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The GL(2,R)-orbits of polynomial differential systems
of degree four

Angela Pagcanu

Abstract. In this paper we characterize the GL(2,IR)—orbits of the differential
systems 1 = P(x1,x2), 2 = Q(z1,z2), where P, @ are polynomials of degree four,
with respects to their dimensions.
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1 Center-affine transformations

Consider the system

4 4
#1= ) Pp(w1,3) = P(x1,m9), @2= Y Q1 m9) = Qx1,22), (1)
k=0 k=0

where _ .
Py (21, 22) = Z ai;x 7y, Qr(xr,z2) = Z bi;xy ).

it+j=k it+j=k
Denote by E the space of the coeflicients
a = (ago, @10, @01, a20, - - - , @13, Go4; boo, b10, bo1, b2o, - - - , b13, boa)

of system (1) and by GL(2,IR) the group of the center-affine transformations of the
phase space Oz, = (x1,x2).

Applying in (1) the transformation X = gz, where X = (X1, X»), ¢ € GL(2,IR),
ie.

Q11 Q12 -1 1 Q22 —Q]2
= ,O("EIR,A:dEt 0, = - )
1 < Qo1 (22 ) " (@) #0, ¢ A < —ao1 Qa1 >

we obtain the system

4 4
X, = Z a;'ijiXi Xo = Z b;‘ijfX; (2)
i+j=0 i+5=0

The coefficients a* of (2) are expressed linearly by coefficients of system (1):
a* = A)(a), detAyy # 0. The set A = {Ay)lg € GL(2,R)} forms a 4-parameter
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group with the operation of composition. A is called the representation of the
GL(2,IR) group of the center-affine transformations of the phase space Oz in the
space of coefficients F of system (1).

The set O(a) = {A(g)(a)| ¢ € GL(2,IR)} is called a GL(2,IR)—orbit of the point
a € E or of the differential system (1) corresponding to this point.

Let

t et 0 t 1 ¢ t 1 0 t 1 0
q; = 0 1 y Ao = 0 1 y 43 = t1 y 4 = 0 et

and G; = {¢/|t € R} C GL(2,R), | = 1,4. Denote g} = A(gr) and a! = gl(a) € E.
Then A; = {g}}, | = 1,4, are representations in E of the subgroups G|, respectively.
Each of the pairs (E,{g/}), | = 1,4, is a differential flow. They define in E the
following differential system of linear equations

da _ (dgj(a) A _
E‘( L LZO_A ca, 1=T/4. (3)

Let

v = §4 (A(’.)i B.(l.)i> =114
L Y Oaj Y Qb /)’ o
i+35=0

be the vector fields defined in E by systems (3). The coordinates of the vectors vy,
[ =1,4, are given by the formulas

1)

Az('jl') = (1 —i)ay, Bz'(j = —ibij;

A%) = bio, Az(gz') = bij — (i + D)ajt1,5-1;

By =0, B® = (4 Dbiyrjo1, 40
A((J:;") =0, AS’) ==+ Dai-1+1;

B(():;) = 4055 Bi(;)) =aij; — (J+ 1)bi—1,j41, @ # 0;
Az('?) = —Jaij, Bz'(;'l) = (1= J)bs.

If we denote by L, the derivative with respect to the vector v and we set w =
[u,v], where L,, = LyL, — L,Ly,, it is easy to determine that the vector fields vy,
I = 1,4, generate a Lie algebra. The dimension of the orbit O(a) is equal to the
dimension of this algebra, i.e. with the rank of the matrix of dimension 4 x 30
1,2]:

1 1 1 1 1 1 1
A AW Ay AW Ay Bl - B
M= ... .. ] (4)
4 4 4 4 4 4 4
AR AD AD AD oAl B .. BY

The purpose of this paper consists in the classification of systems (1) according
to the dimensions of their GL(2,IR)—orbits.
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We notice that such classification was done for some particular cases of system
(1) in [2—9].
From [10] follows

Lemma 1. Let O(a) be a GL(2,IR)—orbit of the system (1). Then
1) dimO(a) = 0 if and only if (1) has the form
71 = bxr1, Zo=bxy, b= const; (5)
2) dimO(a) # 1, Ya € E.
By Lemma 1, dimO(a) > 1, i.e. dimO(a) is equal to one of the numbers 2,3 or
4, if and only if
|P(z1,22) — aro21| + |Q(21, ¥2) — arogza| £ 0.

