊂ C for all u ∈ E(X).

Lemma 3.4. Let (Xi)i∈I be an indexed collection of groups in L, and, for each

i ∈ I, let Yi be a compact open subgroup of Xi. If X =
∏

i∈I(Xi;Yi) and if every

subgroup

X ′

j = {(xi)i∈I ∈ X | xi = 0 for all i 6= j}, j ∈ I,

is topologically fully invariant in X, then E(X) is topologically isomorphic with
∏

i∈I(E(Xi); ΩXi
(Yi, Yi)).

Proof. See [11, (2.2)] �

The following lemma provides us with a tool of constructing noncommuting
continuous endomorphisms.

Lemma 3.5. Let X be a group in L admitting a continuous endomorphism w such

that im(w) = A ⊕ B for some nonzero subgroups A,B of X with w(A) ⊂ A and

w(B) ⊂ B. If there exists h ∈ H(A,B) satisfying w(A) 6⊂ ker(h), then E(X) fails to

be commutative.

Proof. Let πA : im(w) → A and πB : im(w) → B denote the canonical projections
corresponding to the above decomposition of im(w). If ηA : A→ X and ηB : B → X
are the canonical injections, define u, v ∈ E(X) by setting u = ηB ◦ h ◦ πA ◦ w and
v = ηA ◦ πA ◦ w. We cannot have

h ◦ πA ◦ w ◦ ηA ◦ πA ◦ w = 0,
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since otherwise it would follow that

(h ◦ πA ◦ w ◦ ηA ◦ πA)(im(w)) ⊂ (h ◦ πA ◦ w ◦ ηA ◦ πA ◦ w)(X) = {0}

[2, Ch. 1, §2, Theorem 1], which would imply

h(w(A)) = (h ◦ πA ◦ w ◦ ηA ◦ πA)(A) ⊂ (h ◦ πA ◦ w ◦ ηA ◦ πA)(im(w)) = {0},

a contradiction. Thus h ◦ πA ◦ w ◦ ηA ◦ πA ◦w 6= 0. It then follows that uv 6= 0, and
since vu = 0, the proof is complete. �

4 Discrete and compact groups

As we have mentioned in Introduction, T. Szele and J. Szendrei characterized
in [14] the major classes of discrete abelian groups with commutative endomorphism
ring.

For torsion groups, the characterization of [14] may be paraphrased as follows:

Theorem 4.1. [14] The endomorphism ring E(X) of a discrete torsion group X ∈ L
is commutative if and only if

X ∼=
⊕

p∈S1

Z(p∞) ×
⊕

p∈S2

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅ and np ∈ N0 for all p ∈ S2.

As a first application of this result, we obtain the description of compact totally
disconnected groups in L with commutative ring of continuous endomorphisms.

Corollary 4.2. The endomorphism ring E(X) of a compact totally disconnected

group X ∈ L is commutative if and only if

X ∼=
∏

p∈S1

Zp ×
∏

p∈S2

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅ and np ∈ N0 for all p ∈ S2.

Proof. Since the rings E(X) and E(X∗) are topologically antiisomorphic, and since
X is discrete and torsion if and only if X∗ is compact and totally disconnected [8,
(23.17) and (24.26)], the assertion follows from Theorem 4.1 by taking duals. �

5 Topological torsion groups

Theorem 4.1, due to T. Szele and J. Szendrei, gives a complete description of
torsion discrete abelian groups X whose ring E(X) is commutative. In the present
section, which contains our main results, we will be concerned with a natural gene-
ralization within L of this class of groups, namely, with the class of topological
torsion groups.
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Definition 5.1. A group X ∈ L is said to be a topological torsion group in case,

for each x ∈ X, limn→∞(n!)x = 0.

Our first goal will be to describe the p-groups in L with commutative ring of
continuous endomorphisms.

Theorem 5.2. Let p ∈ P, and let X be a p-group in L. The ring E(X) is commu-

tative if and only if X is topologically isomorphic with either Z(p∞) or Z(pn) for

some n ∈ N.

