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Lie algebras of operators and invariant

GL(2, R)-integrals for Darboux type differential systems

O.V. Diaconescu, M.N. Popa

Abstract. In this article two-dimensional autonomous Darboux type differential
systems with nonlinearities of the ith (i = 2, 7) degree with respect to the phase vari-
ables are considered. For every such system the admitted Lie algebra is constructed.
With the aid of these algebras particular invariant GL(2, R)-integrals as well as first
integrals of considered systems are constructed. These integrals represent the alge-
braic curves of the (i − 1)th (i = 2, 7) degree. It is showed that the Darboux type
systems with nonlinearities of the 2nd, the 4th and the 6th degree with respect to the
phase variables do not have limit cycles.
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Consider the system of differential equations

dxj

dt
= aj

αxα + aj
α1α2...αm

xα1xα2 ...xαm (j, α, α1, α2, ..., αm = 1, 2; m ≥ 2), (1)

where coefficient tensor a
j
α1α2...αm is symmetrical in lower indices, in which the com-

plete convolution holds. The system (1) will be considered with the action of the
group GL(2, R) of center-affine transformations [1].

We shall consider the following center-affine invariants and comitants [1] of the
system (1) written in the tensorial form

I1 = aα
α, I2 = aα

βaβ
α, K2 = aα

βxβxγεαγ , K̃m−1 = aα
αα1α2...αm−1

xα1xα2 ...xαm−1 ,

K̃m+1 = aα
α1α2...αm

xα1xα2 ...xαmxβεαβ , (2)

where εαβ is the unit bi-vector with coordinates ε11 = ε22 = 0, ε12 = −ε21 = 1.

It is easy to see that when the condition K̃m+1 ≡ 0 holds, the system (1) takes
the form

dxj

dt
= aj

αxα + mxjR(x1, x2) ≡ P j(x1, x2) (j, α = 1, 2), (3)

where R(x1, x2) is a homogeneous polynomial of the (m − 1)th order. As it is well
known, the system (3) is called a Darboux type differential system (see, for example,
[2, 3]).

c© O.V. Diaconescu, M.N. Popa, 2006

3



4 O.V. DIACONESCU, M.N. POPA

A series of papers is devoted to the problem of the investigation of systems of
the form (3) from different points of view (see, for example, [2–7]).

Note that the family of systems (3) is a subset of the family of systems (1)
defined via center-affine invariant conditions. Indeed, one can verify easily that for
the system (3) the conditions K̃m+1 ≡ 0, K̃m−1 = (m+1)R(x1, x2) hold. Therefore
we have the next

Lemma 1. A system (1) belongs to a family of the Darboux type differential systems
(3) with R(x1, x2) 6≡ 0 if and only if K̃m+1 ≡ 0, K̃m−1 6≡ 0.

For the system (1) with K̃m+1 ≡ 0 and m = 2, 3, ..., 7 or, that is the same, for
(3) with m = 2, 3, ..., 7, two algebraic curves of the form

k∑

j=0

Aj(x
1)k−j(x2)j = Bk (k = 2,m − 1), (4)

where B2 = 0, and Bm−1 6= 0 and Aj are polynomials in the coefficients of this
system, are particular invariant GL(2, R)-integrals.

Remark 1. The construction of particular invariant GL(2, R)-integrals (4) is
remarkable, because as it is shown in [2], the system (3) can have only one limit
cycle and if it exists, it represents an algebraic curve of the form (4) with k = m− 1
and Bk 6= 0, surrounding the origin of coordinates.

Lemma 2. If the factorization over C[x, y] of the left-hand side of the algebraic
curve of the form (4) with Bm−1 6= 0 contains at least one real linear factor, then
this algebraic curve cannot be of the ellipsoidal form.

Proof. Suppose that some algebraic curve of the form (4) with Bm−1 6= 0 can be
written as

(Ax1 + Bx2)
m−2∑

j=0

A′

j(x
1)m−j−2(x2)j = Bm−1,

where the linear factor Ax1 + Bx2 is real. Suppose that the last equation has
the ellipsoidal form, surrounding the origin of coordinates, it means, that any line,
passing through the origin, has to intersect the curve in two points. Particularly,
this holds for the line Ax1+Bx2 = 0. However, in this case we get the contradiction:
at the intersection points we have 0 = Bm−1, i.e. the assertion of Lemma 2 is true.