Therefore, if the right-hand sides of the system (1) have either at least one con-
stant term agg, boo or one nonlinear term, then the dimension of the GL(2,IR)—orbit
is at least two.

For the linear system

1 = a1pox1 + apg1xr2, 2 = biox1 + bo1x2 (6)

the matrix (4) has the form:

O anl —bl() O
bio  bo1 — aio 0 —b1o
M, = . 7
! —ao1 0 aip —bor  ao1 9
0 —aop1 b1o 0

It is easy to determine that rank M; < 2. So, the linear system has the orbit’s
dimension equal to zero only if it has the form (5) and dim O(a) = 2 in other cases,
i.e. when

T = a1p71 + ap1r2, T2 = bior1 + bo1Ta, |a1o — bo1| + |ao1| + [bo| # 0. (8)
Applying in (1) the transformation of coordinates
Ty —— T2, T2 —— T1, (9)

we obtain
7y = Q(z2,71), 2= P(x2,71). (10)
Denote by v}, I = 1,4, the vectorial fields associated to the differential system
(10).

Remark 1. The equalities avy + Bva +yvz +0vy = 0 and dv] +yv; + Bv; +avy =0
(a, B,7,0 € IR) are equivalent.

Talking into consideration Remark 1, in order to determine the orbits of dimen-
sion two and three it is enough to examine the following two cases:

avy +vq =0, (11)
avy +ve +yv3+dug =0. (12)
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2 The case av; + v, =0

The equality (11) written in the coordinates of v; and v4 represents a homoge-
neous linear algebraic system in coefficients a;; of (1).

If vj = vy = 0, then (1) is of the form #; = ajpx1, 22 = bpize and it is a
particular case of (6).

In the case when at least one of the vectors v; and v, is nonzero, this algebraic
system has nontrivial solutions only for the following values of the parameter « :

1934 415 0 ko S
“= 23 1

According to Remark 1, it is enough to examine only the cases:
a=2;3;4; -1; =2; 0; 1.
To this values of « the following solutions correspond respectively:

1) A5 = 07 (27]) 7£ (170)7 (072)7 bij = 0’ (Z>]) 7£ (0’1);

2) aij =0, (i,7) # (1,0), (0,3), bij = 0, (4,5) # (0, 1);
3) aij =0, (i,j) # (1,0), (0,4), bij = 0, (4,5) # (0,1);
4) aij =0, (i,5) # (1,0), (2,1), by = 0, (i, 5) # (0,1), (1,2);
5) aij =0, (i,j) # (1,0), (2,2), bij = 0, (4,5) # (0, 1), (1,3);

G)CLU—O]#Obm 0,7 #1;
6a) a;; = b =0,1+7# L

Notice that in the case 6a) we obtain the linear system (6).

Denote

i1 = |ago| + |bor — a1o| + [b11 — ag0| + |b21 — aszo| + |ao| + |b31],

iz = |bor — ao| + |ago| + |aso| + |aso| + [b11] + [b21| + [b31],

i3 = |aoo| + |azo| + |azo| + |aso| + [b11| + |b21| + [b31]-

In order to separate the orbits of dimension two from those of dimension three,
we will determine the conditions on the coefficients of system (1) such that in each

of the cases 1) — 6) all the minors of order three of matrix (4) should be equal to
zero. We have respectively:

1) aga(ar0 —bo1) = 0;  2') apg(aro — bor) = 0;

3) apa(aro —bor) =0;  4') |az1| + |bra| = 0;

5') |age| + [br3| = 0; 6') i1 - ig - i3 = 0.

The cases [1),1'), ag2 = 0]; [2),2), aos = 0]; [3),3), aopu = 0]; [4),4'),a9; =
bio = 0); [5),5),a92 = b1z = 0] and [6),6),i3 = 0] lead us to a system of the
form (6). Later on, assuming that av; + v4 = 0, we have the following distribution