Proof. Let E(X) be commutative. We first consider the case whenX is nonreduced.
As is well known, X contains then a closed subgroup D topologically isomorphic
with Z(p∞) [1, Proposition 4.22]. Let us fix an isomorphism j : Z(p∞) → D. Since
the discrete divisible groups are splitting in the class of totally disconnected LCA
groups [1, Proposition 6.21], we can writeX = D⊕X0 for some closed subgroupX0 of
X. Assume by way of contradiction that X0 6= {0}, and let U be a nonzero compact
open subgroup of X0. By the structure theorem for torsion compact groups [8,
(25.9)], there is a topological isomorphism ϕ from U onto a group of the form
∏

i∈I Z(pmi), where I is a nonempty set and the mi’s are nonzero natural numbers
not exceeding a fixedN ∈ N. Picking any i0 ∈ I, let π denote the canonical projection
of

∏

i∈I Z(pmi) onto Z(pmi0 ) and ρ the canonical injection of Z(pmi0 ) into Z(p∞).
Since D is divisible and U is open, j ◦ ρ ◦ π ◦ ϕ ∈ H(U,D) extends [8, (A.7)] to
a nonzero homomorphism h ∈ H(X0,D) [3, Ch. III, §2, Proposition 23]. Then
applying Lemma 3.5 to w = 1X and our h ∈ H(X0,D) leads to a contradiction.
Consequently, we must have X0 = {0}, and hence X ∼= Z(p∞).

Next we dispose of the case when X is reduced. Our first goal will be to prove
that X is of bounded order. Pick an arbitrary compact open subgroup V of X.
In view of the earlier mentioned structure theorem for torsion compact groups, we
know that V is of bounded order. Therefore, the desired fact that X is of bounded
order will follow if we show that X/V is of bounded order.

It is not difficult to see that X/V is reduced. Indeed, since V is open, X/V is a
discrete p-group. If X/V were nonreduced, we could write X/V = D1 ⊕ G, where
D1

∼= Z(p∞) and G is a subgroup of X/V. Since A(X∗;V ) ∼= (X/V )∗ [8, (23.25)] it
would then follow from [1, Corollary 6.10] and [8, (25.2)] that A(X∗;V ) = ∆ ⊕ Γ,
where ∆ ∼= Zp. Let ψ ∈ H(A(X∗;V ),∆) denote the canonical projection with kernel
Γ and choose any nonzero η ∈ H(∆,Qp). Since A(X∗;V ) is open in X∗ (because V
is compact) and Qp is divisible, η ◦ ψ extends to a nonzero χ ∈ H(X∗,Qp), and so
the transpose map χ∗ would be a nonzero member of H(Qp,X), which would imply
that X is nonreduced, a contradiction. Consequently, X/V must be reduced.

Having established this, we are ready to prove that X/V is of bounded order.
Let

nV = min
{

n ∈ N | pnV = {0}
}

.
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It is easily seen that pnV V ∗ = {0} as well. Since V ∗ ∼= X∗/A(X∗;V ) [8, (24.5)], it
then follows that

pnV X∗ ⊂ A(X∗;V ). (5.1)

If X/V were not of bounded order, it would follow that X/V has cyclic direct
summands of arbitrarily high orders [7, Chapter V, §27, Exercise 1]. Hence we
could write X/V = A ⊕ B ⊕ C ⊕ F, where A ∼= Z(pnA), B ∼= Z(pnB), C ∼= Z(pnC )
and nC ≥ nB ≥ nA ≥ 2nV +1. By [1, Corollary 6.10] and [8, (23.25)], we then would
obtain A(X∗;V ) = A1 ⊕B1 ⊕C1 ⊕F1, where A1

∼= A, B1
∼= B and C1

∼= C. Letting
α ∈ A1, β ∈ B1 and γ ∈ C1 be generators, define f ∈ H(C1, B1) and g ∈ H(B1, A1)
by the rule f(γ) = β and g(β) = α. Further, letting ξ ∈ H(A(X∗;V ), B1) and ζ ∈
H(A(X∗;V ), C1) be the canonical projections, σ ∈ H(B1,X

∗) and τ ∈ H(A1,X
∗)

the canonical injections, and taking account of (5.1), define u, v ∈ E(X∗) by setting

u = τ ◦ g ◦ ξ ◦ pnV 1X∗ and v = σ ◦ f ◦ ζ ◦ pnV 1X∗ .