Theorem 3. System (1) with K̃m+1 ≡ 0 has the particular invariant GL(2, R)-
integral

K2 = 0,

where K2 is from (2).
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Proof. According to Lemma 1, the system (1) with K̃m+1 ≡ 0 has the form (3).
Denote by Λ the operator

P 1(x1, x2)
∂

∂x1
+ P 2(x1, x2)

∂

∂x2
, (5)

where P j (j = 1, 2) is from (3). It is easy to see that

Λ(K2) = K2

(
I1 +

2m

m + 1
K̃m−1

)
,

where I1, K2 and K̃m−1 are from (2). This identity shows that K2 is a particular
integral of the system (3) or, that is the same, of the system (1) with K̃m+1 ≡ 0.
Theorem 3 is proved.

Consider the differential operator

X = ξ1 ∂

∂x1
+ ξ2 ∂

∂x2
, (6)

where ξ1 and ξ2 are polynomials in variables x1, x2 and in coefficients of the system
(3).

According to [8], we can show that the system (3) admits the operator (6) if and
only if its coordinates satisfy the system of constitutive equations

ξ
j
xαPα = ξβP

j

xβ (j, α, β = 1, 2), (7)

where ξ
j
xα =

∂ξj

∂xα
and P

j

xβ =
∂P j

∂xβ
.

As well, according to [8] we have that if the system (3) admits the operator (6),
then we can apply Lie theorem on integrating factor: The system (3) admits a group
with the operator (6) if and only if the function µ of the form

µ−1 = ξ1P 2 − ξ2P 1 (8)

is an integrating factor of the equation

P 2dx1 − P 1dx2 = 0. (9)

In what follows we shall say that µ is an integrating factor of the system (3) if
it is an integrating factor of the equation (9).

Theorem 4. The system (1) with m = 2 and K̃3 ≡ 0 has the invariant GL(2, R)-
integrating factor µ of the form

µ−1 = K2Φ1,
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where K2 is from (2) and

Φ1 ≡ 8I1K̃1 − 12K3 + 3(I2
1 − I2) = 0 (10)

is a particular invariant GL(2, R)-integral of this system.

In (10) invariants and comitants I1, K2, K̃1 = aα
αβxβ are taken from (2), and

K3 = aα
βaβ

αγxγ

are defined in [1].

Proof. Consider the system (3) with m = 2 and x1 = x, x2 = y, written in the form

dx

dt
= cx + dy + 2x(gx + hy) ≡ P 1(x, y),

dy

dt
= ex + fy + 2y(gx + hy) ≡ P 2(x, y).

(11)

where c, d, e, f, g, h ∈ R.

Considering (7) it is easy to verify that the system (11) admits the two-
dimensional commutative Lie algebra of operators of the form

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
[2(fg − eh)x + 2(ch − dg)y + cf − de],

Z2 = {[h(cf − de) + c(dg − ch)] x + d(dg − ch)y + 2 [g(dg − ch) + h(fg−

−eh)x2
]} ∂

∂x
+ {e(dg − ch)x + d(fg − eh)y + 2 [g(dg − ch) + h(fg − eh)] xy}

∂

∂y
.

Using any one of these operators and (8) we obtain up to a constant factor an
integrating factor of the system (11), in the form

µ−1 = [2(fg − eh)x + 2(ch − dg)y + cf − de] [−ex2 + (c − f)xy + dy2]. (12)

Remark 2. In what follows we will use invariants I1 and I2 and comitant K2 from
(2) for the system (3) with a1

1 = c, a1
2 = d, a2

1 = e, a2
2 = f

I1 = c + f, I2 = c2 + 2de + f2, K2 = −ex2 + (c − f)xy + dy2. (13)

Besides I1, I2,K2, calculating for the system (11) the comitants K̃1 = aα
αβxβ and

K3 we obtain

K̃1 = 3(gx + hy), K3 = [g(2c + f) + eh]x + [h(c + 2f) + dg]y. (14)
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We observe that the second factor from (12) exactly coincides with K2. Moreover,
considering (13),(14) we obtain the first factor from (12) in the form (10) up to a
constant factor.