by dimensions of orbits of the system (1) (the systems (5) and (6) are not included
here):
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dim O(a)=2
T = a1071 + ageri, 2o = aiorz, agy # 0; (13)
Ty = a1o71 + ag3rs, 29 = ajora, apz 7 0; (14)
T1 = a10r1 + aurs, T2 = are, o # O; (15)
@1 =1 F, o = 29 - F, F = ajg + agx1 + azox?, |aso| + |aze| #0;  (16)
T1 = apo +aipr1, T2 = a2, ag 7 0. (17)
dim O(a)=3
I = a1 + agers, Tz = boize, agz(aig — bor) # 0; (18)
T1 = ajpr1 + CL03$§, Zo = bo1xa, ap3(aio — bo1) # 0; (19)
I = a1 + auty, Lo = boize, ags(ag — bor) # 0; (20)
Z1 = x1(a10 + anz1z2), 2o = x2(bo1 + bax122), ag| + |b12| #0;  (21)
71 = x1(a10 + azor123), ¥ = x9(bo1 + bizr123), |aga| + |biz] # 0; (22)
{ 3::1 = ago + a1071 + ax0? + azeri + a4p:17‘113 ‘ (23)
29 = x9(bo1 + b1iz1 + bglx% + bglaz‘i’), i1 - 19 - 13 # 0.

3 The case avy + vy +vyv3+dvy = 0.

In this section we will need the following notations:
a;=(0—ia)/(i+1),6; = (a—1id0)/(i+1),i =1,4,1n =0 + 20, = @ + 26;
J1= ‘alg — 30,0304’ + ‘Oé + 5‘ + ’ao()’ + \all\ + ‘CLOQ‘ + ‘alg‘ + ]a04],

J2 = |ago| + |ao1| + |aoz| + |ao3| + |aoal,

J3 = |a11 — 2acapz| + [a 4 | + |ago| + |ao1| + |ai2| + |ao3| + |ai3| + [ao4l,
Ja = lago| + |a11| + |ao2| + |a12| + |ags| + |a13| + |ao4l,

Js = la1z — 4acaos| + |a + 8| + |ago| + |ao1| + |a11| + |aoz| + |ai2| + |aos],
jo = lao1| + laos| + v + &7,

jr = la1z + 38 ags| + |y + 62| + |aou,

Jjs = laiz| + |aos|,

Jo = la1s| + |aoal,

J10 = o+ 68| + |ao1| + |aoal,

J11 = laiz + 40 aps| + o + 6| + |aot |-

The equality (12) holds if and only if at least one of the following seven series of
conditions is realized:

7) v = ag - &2, agy = d3a02, a11 = 282a02, big = a2d2a01, bo1 = aip — 261ao1,
bao = —83ag2, b1 = —283a02, b2 = —d2a02, a;; = bi; =0, i+ j =0,3,4;
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8) v = as - 83, asp = ap3d3, a1 = 3ap3d3, ai2 = 3ag3ds, bip = agiasds, by =
aio — 201a01, bzo = —ap3ds, bar = —3ap303, bia = —3ap303, bz = —a3ds,
aij =bjj =0,i+7=0,24;

9) v = ay- 64, ago = aoady, azr = 4apsdy, aze = 6a0403, ar3 = 4agsds, bio = ag1sds,
bo1 = a10—261a01, bao = —a04d3, ba1 = —4aad}, byz = —6apady, biz = —4apsdy,
bos = —ao4ds; aij = bij = 0,1 +7=0,2,3;

10) v = a4, ag = —6(ar1 + dapz), asp = 6*(ai2 + 26ags), azr = —8(2a12 + 3apsd),
ay0 = —53(CL13 + 35(104), as] = 52(3a13 + 8(104(5), a2 = —35(&13 + 26@04)7 boo =

—aag, bio = ap1ad, bor = aip — 261a01, bao = —apzad?, by = §(4d1a02 — ar),
bo2 = a11—362a02, bso = agzad®, by = 6%(a12—6a0301), bz = 5(9agzde —2a12,)
bos = a1z — 4d3a03, by = —adtaps, bz = 63(8apsdr — a13), bae = 36%(a13 —

6agsd2), b1z = 6(16aps63 — 3a13), boa = a1z — 5d4a04;

11) a = =46, azg = —y(a12 +28ap3), az1 = —2a126 — dagzd? —vaps, bio = Yao1, bor =
a10+2d8ao1, bsg = —y2ap3, bar = —y(a1a+668a03), bz = —28a12 —862agz +~aos,
bog = a12 + 4dap3, a;; = bj; =0,i+ 75 =0,2,4;

12) v = vy - 1o, big = viveaer bor = aip — 201a01, aso = v1v3 (a3 + 38aps), az =
—1/2(3()éa13 —85%&04), a9 — —3(a04a2+a135+2a5a04+352a04), b40 = I/%I/g’a(yl,
b31 = 1/11/22(a13 — 851&04), b22 = —31/2(&1304 — CL04OZ2 + 6(1040[5 + (10452), b13 =
—3dai13 + 4&04(51(04 + 5(5), bos = a13 — Dapsdy, Q5 = bij =0,14+75=0,2,3;

13) a19 = abiobor — 6b1o, bio = Yao1, aij = bi; =0,i+j=0,2,3,4.