Then (u ◦ v)(γ) = u(pnV β) = p2nV α 6= 0 and (v ◦u)(γ) = v(0) = 0, so that uv 6= vu.
This is a contradiction because, in view of Lemma 3.1, E(X∗) must be commutative.
In summary, X/U is a group of bounded order, and hence so is X.

Finally, since in a group of bounded order every cyclic subgroup generated by an
element of maximal order splits topologically [10, (3.8)], we can write X = L⊕M,
where L ∼= Z(pn) for some n ∈ N and M is a subgroup of X. Again we must have
M = {0} since otherwise it would follow that H(L,M) 6= {0}, contradicting by
Lemma 3.5 the commutativity of E(X). Hence X ∼= Z(pn).

Since the converse is clear, the proof is complete. �

As a direct consequence of Theorem 5.2, we obtain the following result.

Corollary 5.3. Let X be a topological torsion group in L with torsion primary

components. Then E(X) is commutative if and only if

X ∼=
∏

p∈S1

(Z(p∞); Z(p∞)[pkp ]) ×
∏

p∈S2

(Z(pnp); Z(pnp)[pkp ]),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and np, kp ∈ N for all p ∈ S(X).

Proof. By [4, Ch. III, §1, Théorème 1] we have

X ∼=
∏

p∈S(X)

(Xp;Up),

where, for each p ∈ S(X), Up is a compact open subgroup of Xp. Since the Xp’s are
topologically fully invariant in X, it follows from Lemma 3.4 that

E(X) ∼=
∏

p∈S(X)

(E(Xp); Ω(Up, Up)).

Consequently, the commutativity of E(X) is equivalent to the commutativity of all
the E(Xp)’s.
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Now, since X has torsion topological primary components, Theorem 5.2 shows
that this last condition is equivalent to saying that, for each p ∈ S(X), Xp is
topologically isomorphic with either Z(p∞) or Z(pnp) for some np ∈ N. It remains
to put

S1 = {p ∈ S(X) | Xp
∼= Z(p∞)} and S2 = S(X) \ S1. �

To dualize the preceding corollary, a few definitions are in order.

Definition 5.4. A group X ∈ L is said to be compact-by-bounded order in case X
admits a compact subgroup K such that X/K is of bounded order.

Definition 5.5. Let X ∈ L. The subgroup
⋂

n∈N0
nX of X is called the subgroup of

elements of infinite topological height of X. If
⋂

n∈N0
nX={0}, X is said to have no

elements of infinite topological height.

It is easy to see that if X ∈ Lp for some prime p, then X is compact-by-bounded
order if and only if pmX is compact for some m ∈ N, and X has no elements of
infinite topological height if and only if

⋂

n∈N
pnX = {0}.

Corollary 5.6. Let X be a topological torsion group in L such that its primary com-

ponents are compact-by-bounded order and have no elements of infinite topological

height. Then E(X) is commutative if and only if

X ∼=
∏

p∈S1

(Zp; p
kpZp) ×

∏

p∈S2

(Z(pnp); pkpZ(pnp)),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and np, kp ∈ N0 for all p ∈ S(X).

Proof. Observing that a group X ∈ L is compact-by-bounded order and has no
elements of infinite topological height if and only if X∗ is torsion, the assertion
follows from [8, (23.33)], Lemma 3.1 and Corollary 5.3. �

Specializing Theorem 5.2 to torsion groups, we arrive at the following corollary,
which sharpens Theorem 4.1.

Corollary 5.7. The following are equivalent for a group X ∈ L :

(i) X is discrete and torsion, and E(X) is commutative.

(ii) X is torsion, and E(X) is commutative.

(iii) X ∼=
⊕

p∈S1
Z(p∞) ×

⊕

p∈S2
Z(pnp), where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and

np ∈ N0 for all p ∈ S2.