Using the operator (5), one can verify that the first factor from (12) as well as
the second one (Theorem 3) is a particular integral for the system (11), or, that is
the same, for the system (1) with m = 2 and K̃3 ≡ 0. Theorem is proved.

Theorem 5. The system (1) with m = 3 and K̃4 ≡ 0 has an invariant GL(2, R)-
integrating factor µ of the form

µ−1 = K2Φ2,

and
Φ2 ≡ 3(4I1Q2 − 3I2

1 K̃2 + 2J7K2) − 4I1(I
2
1 − I2) = 0 (15)

is a particular invariant GL(2, R)-integral of this system.

In the last expression the invariants and comitants I1, I2,K2, K̃2 = aα
αβγxβxγ

are taken from (2), and

J7 = aα
p a

β
αβqε

pq, Q2 = aα
βa

β
αγδx

γxδ (16)

are defined in [9] (ε11 = ε22 = 0, ε12 = −ε21 = 1).

Proof. Consider the system (3) with m = 3 and x1 = x, x2 = y, written in the form

dx

dt
= cx + dy + 3x(gx2 + hxy + iy2) ≡ P 1(x, y),

dy

dt
= ex + fy + 3y(gx2 + hxy + iy2) ≡ P 2(x, y),

(17)

where c, d, e, f, g, h, i ∈ R.

Then it is easy to verify with the aid of constitutive equations (7) that this
system admits the two-dimensional commutative Lie algebra of operators

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
{(c + f)(cf − de) + 3[(cf − de)g + f2g − efh + e2i]x2−

−6(dfg − cfh + cei)xy + 3[d2g + c(c + f)i − d(ch + ei)]y2},

Z2 = {[defh+c(−2dfg+deh−f2h)+c2(fh−2ei)]x+3[dg(−2fg+eh)+cg(fh−2ei)+

+h(−f2g+efh−e2i)]x3−2d(dfg−cfh+cei)y+3[−d2gh+ci(−ch+fh−2ei)+d(ch2−

−2fgi+ ehi)]xy2}
∂

∂x
+ {−2e(dfg− cfh+ cei)x+(d(−2f2g + ceh+ efh)+ cf(−ch+

+fh−2ei))y+3(dg(−2fg+eh)+cg(fh−2ei)+h(−f2g+efh−e2i))x2y+3(−d2gh+

+ci(−ch + fh − 2ei) + d(ch2 − 2fgi + ehi))y3}
∂

∂y
.
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Using any of these operators and equality (8) we obtain up to a constant an inte-
grating factor of the system (17) in the form

µ−1 = {(c+ f)(cf − de)+ 3[(cf − de)g + f2g− efh+ e2i]x2 − 6(dfg− cfh+ cei)xy+

+3[d2g + c(c + f)i − d(ch + ei)]y2}[−ex2 + (c − f)xy + dy2]. (18)

Calculating J7, Q2 and K̃2 = aα
αβγxβxγ for the system (17) we obtain

K̃2 = 4(gx2 + hxy + iy2), J7 = −4dg + 2ch − 2fh + 4ei, Q2 = (3cg + fg + eh)x2+

+2(dg + ch + fh + ei)xy + (dh + ci + 3fi)y2. (19)

We observe that the second factor from (18) exactly coincides with K2. Moreover,
considering (13) and (19) we obtain the first factor from (18) in form (15) up to a
constant factor.

Using the operator (5), one can verify that the first factor from (18) as well as
the second one (Theorem 3) is a particular integral for the system (17) or, that is
the same, for the system (1) with m = 3 and K̃4 ≡ 0. Theorem is proved.

Remark 3. In [7] it is shown that for the existence of a limit cycle for the system
(1) with m = 3 and K̃4 ≡ 0, surrounding the origin, it is necessary and sufficient
that the following conditions hold

2I2 − I2
1 < 0; I2

1J4 + 2J2
7 > 0; I1(4I1Q2 − 3I2

1 K̃2 + 2J7K2)|y=0 > 0,

where I1, I2, J7,K2, K̃2, Q2 are from (2) and (16) and J4 = aα
αpra

β
βqsε

prεrs. Moreover,
the limit cycle is unique and it is stable (unstable) if I1 > 0 (I1 < 0) and has the
form (15).