Notice that in conditions 13) we have a system of the form (6).

Equating to zero the minors of order three of the matrix (4) in each of the cases
7) — 12), we obtain respectively:

7:) ap1 - ap2 = 0;

8/) ao1 - agz = 0;

9 )/ apl - apg = 0;

10) ji-J2-j3 - ja-Js = 0;

11) je - j7 - js = 0;

12) jo - j10 - ju1 = 0. /

The relations [7), 7)] — [12), 12')] lead us to the following distribution of the
GL(2,IR)—orbits of the system (1) (the cases which lead us to the system (6) are
not considered here):

dim O(a)=2

Z1=ar1 + F, % =awzs— 06 F, F=ap(0x +12)* #0; (24)
T = a1+ F, ¥ =ajory—0d3-F, F =ag(d3z1+12)% #0; (25)

T = appr1 +F, o =ajpre — 04 - F, F= a04((54a:1 + 1’2)4 5_’3 0; (26)
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:Iflzl‘l'F, :ﬁ2:$2'F,

F = ajg — a11(5x1 — xg) + a12(5 1 — 1’2)2 — CL13((53§1 — x2)3, (27)
la11] + |a1z] + |a1s] # 0;
x1 = ago + alpr1, T2 = —aag + apr2, ago 7 0. (28)
dim O(a)=3

T1 = ajpxr1 + ag1xo + F)|
1:2 = 04252&011'1 + (alo — 2(51@01)%2 — 52 . F, (29)
F = apz(0221 + 32)%, a1 - ag2 # 0;

1 = ajor1 + apgrr2 + F,
To9 = azd3ap1r1 + (CL10 — 251&01)$2 — 03 - F, (30)
F = ag3(03m1 + 22)%,  ao1 - ags # 0;

T1 = ajpxr1 + ag1xoe + F)|
1:2 = 04454CL011'1 + (alo — 2(51@01)%2 — 54 . F, (31)
F = aps(0az1 + 32)*,  ao1 - ags # 0;

T = agg + a10x1 + ag1xro — ((a11 + ag20)x1 + agaxe) - F+
+((a12 + 2a030)z1 + aggxs) - F2—
—((a13 + 3agsd)z1 + apaza) - F2,
X9 = —aagp + adapixy + (a0 — 201a01)x2—
—(a dagar1 + (a11 - 3&02(52)1’2) - F+
—|—(a dapzr1 + (a12 - 400353)@) - FP—
—(avdagazs + (a13 — Bapads)zs) - F3,
F=d0x1—x2, Jj1-J2-J3-Ja-Js#0;
Z1 = ajor1 + anz2 — ((a12 + 2a03)z1 + apsz2) - F,
To =y ap 1 + (a10 — 2a0101)z2 + (ao3y21 + (a12 + 4ags)z2) - F, (33)
F=~ya}+25xi20 — 23, jo-jr-Jjs #0;

(32)

T1 = a101 + ag1 T2 + ((a13 + 30 a04)x1 + a04:1:2) - F,
To = V] Vo agix1 + (a10 — 261a01)a:2+

—|—(I/1 Vo apax1 + (a13 — 50y a04):172) o
F = (1214 22)(va w1 — 22)%, Jo - jro - ju # 0.

Remark 2. It is easy to see that the systems (13) — (15), (17) are particular cases
of the systems (24) — (26), (28) respectively. The (16) by substitution (9) can be
reduced to a system of the form (27).

The results obtained above are gathered in the following theorem:

Theorem. Up to a transformation (9), the dimension of the GL(2,R)—orbit of the
system (1) is equal to

0 if it has the form (5);

2 if it has one of the forms (8), (24) — (28);

3 if it has one of the forms (18) — (23), (29) — (34);

4 in other cases.
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