Proof. Clearly, (i) implies (ii), and (iii) implies (i). Assuming (ii), we deduce from
Corollary 5.3 that

X ∼=
∏

p∈S1

(Z(p∞); Z(p∞)[pkp ]) ×
∏

p∈S2

(Z(pnp); Z(pnp)[pkp ]),
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where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and np, kp ∈ N for all p ∈ S(X), so that in
particular

∏

p∈S1

Z(p∞)[pkp ] ×
∏

p∈S2

Z(pnp)[pkp ]
(

∼=
∏

p∈S(X)

Z(pkp),

since we may assume that kp ≤ np for all p ∈ S2

)

has to be torsion. It then follows

that {p ∈ S(X) | kp 6= 0} is finite, so

∏

p∈S1

(Z(p∞); Z(p∞)[pkp ]) ×
∏

p∈S2

(Z(pnp); Z(pnp)[pkp ])

is discrete by [8, (6.16)(d)], and hence (iii) holds. �

Corollary 5.8. The following are equivalent for a group X ∈ L :

(i) X is compact and totally disconnected, and E(X) is commutative.

(ii) X is a compact-by-bounded order topologically torsion group with no elements

of infinite topological height, and E(X) is commutative.

(iii) X ∼=
∏

p∈S1
Zp ×

∏

p∈S2
Z(pnp), where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and

np ∈ N0 for all p ∈ S2.

We next show that Corollary 5.6 can be improved by dropping the assumption
that the considered groups do not contain elements of infinite topological height.

Theorem 5.9. Let X be a topological torsion group in L with compact-by-bounded

order topological primary components. The following are equivalent:

(i) E(X) is commutative.

(ii) For each p ∈ S(X), Xp is topologically isomorphic with either Zp or Z(pnp)
for some np ∈ N0.

Proof. As we already mentioned in the proof of Corollary 5.3, for a topological
torsion group X ∈ L, the commutativity of E(X) is equivalent to the commutativity
of all the E(Xp)’s.

Pick any p ∈ S(X), and assume that E(Xp) is commutative. Since Xp is
compact-by-bounded order, there is a compact subgroup K of Xp such that Xp/K
is of bounded order. Hence pn0(Xp/K) = {0} for some n0 ∈ N. It follows that pn0Xp

is a closed subgroup of K, so that pn0Xp is compact, and hence (pn0Xp)
∗ is a dis-

crete p-group. But then (pn0Xp)
∗ admits a direct summand isomorphic with either

Z(p∞) or Z(pm) for some m ∈ N [7, Corollary 27.3]. Since every decomposition of
(pn0Xp)

∗ as a direct sum produces a decomposition into a topological direct sum of
pn0Xp [1, Corollary 6.10], we can write pn0Xp = A ⊕ B, where A is topologically
isomorphic with either Zp or Z(pm). We must have H(A,B) = {0}, for otherwise



COMMUTATIVITY OF ENDOMORPHISM RINGS 95

we would obtain a contradiction by applying Lemma 3.5 with ω = pn01Xp and any
nonzero h ∈ H(A,B).

Assume A ∼= Zp. Since for every x ∈ Xp there exists f ∈ H(Zp,Xp) such that
x ∈ im(f) [1, Lemma 2.10], the equality H(A,B) = {0} can occur only if B = {0}.
It follows that pn0Xp

∼= Zp, so that
⋂

n∈N
pnXp = {0}, and hence Xp

∼= Zp by
Corollary 5.6.

Now assume A ∼= Z(pm). Since H(A,B) = {0}, we must clearly have t(B) = {0},
so that B ∼= Zν

p for some cardinal number ν [8, 25.8]. But in view of Lemma 3.5

H(B,A) = {0} too, which can only occur if ν = 0. It follows that (pn0Xp)
∗ ∼= Z(pm),

soXp is of bounded order, and hence, by Theorem 5.2, X ∼= Z(pnp) for some np ∈ N0.

Since E(Zp) and E(Z(pnp)) are clearly commutative, the proof is complete. �

To dualize the preceding theorem, we need a new definition.

Definition 5.10. A group X ∈ L is said to be bounded order-by-discrete in case X
contains an open subgroup of bounded order.

The following extends Corollary 5.3.

Corollary 5.11. Let X be a topological torsion group in L with bounded order-by-

discrete topological primary components. The following are equivalent:

(i) E(X) is commutative.

(ii) For each p ∈ S(X), Xp is topologically isomorphic with either Z(p∞) or Z(pnp)
for some np ∈ N0.