Theorem 6. Differential system (1) with m = 4 and K̃5 ≡ 0 has the invariant
GL(2, R)-integrating factor µ of the form

µ−1 = K2Φ3,

and

Φ3 ≡ 8(5I2
1 −I2)(4I1K̃3−5M1)+96K2(M3−2I1M2)+15(5I2

1 −I2)(I
2
1 −I2) = 0 (20)

is a particular invariant GL(2, R)-integral of this system.

Here invariants and comitants I1, I2,K2, K̃3 = aα
αβγδx

βxγxδ are from (2), and

M1 = aα
βa

β
αγδµxγxδxµ, M2 = aα

βa
γ
δαγµxµεβδ, M3 = aα

βa
γ
δ aµ

µγνxδεβν .
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Proof. Consider the system (3) with m = 4 and x1 = x, x2 = y, written in the
form

dx

dt
= cx + dy + 4x(gx3 + hx2y + ixy2 + jy3),

dy

dt
= ex + fy + 4y(gx3 + hx2y + ixy2 + jy3),

(21)

where c, d, e, f, g, h, i, j ∈ R.

This system admits a two-dimensional commutative Lie algebra with one of
operators in the form

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
× ϕ3(x, y),

where

ϕ3(x, y) = {−(cf − de)[2(c + f)2 + (cf − de)] − 4[2c2fg + de(−5fg + eh)−

−c[2deg+f(−5fg+eh)]+2(f3g−ef2h+e2fi−e3j)]x3−12[d2eg−d(cfg+2f2g+ceh)+

+c(cfh+2f2h−2efi+2e2j)]x2y−12[2d2fg+c(2c+f)(fi−ej)+d[−2cfh+e(−fi+

+ej)]]xy2+4[2d3g−d2(2ch+ei)−c(2c2 +5cf +2f2)j+d(2c2i+cfi+5cej+2efj)]y3}.

Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (21) in the form

µ−1 = ϕ3(x, y) × [−ex2 + (c − f)xy + dy2]. (22)

Calculating M1, M2, M3 and K̃3 for the system (21) we obtain

K̃3 = 5(gx3 + hx2y + ixy2 + jy3), M1 = (4cg + fg + eh)x3 + (3dg + 3ch + 2fh+

+ 2ei)x2y + (2dh + 2ci + 3fi + 3ej)xy2 + (di + cj + 4fj)y3, M2 = −
5

3
(3dg−

ch + fh− ei)x −
5

3
(dh − ci + fi− 3ej)y, M3 =

5

3
(−3cdg + c2h − deh − cfh+

+ 2cei − efi + 3e2j)x +
5

3
(−3d2g + cdh − 2dfh + dei + cfi − f2i + 3efj)y.

(23)

The second factor from (22) exactly coincides with K2. Moreover considering
(13) and (23) we obtain the first factor from (22) in the form (20) up to a constant.

Using the operator (5), one can verify that the first factor from (22) as well as
the second one (Theorem 3) is a particular integral for the system (21) or, that is
the same, for the system (1) with m = 4 and K̃5 ≡ 0. The theorem is proved.



10 O.V. DIACONESCU, M.N. POPA

Theorem 7. The differential system (1) with m = 5 and K̃6 ≡ 0 has the invariant
GL(2, R)-integrating factor µ of the form

µ−1 = K2Φ4,

and

Φ4 ≡ 5(5I2
1 − 2I2)(5I

2
1 K̃4 − 6I1N1) − 60K2(3I

2
1N2 − 2I1N3 − K2N4)+

+12I1(I
2
1 − I2)(5I

2
1 − 2I2) = 0 (24)

is a particular invariant GL(2, R)-integral of this system.

Here invariants and comitants I1, I2,K2, K̃4 = aα
αβγδµxβxγxδxµ are from (2),

and

N1 = aα
βa

β
αγδµνxγxδxµxν , N2 = aα

p a
β
qαβγδx

γxδεpq, N3 = aα
p a

β
δ a

γ
αβγµqx

δxµεpq,

N4 = aα
p aβ

r a
γ
αβγsqε

pqεrs.

