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Linear stability bounds in a convection problem

for variable gravity field

Ioana Dragomirescu, Adelina Georgescu

Abstract. A problem governing the convection-conduction in a horizontal layer
bounded by rigid walls of a fluid heated from below for a linearly decreasing across
the layer gravity field is reformulated as a variational problem. Stability bounds from
the case of classical convection [1] and the case of convection in a linearly decreasing
across the layer gravity field are compared. The new criterion, which yields good
stability bounds for the stability limit, is shown by the numerical evaluations obtained
in [2–4].
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1 Problem setting

Variations in the gravity field occur in, on and above the Earth’s surface due to
the fluid and atmosphere dynamics. In order to study the variable gravity effects
on various convection problems and to compare them with the results obtained
on a laboratory scale or deduced from the atmospheric models the mathematical
model governing the conduction-convection must be investigated. In this paper we
analyze the influence of a linearly decreasing gravity field on the stability bounds
in a convection problem. The governing mathematical model is that given in [7].
This problem is quite unusual in the linear hydrodynamic stability theory due to the
variable coefficients involved in the equations. It is a two-point eigenvalue problem,
where the Rayleigh number is the eigenvalue which can be expressed by a functional
defined on a Hilbert space of smooth functions satisfying some boundary conditions.
The smallest eigenvalue, the only one of interest in applications, corresponds to the
neutral stability in the case when the principle of exchange of stability holds. It
can be computed as the minimum of that functional in the class H of admissible
functions. This variational problem can be solved by means of a Fourier series
technique and its solution is the smallest eigenvalue, called the linear stability limit.
An alternative approach is to use isoperimetric and algebraic inequalities to provide
bounds of this limit. Herein these two types of results are reported.

Consider a horizontal layer of a heat conducting viscous fluid situated between
the planes z = 0 and z = h. For t > 0 the conduction and convective motion is
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governed by the conservation equations of momentum, mass and internal energy [7]



















∂v

∂t
+ (v · grad)v = −

1

ρ
gradp + ν∆v + g(z)αT,

divv = 0,
∂T

∂t
+ (v · grad)T = k∆T,

(1)

where ν is the coefficient of kinematic viscosity, ρ is the density, α the thermal
expansion coefficient, k the thermal diffusitivity, p the pressure, T the temperature,
v the velocity and g(z) = gH(z)k is the gravity, with g constant and k the unit
vector in the z-direction. The boundary conditions at the rigid boundaries are [7]







v = 0, at z = 0, h,
T = TL, at z = 0,
T = TU , at z = h, with TL > TU .

(2)

The linear stability of the conduction stationary solution of equations (1) character-

ized by v = 0, T = −βz + TL, β =
TL − TU

h
, written in the nondimensional form,

against normal mode perturbations is governed by the following two-point problem
for the ordinary differential equations [5, 7]

{

(D2 − a2)2W = RH(z)a2Θ,
(D2 − a2)Θ = −RN(z)W,

(3)

W = DW = Θ = 0 at z = 0, 1. (4)

Here D =
d

dz
, R2 is the Rayleigh number and it represents the eigenvalue of the

problem (3)–(4), a is the wavenumber and W and Θ are the amplitudes of the vertical
velocity and pressure perturbation. They form the eigenfunction of the eigenvalue
problem (3)–(4).

In the sequel we consider that H(z) = 1 − εz, N(z) ≡ 1 and k = 1, so
g(z) = g(1 − εz)k.

2 Stability criteria

For ε ∈ [0, 1], the principle of exchange of stability holds [5] for the eigenvalue
problem

{

(D2 − a2)2W = R(1 − εz)a2Θ,
(D2 − a2)Θ = −RW,

(5)

with the boundary conditions (4). Eliminating W between the equations (5) we
obtain the following six-order ordinary differential equation

(D2 − a2)3Θ = −R2a2(1 − εz)Θ,
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and the boundary conditions, written in Θ only, are

Θ = (D2 − a2)Θ = D(D2 − a2)Θ = 0, at z = 0, 1.

The problem (5)–(4) possesses a non-trivial solution only for particular values
of R. So we have an eigenvalue problem for R. For a given a we must determine
the lowest value of R. This minimum value with respect to a is the critical Rayleigh
number at which the instability sets in. It corresponds to the most unstable mode.

Introduce the new function

Ψ = (D2 − a2)Θ. (6)

In this way, we have
(D2 − a2)2Ψ = −R2a2(1 − εz)Θ, (7)

with the boundary conditions

Θ = Ψ = DΨ = 0 at z = 0, 1. (8)

Some practical criteria can be derived for the hydrodynamic stability problem
using the following three isoperimetric inequalities due to Joseph [6]

I2
1 ≥ λ2

1I
2
0 , I2

2 ≥ λ2
2I

2
1 , I2

3 ≥ λ2
3I

2
0 , (9)

where λ1 = π, λ2 = 2π, λ3 = (4.73)2 and I2
i (Φ) =

∫

1

0

(DiΦ)2. These isoperimetric

inequalities are valid in the Hilbert space H1 of real-valued four times continuously
differentiable functions Φ on [0, 1] satisfying the boundary conditions

Φ(0) = Φ(1) = DΦ(0) = DΦ(1) = 0.