Next we describe the nonreduced torsionfree topological p-primary groups X ∈ L
with commutative ring E(X).

Theorem 5.12. Let p ∈ P, and let X be a nonreduced torsionfree group in Lp. The

ring E(X) is commutative if and only if X ∼= Qp.

Proof. Assume E(X) is commutative. Since X is a nonreduced torsionfree topo-
logical p-primary group, it follows from [1, Theorem 4.23] that X contains a closed
subgroup D topologically isomorphic with Qp. We shall show that X must coincide
withD. Suppose this is not the case. Then, taking into account that Qp is splitting in
the class of torsionfree LCA groups [1, Proposition 6.23], we can write X = D⊕Y for
some nonzero subgroup Y of X. Let U be an arbitrary compact open subgroup of Y.
Since Y is torsionfree, it follows that U ∼= Zν

p for some cardinal number ν ≥ 1 [4, Ch.
III, §1, Proposition 3]. Combining an arbitrary topological isomorphism from U onto
Zν

p with a projection of Zν
p onto Zp and with an arbitrary continuous monomorphism

from Zp into D, we obtain a nonzero h ∈ H(U,D). Since D is divisible and U is open
in Y, h extends to a nonzero homomorphism h0 ∈ H(Y,D), contradicting by Lemma
3.5 our assumption that E(X) is commutative. Therefore we must have X ∼= Qp.

The converse is clear. �

As a consequence we have the following two corollaries.
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Corollary 5.13. Let X be a torsionfree topological torsion group in L such that,

for each p ∈ S(X), Xp is nonreduced. The ring E(X) is commutative if and only if

X ∼=
∏

p∈S(X)(Qp; Zp).

Corollary 5.14. Let X be a topological torsion densely divisible group in L such

that, for each p ∈ S(X), m(Xp) 6= Xp. The ring E(X) is commutative if and only if

X ∼=
∏

p∈S(X)(Qp; Zp).

We now turn our attention to the case of topological torsion groups in L with
mixed topological primary components. As we saw, the key argument used in prov-
ing Theorem 5.12 was the fact, due to L. C. Robertson [12], that, for each p ∈ P,
Qp is splitting in the class of torsionfree LCA groups. In order to do with mixed
nonreduced topological p-primary groups, we first extend Robertson’s result to more
general groups.

Lemma 5.15. Let X be a group in L satisfying c(X) ⊂ m(X) 6= X, and let D be a

closed subgroup of X such that D ∼= Qp for some p ∈ P and D ∩m(X) = {0}. Then

D splits topologically from X.

Proof. It is clear from the very definition of m(X) that m(X) ⊂ k(X). Since by
hypothesis c(X) ⊂ m(X), it follows that c(X) is compact [5, Proposition 3.3.6], so
that m(X)/c(X) is closed in X/c(X) [8, (5.18)]. Taking into account that X/c(X)
is totally disconnected [8, (7.3)], and

X/m(X) ∼= (X/c(X))/(m(X)/c(X)) [8, (5.35)],

we then deduce from [8, (7.11)] that X/m(X) is totally disconnected as well. Let π
denote the canonical projection of X onto X/m(X). Fixing an arbitrary topological
isomorphism f from Qp onto D, set h = π ◦f. Since D∩m(X) = {0}, it follows that
π acts injectively on D, so that h is injective too. Remembering that X/m(X) is
totally disconnected, we conclude from [1, Proposition 4.21] that h(Qp) is a closed
subgroup of X/m(X) and that h establishes a topological isomorphism from Qp onto
h(Qp). Therefore, taking account of the above mentioned fact that Qp is splitting in
the class of torsionfree LCA groups, we can write

X/m(X) = h(Qp) ⊕ Γ

for some closed subgroup Γ of X/m(X). Let G = π−1(Γ). We shall show that
X = D ⊕G. Clearly, G is a closed subgroup of X containing m(X), π(G) = Γ and
π(D) = h(Qp). If there existed a nonzero a ∈ D ∩G, it would follow that

π(a) ∈ π(D) ∩ π(G) = h(Qp) ∩ Γ = {0}.