Proof. Consider the system (3) with m = 5 and x1 = x, x2 = y in the form

dx

dt
= cx + dy + 5x(gx4 + hx3y + ix2y2 + jxy3 + ky4),

dy

dt
= ex + fy + 5y(gx4 + hx3y + ix2y2 + jxy3 + ky4),

(25)

where c, d, e, f, g, h, i, j, k ∈ R. This system admits a two-dimensional commutative
Lie algebra with one of operators

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
× ϕ4(x, y),

where

ϕ4(x, y) = (c + f)(cf − de)[3(c + f)2 + 4(cf − de)] + 5[3d2e2g + 3c3fg−

−c2[3deg +f(−13fg+ eh)]−de(13f2g−4efh+ e2i)+ c[de(−16fg + eh)+f(13f2g−

−4efh+e2i)]+3(f4g−ef3h+e2f2i−e3fj+e4k)]x4+20[df(4de−3f2)g+c3fh−c2(dfg+

+deh−4f2h+efi)+c(d2eg−4df2g−4defh+3f3h+de2i−3ef2i+3e2fj−3e3k)]x3y−

−10[3d3eg−d2[9f2g+3c(fg+eh)+e2i]−c(3c+f)(cfi+3f2i−3efj+3e2k)+d[3c2(fh+

+ei)+cf(9fh+2ei)+3e(f2i−efj+e2k)]]x2y2−20[3d3fg−d2f(3ch+ei)−c(3c2+4cf+

+f2)(fj−ek)+d[3c2fi+ef(fj−ek)+c(f2i+4efj−4e2k)]]xy3 +5[3d4g−d3(3ch+

+ei)+c(3c3+13c2f+13cf2+3f3)k+d2(3c2i+cfi+4cej+efj+3e2k)−d(c+f)(3c2j+

+cfj + 13cek + 3efk)]y4.
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Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (25), in the form

µ−1 = ϕ4(x, y) × [−ex2 + (c − f)xy + dy2]. (26)

Calculating I1, I2, K2, K̃4 = aα
αβγxβxγ and N1, N2, N3, N4 for the system (25)

we obtain the expression (26) in the invariant form. Theorem is proved.

In the same way for the system (3) with m = 6 and x1 = x, x2 = y written in
the form

dx

dt
= cx + dy + 6x(gx5 + hx4y + ix3y2 + jx2y3 + kxy4 + ly5),

dy

dt
= ex + fy + 6y(gx5 + hx4y + ix3y2 + jx2y3 + kxy4 + ly5)

(27)

a two-dimensional commutative Lie algebra is obtained with one of operators in the
form