Here, the functions Ψ and Θ are both indefinitely differentiable functions on the
Hilbert space L2(0, 1). The unknown function Ψ satisfies the necessary bound-
ary conditions so that the isoperimetric inequalities are valid for Ψ. Denote by
H2 the Hilbert subspace of L2(0, 1) consisting of real-valued four times continu-
ously differentiable functions Φ on [0, 1] satisfying the boundary conditions Φ(0) =
= Φ(1) = 0.

Multiplying (7) by Ψ, integrating the result over [0, 1] and taking into account
the boundary conditions (8) we obtain

I2
2 (Ψ) + 2a2I2

1 (Ψ) + a4I4
0 (Ψ) = −R2a2

∫

1

0

(1 − εz)ΘΨ. (10)

Taking into account the isoperimetric inequalities (9), it is proved that the following
stability criterion holds.

Proposition 1 [2]. For A ≡ a(a−ε) > 0, a stability bound in the two-point problem
(5), (4) is R2 ≥ B(π2 + a2)2/(a2(π2 + A)), where B = 4.734 + 2a2π2 + a4.
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Proposition 2 [2]. For A < 0 the stability bound in the two-point problem (5), (4)
is given by R2 ≥ B(π2 + a2)/(a2(1 + ε)).

Let us recall that, for ε = 0, (5) becomes
{

(D2 − a2)2W = Ra2Θ,
(D2 − a2)Θ = −RW,

which together with the boundary conditions (4), form the classical Bénard convec-
tion problem. Denote by R2

c the Rayleigh number for this two-point problem and
by R2

ε the Rayleigh number for the two-point problem (5), (4) in which the gravity
field is linearly decreasing across the layer. Then the following result holds.

Proposition 3. The domain of stability in the convection problem (5), (4) increases
with ε > 0, i.e. R2

c ≤ R2
ε .

Proof. By multiplying (6) by Θ, integrating the obtained result between 0 and 1,
(10) is rewritten in the form

I2(Ψ) − 2a2I2
1 (Ψ) + a4I2

0 (Ψ) = R2a2

∫

1

0

−ΘΨdz + R2a2ε

∫

1

0

zΘΨdz. (11)

Taking into account (6) projected on Ψ, for ε = 0, from (10) it follows [1] that the
lowest characteristic value of the Bénard problem is given as the minimum

R2
c = min

Ψ∈H1,Θ∈H2

∫

1

0

[(D2 − a2)2Ψdz]

a2

∫

1

0

[(DΘ)2 + a2Θ2]dz

. (12)

Further let us come back to the case ε 6= 0. By (6) we have Ψ = (D2 − a2)Θ.
Then the following equalities

∫

1

0

−ΘΨdz =

∫

1

0

(DΘ)2 + a2(Θ)2dz = I2
1 (Θ) + a2I2

0 (Θ) > 0,

∫

1

0

zΘΨdz = −

∫

1

0

z[(DΘ)2 + a2Θ2]dz < 0

(13)

hold. Consequently, from (11) it follows that the lowest characteristic value can be
obtained by taking the minimum of the functional

R2
e = min

Ψ∈H1,Θ∈H2

I2(Ψ) + 2a2I2
1
(Ψ) + a4I2

0
(Ψ)

∫

1

0

{

(DΘ)2 + a2Θ2 − z[(DΘ)2 + a2Θ2]
}

dz

. (14)

The comparison of (12) and (13) implies immediately that R2
ε ≥ R2

c . �

In Fig. 1 we present the neutral curve for the classical case (ε = 0) and some
neutral curves for the variable gravity field case. These graphs illustrate the stability
criteria too.
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Fig. 1. The function Ra(a)

3 Conclusions

In this paper we presented two stability criteria (one from [2] and a new one)
for a convection problem with a variable gravity field. They show that when the
gravity field is linearly decreasing across the layer (in our case this means that ε > 0),
the stability domain enlarges. The numerical results obtained in [2–4] sustain this
conclusion.

In [3, 4] we obtained numerical evaluations of the Rayleigh number by using
methods based on Fourier series expansions and these results agree very well with
the ones obtained by Straughan in [7] using the energy method. In [2], using a
variational method (in fact, isoperimetric inqualities), we also obtained numerical
evaluations of the stability bounds for this convection problem. Obviously, these
bounds are smaller than the limits (even approximate) obtained by methods based
on Fourier series expansions. However, the advantage of applying the variational
method is its easy use and the quick result obtained.
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