This would imply that a ∈ m(X), contradicting our assumption that D ∩m(X) =
{0}. Thus we must have D∩G = {0}. To see that also X = D+G, pick an arbitrary
x ∈ X. Since

X/m(X) = h(Qp) ⊕ Γ = π(D) ⊕ π(G),



COMMUTATIVITY OF ENDOMORPHISM RINGS 97

there exist y ∈ D and z ∈ G such that π(x) = π(y) + π(z), so that x = y + z + t
for some t ∈ m(X). But z + t ∈ G because m(X) ⊂ G, and since x ∈ X was
chosen arbitrarily, this shows that X = D +G. Consequently, X decomposes as an
algebraic direct sum of D and G. To conclude that the obtained decomposition is in
fact topological, it remains to observe [1, Proposition 6.5] that D, being topologically
isomorphic to Qp, is σ-compact. �

Corollary 5.16. Let X be a totally disconnected group in L having closed torsion

subgroup. If X contains a closed subgroup D topologically isomorphic with Qp for

some p ∈ P, then D splits topologically from X.

Proof. Since c(X) = {0}, m(X) = t(X) and Qp is torsionfree, the assertion follows
from Lemma 5.15. �

We approach the description of mixed nonreduced topological p-primary groups
X ∈ L with commutative ring E(X) through two lemmas.

Lemma 5.17. Let p ∈ P, and let X be a mixed group in Lp. If E(X) is commutative,

then t(X) is reduced.

Proof. If t(X) were nonreduced, X would contain a copy D of Z(p∞). Since Z(p∞)
is splitting in the class of totally disconnected LCA groups, it would then follow that
X = D ⊕ T for some nonzero (because X 6= t(X)) closed subgroup T of X. Letting
U be an arbitrary nonzero compact open subgroup of T, then U∗ would be a nonzero
discrete p-group, and so U∗ would admit by [7, Corollary 27.3] a direct summand
isomorphic with either Z(p∞) or Z(pn) for some n ∈ N. We would then conclude
from [8, (23.18)] that U has a topological direct summand topologically isomorphic
with either Zp or Z(pn), which would imply that H(U,D) 6= {0}. Extending the
elements of H(U,D), we would obtain that H(T,D) 6= {0}, so that by Lemma 3.5
E(X) could not be commutative. �

Lemma 5.18. Let p ∈ P, and let X be a group in Lp such that d(X) 6⊂ m(X). If

E(X) is commutative, then d(X) ∼= Qp and X = d(X) ⊕m(X).

Proof. Fix any a ∈ d(X) \m(X), and let D denote the minimal divisible subgroup
of X containing a. It is clear from the definition of m(X) that t(X) ⊂ m(X), so
a /∈ t(X), and hence D is algebraically isomorphic to Q. It follows that D is divisible,
because every group in L containing a dense divisible subgroup of finite rank is itself
divisible [1, (5.39)(e)]. We assert that D ∼= Qp. Indeed, since X ∈ Lp, it follows

from [1, Lemma 2.11] that 〈a〉 ∼= Zp. Pick a topological isomorphism ϕ from Zp

onto 〈a〉. Since D is divisible, η ◦ϕ extends to homomorphism f ∈ H(Qp,D), where

η is the canonical injection of 〈a〉 into D. To show that f is injective, pick any
x ∈ ker(f). Since Qp is the minimal divisible extension of Zp, we can find an l ∈ N

such that plx ∈ Zp. It follows that plx ∈ ker(η ◦ ϕ), so plx = 0, whence x = 0
because Qp is torsionfree. Thus our claim is established. As every group in Lp is
totally disconnected, it then follows from [1, Proposition 4.21] that f(Qp) is closed

in D and f is a topological isomorphism from Qp onto f(Qp). But 〈a〉 ⊂ f(Qp) and
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f(Qp) is divisible, so D ⊂ f(Qp), and hence f(Qp) = D, proving that D ∼= Qp. Next
we show that D ∩m(X) = {0}. Assume the contrary, and let U = D ∩m(X). Then
U is open in D. Since limn→∞ pna = 0, there exists k ∈ N such that pka ∈ U, and so

a+m(X) ∈ t(X/m(X)).

As X/m(X) is torsionfree, it follows that a ∈ m(X), contradicting the choice of a.
This proves that D ∩m(X) = {0}.