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
× ϕ5(x, y),

where

ϕ5(x, y) = (cf−de)[4(c+f)2+9(cf−de)][6(c+f)2+cf−de]+6
[
24c4fg + d2e2(97fg−

−9eh)− 2c3[12deg + f(−77fg +3eh)]+ c2[2de(−103fg +3eh)+ f(269f2g− 37efh+

+4e2i)]+2de(−77f3g+29ef2h−11e2fi+3e3j)+2c[26d2e2g+de(−183f2g+23efh−

−2e2i)+f(77f3g−29ef2h+11e2fi−3e3j)]+24(f5g−ef4h+e2f3i−e3f2j+e4fk−

−e5l) ]x5+30 [ d(−9d2e2+58def2−24f4)g+6c4fh−c3[6d(fg+eh)+f(−37fh+4ei)]+

+c2(6d2eg−37df2g−46defh+58f3h+4de2i−22ef2i+6e2fj)+c[d2e(46fg+9eh)−

−2d(29f3g + 29ef2h − 11e2fi + 3e3j) + 24(f4h − ef3i + e2f2j − e3fk + e4l)]]x4y+

+30[8c4fi− 2c3[4d(fh + ei) + f(−23fi + 6ej)] + c2[8d2(fg + eh) + 59f3i− 51ef2j−

−4d(11f2h+12efi−3e2j)+48e2fk−48e3l]+d[−44d2efg+d(48f3g+11e2fi−3e3j)+

+12e(−f3i+ef2j−e2fk+e3l)]−2c[4d3eg−d2(22f2g+22efh+e2i)+df(24f2h+11efi−

−3e2j)+6f(−f3i+ef2j−e2fk+e3l)]]x3y2+30[12d4eg−3d3[16f2g+4c(fg+eh)+e2i]+

+d2[12c2(fh+ei)+2ef(6fi+ej)+c(48f2h+6efi+11e2j)]+c(12c2+11cf+2f2)(cfj+

+4f2j−4efk+4e2l)−d[12c3(fi+ej)+c2f(51fi+22ej)+8ef(f2j−efk+e2l)+4c(3f3i+

+12ef2j−11e2fk+11e3l)]]x2y3+30[24d4fg−6d3f(4ch+ei)+c(24c3+58c2f+37cf2+

+6f3)(fk− el)− 2d[12c3fj + 3ef2(fk− el)+ c2(11f2j + 29efk− 29e2l)+ cf(2f2j+

+23efk−23e2l)]+d2[24c2fi+2cf(3fi+11ej)+e(4f2j+9efk−9e2l)]]xy4−6[24d5g−
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−6d4(4ch+ei)+d3(24c2i+6cfi+22cej +4efj +9e2k)−c(24c4 +154c3f +269c2f2+

+154cf3+24f4)l+d[24c4k+24ef3l+2c3(29fk+77el)+2cf2(3fk+103el)+c2f(37fk+

+366el)]−d2[24c3j+c2(22fj+58ek)+2ef(3fk+26el)+c(4f2j+46efk+97e2l)]]y5.

Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (27), in the form

µ−1 = ϕ5(x, y) × [−ex2 + (c − f)xy + dy2].

Therefore we have the next

Theorem 8. Differential system (1) with m = 6 and K̃7 ≡ 0 has the invariant
GL(2, R)-integrating factor µ of the form

µ−1 = K2Φ5,

and

Φ5 ≡ 12(17I2
1 − 9I2)(13I

2
1 − I2)(6I1K̃5 − 7O1) − 480(13I2

1 − I2)K2(4I1O2 − 3O3)+

+5760K2
2 (3I1O4 − O5) + 35(I2

1 − I2)(17I
2
1 − 9I2)(13I

2
1 − I2) = 0 (28)

is a particular invariant GL(2, R)-integral of this system.

Here invariants and comitants I1, I2,K2, K̃5 = aα
αβγδµνxβxγxδxµxν are from

(2), and

O1 = aα
βa

β
αγδµνηxγxδxµxνxη, O2 = aα

p a
β
qαβγδµxγxδxµεpq, O3 = aα

p a
β
δ a

γ
αβγµνqx

δxµxνεpq,

O4 = aα
p aβ

r a
γ
αβγδqsx

δεpqεrs, O5 = aα
p aβ

µaγ
raδ

αβγδqsx
µεpqεrs.

For the system (3) with m = 7 and x1 = x, x2 = y written in the form

dx

dt
= cx + dy + 7x(gx6 + hx5y + ix4y2 + jx3y3 + kx2y4 + lxy5 + ny6),

dy

dt
= ex + fy + 7y(gx6 + hx5y + ix4y2 + jx3y3 + kx2y4 + lxy5 + ny6)

(29)

a two-dimensional commutative Lie algebra is also found , for which one of operators
has the form

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
× ϕ6(x, y),

where

ϕ6(x, y) = (c+f)(cf −de)[2(c+f)2 +cf −de][5(c+f)2 +16(cf −de)]+7[−10d3e3g+

+10c5fg+c4[−10deg+f(87fg−2eh)]+d2e2(101f2g−16efh+2e2i)+c3[2de(−61fg+

+eh)+f(227f2g−17efh+e2i)]+c2[35d2e2g−de(353f2g−23efh+e2i)+f(227f3g−
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−42ef2h+8e2fi−e3j)]+de(−87f4g+37ef3h−17e2f2i+7e3fj−2e4k)+c[2d2e2(68fg−