Now, according to Lemma 5.15, we can write X = D ⊕ G for some closed
subgroup G of X. Since, in view of Lemma 3.5, H(D,G) and H(G,D) cannot be
nonzero groups, we must have d(G) = {0} and m(G) = G, so that D = d(X) and
G = m(X). �

Theorem 5.19. Let p ∈ P, and let X ∈ Lp be a nonreduced mixed group having

closed torsion subgroup. The ring E(X) is commutative if and only if X is topolo-

gically isomorphic to Qp × Z(pnp) for some np ∈ N0.

Proof. Assume E(X) is commutative. Since t(X) is closed in X, we clearly have
m(X) = t(X). But t(X) is reduced by Lemma 5.17, so that d(X) 6⊂ m(X). It then
follows from Lemma 5.18 that X = D ⊕ t(X), where D ∼= Qp. As, by Lemma 3.2,
E(t(X)) is also commutative, we deduce from Theorem 5.2 that t(X) ∼= Z(pnp) for
some n ∈ N0.

Assume the converse. We have X = d(X) ⊕ t(X), where d(X) ∼= Qp

and t(X) ∼= Z(pnp). Since d(X) is torsionfree and t(X) is reduced, it follows
that d(X) and t(X) are topologically fully invariant subgroups of X, so that
E(X) ∼= E(Qp) × E(Z(pnp)). �

We prove now

Theorem 5.20. Let X be a topological torsion group in L such that its topologi-

cal primary components have closed torsion subgroup and compact-by-bounded order

quotient modulo the subgroup of elements of infinite topological height. The following

are equivalent:

(i) E(X) is commutative.

(ii) For each p ∈ S(X), Xp is topologically isomorphic with one of the groups

Z(p∞), Z(pnp), Zp, Qp or Qp × Z(pnp), where np ∈ N.

Proof. As we know, E(X) is commutative if and only if all the E(Xp)’s have this
property.

Pick any p ∈ S(X), and assume that E(Xp) is commutative. If Xp = t(Xp), we
deduce from Theorem 5.2 that either X ∼= Z(p∞) or X ∼= Z(pnp) for some np ∈ N.
Let us suppose further that Xp 6= t(Xp). Since

⋂

n∈N

pnX∗
p = A(X∗

p , t(Xp)) [8, (24.24)]
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and t(Xp) is closed in Xp, it then follows from [8, (23.24)(b)] that
⋂

n∈N
pnX∗

p 6= {0}. But

(

Xp/t(Xp)
)

∗ ∼=
⋂

n∈N

pnX∗
p [8, (23.25)]

and since Xp/t(Xp) is torsionfree, we conclude by a theorem of Robertson [13, The-
orem 5.2] that

⋂

n∈N
pnX∗

p is densely divisible, so that X∗

p is nonreduced. Now,
if X∗

p = t(X∗

p ), we use Theorem 5.2 again to deduce that X∗

p
∼= Z(p∞), whence

Xp
∼= Zp. Further, if t(X∗

p ) = {0}, we conclude from Theorem 5.12 that X∗

p
∼= Qp,

so Xp
∼= Qp because Qp is self-dual. Thus, it only remains to consider the case when

X∗

p is mixed. As Xp/
⋂

n∈N
pnXp is compact-by-bounded order, it is then easily seen

that t(X∗

p ) is closed in X∗

p , so that by Theorem 5.19 X∗

p
∼= Qp × Z(pmp) for some

mp ∈ N, whence Xp
∼= Qp × Z(pmp).

On the other hand, it is clear that the groups Z(p∞), Z(pnp), Zp, Qp and
Qp × Z(pmp) have commutative ring of continuous endomorphisms. �

Remark. Observe that by dualizing Theorem 5.20 we would obtain nothing new
because the class S of topological torsion groups in L whose topological primary
components have closed torsion subgroup and compact-by-bounded order quotient
by the subgroup of elements of infinite topological height is self-dual, i.e. if X ∈ S,
then X∗ ∈ S too.
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1968.

[3] Bourbaki N. Topologie generale, Chapter 3-8, Éléments de mathematique. Moscow, Nauka
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