−3eh)+de(−328f3g+58ef2h−10e2fi+e3j)+f(87f4g−37ef3h+17e2f2i−7e3fj+

+2e4k)]+ 10(f6g− ef5h+ e2f4i− e3f3j + e4f2k− e5fl + e6n)]x6 + 42[df(−16d2e2+

+37def2−10f4)g+2c5fh−c4[2d(fg+eh)+f(−17fh+ei)]+c3 [2d2eg+d(−17f2g−

−23efh+e2i)+f(42f2h−8efi+e2j)]+c2[d2e(23fg+6eh)−d(42f3g+58ef2h−10e2fi+

+e3j)+f(37f3h−17ef2i+7e2fj−2e3k)]+ c[−6d3e2g +2d2e(29f2g +8efh− e2i)+

+d(−37f4g−37ef3h+17e2f2i−7e3fj+2e4k)+10(f5h−ef4i+e2f3j−e3f2k+e4fl−

−e5n)]]x5y+21[5c5fi−c4[5d(fh+ei)+f(−41fi+5ej)]+c3[5d2(fg+eh)+d(−40f2h−

−52efi+5e2j)+f(93f2i−36efj+10e2k)]+c2[−5d3eg+67f4i+d2(40f2g+50efh+

+11e2i)−57ef3j+52e2f2k−d(85f3h+103ef2i−37e2fj+10e3k)−50e3fl+50e4n]+

+d[10d3e2g−d2(85ef2g+2e3i)+d(50f4g+17e2f2i−7e3fj+2e4k)−10e(f4i−ef3j+

+e2f2k − e3fl + e4n)]− c[10d3e(5fg + eh) + d2(−85f3g − 85ef2h− 12e2fi + e3j)+

+2df(25f3h+17ef2i− 7e2fj +2e3k)− 10f(f4i− ef3j + e2f2k− e3fl + e4n)]]x4y2+

+14[10c5fj−c4[10d(fi+ej)+f(−77fj+20ek)]+2c3[5d2(fh+ei)+75f3j−57ef2k−

−2d(18f2i+21efj−5e2k)+50e2fl−50e3n]+c2[−10d3(fg+eh)+d2(70f2h+74efi+

+7e2j)−2df(57f2i+50efj−14e2k)+f(77f3j−72ef2k+70e2fl−70e3n)]+df [70d3eg−

−2d2(50f2g + 7e2i) + de(20f2i + 7efj − 2e2k) + 10e(−f3j + ef2k − e2fl + e3n)]+

+2c[5d4eg−d3(35f2g+35efh+e2i)+d2(50f3h+14ef2i+25e2fj−7e3k)+5f2(f3j−

−ef2k+e2fl−e3n)+d(−10f4i−42ef3j+37e2f2k−35e3fl+35e4n)]]x3y3−21[10d5eg−

−2d4[25f2g+5c(fg+eh)+e2i]+d3[10c2(fh+ei)+c(50f2h+4efi+7e2j)+e(10f2i+efj+

+2e2k)]− c(10c3 +17c2f +8cf2 +f3)(cfk +5f2k−5efl+5e2n)−d2[10c3(fi+ ej)+

+cf(10f2i+37efj+12e2k)+c2(52f2i+14efj+17e2k)+e(5f3j+11ef2k−10e2fl+

+10e3n)] + d[10c4(fj + ek) + c3f(57fj + 34ek) + 5ef2(f2k − efl + e2n) + cf(5f3j+

+52ef2k−50e2fl+50e3n)+c2(36f3j+103ef2k−85e2fl+85e3n)]]x2y4−42[10d5fg−

−2d4f(5ch+ei)+d3f(10c2i+2cfi+7cej+efj+2e2k)−c(10c4+37c3f+42c2f2+17cf3+

+2f4)(fl−en)+d(c+f)[10c3fk+2ef2(fl−en)+c2(7f2k+37efl−37e2n)+cf(f2k+

+21efl − 21e2n)] − d2[10c3fj + c2f(7fj + 17ek) + ef(f2k + 6efl − 6e2n) + c(f3j+

+10ef2k+16e2fl−16e3n)]]xy5+7[10d6g−2d5(5ch+ei)+d4(10c2i+2cfi+7cej+efj+

+2e2k)+c(10c5+87c4f+227c3f2+227c2f3+87cf4+10f5)n−d(c+f)[10c4l+10ef3n+

+3c3(9fl + 29en) + 2cf2(fl + 56en) + c2f(15fl + 241en)] − d3[10c3j + c2(7fj+
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+17ek) + c(f2j + 10efk + 16e2l) + e(f2k + 6efl + 10e2n)] + d2(c + f)[10c3k+

+c2(7fk + 37el) + ef(2fl + 35en) + c(f2k + 21efl + 101e2n)]]y6.

Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (29), in the form

µ−1 = ϕ6(x, y) × [−ex2 + (c − f)xy + dy2]. (30)

Analogously to previous cases we have the next

Theorem 9. Differential system (1) with m = 7 and K̃8 ≡ 0 has the invariant
GL(2, R)-integrating factor µ of the form

µ−1 = K2Φ6,

and

Φ6 ≡ 7I1(13I
2
1 − 8I2)(5I

2
1 − I2)(7I1K̃6 − 8S1) − 210I1(5I

2
1 − I2)K2(5I1S2 − 4S3)+

+840K2
2 (6I2

1S4 − 3I1S5 − K2S6) + 24I1(I
2
1 − I2)(13I

2
1 − 8I2)(5I

2
1 − I2) = 0 (31)

is a particular invariant GL(2, R)-integral of this system.

Here invariants and comitants I1, I2,K2, K̃6 = aα
αβγδµνηxβxγxδxµxνxη are from

(2), and

S1 = aα
βa

β
αγδµνηϕxγxδxµxνxηxϕ, S2 = aα

p a
β
qαβγδµνxγxδxµxνεpq,

S3 = aα
p a

β
δ a

γ
αβγµνηqx

δxµxνxηεpq, S4 = aα
p aβ

r a
γ
αβγδµqsx

δxµεpqεrs,

S5 = aα
p aβ

µaγ
r aδ

αβγδνqsx
µxνεpqεrs, S6 = aα

p aβ
r a

γ
kaδ

αβγδqslε
pqεrsεkl.

It is shown in [2, 3] that all singular points of Darboux type differential system
(3), different from the origin, are located on its integral straight lines, coinciding
with integral straight lines of this system for Rm−1 ≡ 0. Therefore the necessary
condition for the existence of a limit cycle for the Darboux type differential system
(3) is the condition that the eigenvalues of the matrix of linear terms should be
imaginary, i.e. the condition [1] 2I2 − I2

1 < 0.

We observe that the expression Φm−1 from (10), (15), (20), (24), (28) and (31)
with m = 2, 7 are only algebraic integrals of the form (4) for the Darboux type
system (3) with m = 2, 7. To prove this remark it is sufficient to examine the
explicit form of first integrals for the system (3) with m = 2, 7.

One can verify easily that holds

Theorem 10. The Darboux type differential system (3) with 2I2 − I2
1 < 0 has the

first real integral in the form

I1√
I2
1
− 2I2

arctan
2a2

1x
1 + (a2

2 − a1
1)x

2

|x2|
√

I2
1
− 2I2

+
1

2
ln |K2|−

1

m − 1
ln |Φm−1| = C (m = 2, 7),

(32)
where K2 is from (2), Φm−1 (m = 2, 7) are from (10), (15), (20), (24), (28) and
(31).



LIE ALGEBRAS OF OPERATORS . . . 15

It is clear from (32) that Φm−1 (m = 2, 7) is the only one algebraic integral of
the form (4).

As for differential systems (11), (21) and (27) the corresponding algebraic invari-
ant integrals (10), (20) and (28) have the homogeneities of odd degree with respect
to x1 and x2, than with the aid of Remark 1 and Lemma 2 we prove

Theorem 11. The differential system (1) with m = 2l and K̃2l+1 ≡ 0, (l = 1, 2, 3)
does not have limit cycles.

The main idea of this theorem allow us to suppose that systems of the form (1)
with m = 2l and K̃2l+1 ≡ 0 where l ≥ 4 also do not have limit cycles.

It is easy to prove the next

Theorem 12. For a system (1) with K2 6≡ 0 and K̃m+1 ≡ 0, (m = 2, 7) to have a
first invariant GL(2, R)-integral of the Darboux type [10] in the form

K1−m
2

Φ2
m−1 = C (m = 2, 7)

it is necessary and sufficient that I1 = 0, where K2, K̃m+1, I1 are from (2), and
Φm−1 (m = 2, 7) are from (10), (15), (20), (24), (28) and (31).

The proof of Theorem 12 results from the identity

Λ(K1−m
2

Φ2
m−1) = (1 − m)I1K

1−m
2

Φ2
m−1 (m = 2, 7),

where Λ is from (5).

There exists the supposition that Theorem 12 holds for m ≥ 8.

The following question remains open: Are all first invariant GL(2, R)-integrals
of the differential system (3) with (m = 2, 7) encapsulated by Theorem 12 or not?

The authors tender thanks to Professor N.I.Vulpe for effective discussions of the
results of this paper.
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