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Abstract. In this article two-dimensional autonomous Darboux type differential
systems with nonlinearities of the i'" (i = 2,7) degree with respect to the phase vari-
ables are considered. For every such system the admitted Lie algebra is constructed.
With the aid of these algebras particular invariant GL(2,R)-integrals as well as first
integrals of considered systems are constructed. These integrals represent the alge-
braic curves of the (i — 1) (i = 2,7) degree. It is showed that the Darboux type
systems with nonlinearities of the 2"¢, the 4" and the 6" degree with respect to the
phase variables do not have limit cycles.
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Consider the system of differential equations

aw
dt

al .02 Qm

= a&:no‘ + a&lm___amx z*? ..z (J, o, 1,00, ey iy, = 1,25 m > 2), (1)
where coefficient tensor a&laz___%n is symmetrical in lower indices, in which the com-
plete convolution holds. The system (1) will be considered with the action of the

group GL(2,R) of center-affine transformations [1].

We shall consider the following center-affine invariants and comitants [1] of the
system (1) written in the tensorial form

«a a @ 7 «a ay .o Qm—
L=a), Ir= aﬁag, Ky = aﬁznﬁx'yem, Km—1 = Ga0,0n..0,,_, 27 2% %m0

Kpi1=a 202 xomaPe g, (2)

(e}
a1Q2...0m,
where £, is the unit bi-vector with coordinates 11 = €22 = 0, €12 = —e21 = L.

It is easy to see that when the condition I~(m+1 = 0 holds, the system (1) takes

the form _

dz’

dt

where R(z!,2?) is a homogeneous polynomial of the (m — 1) order. As it is well

known, the system (3) is called a Darboux type differential system (see, for example,
[2,3])-
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= ala® +ma! R(z',a?) = P(a!,2%) (j,a=1,2), (3)
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A series of papers is devoted to the problem of the investigation of systems of
the form (3) from different points of view (see, for example, [2-7]).

Note that the family of systems (3) is a subset of the family of systems (1)
defined via center-affine invariant conditions. Indeed, one can verify easily that for
the system (3) the conditions K1 =0, Kpm_1 = (m+ 1)R(z*,22) hold. Therefore
we have the next

Lemma 1. A system (1) belongs to a family of the Darbouz type differential systems
(3) with R(x',2%) # 0 if and only if Kypy1 =0, Ky Z 0.

For the system (1) with IN(mH =0and m = 2,3,...,7 or, that is the same, for
(3) with m = 2,3, ...,7, two algebraic curves of the form

k
> A" I (@?Y =By (k=2,m-1), (4)
J=0

where By = 0, and B,;,—1 # 0 and A; are polynomials in the coefficients of this
system, are particular invariant GL(2, R)-integrals.

Remark 1. The construction of particular invariant GL(2,R)-integrals (4) is
remarkable, because as it is shown in [2], the system (3) can have only one limit
cycle and if it exists, it represents an algebraic curve of the form (4) with k =m —1
and By # 0, surrounding the origin of coordinates.

Lemma 2. If the factorization over Clz,y| of the left-hand side of the algebraic
curve of the form (4) with By,—1 # 0 contains at least one real linear factor, then
this algebraic curve cannot be of the ellipsoidal form.

Proof. Suppose that some algebraic curve of the form (4) with B,,—1 # 0 can be
written as

m—2
(Az' + Bx?) > Al(z")" I 2(2?)) = By,
7=0

where the linear factor Az' + Bx? is real. Suppose that the last equation has
the ellipsoidal form, surrounding the origin of coordinates, it means, that any line,
passing through the origin, has to intersect the curve in two points. Particularly,
this holds for the line Az' 4+ B2? = 0. However, in this case we get the contradiction:
at the intersection points we have 0 = B,,_1, i.e. the assertion of Lemma 2 is true.

Theorem 3. System (1) with Kymy1 = 0 has the particular invariant GL(2,R)-
integral

where Ky is from (2).
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Proof. According to Lemma 1, the system (1) with K,,41 = 0 has the form (3).
Denote by A the operator

0 0
1/,.1 .2 2.1 2

where P7 (j = 1,2) is from (3). It is easy to see that

2m  ~
ANKy)) =Ky (T — K,
(K2) 2<1+m—|—1 m1>7

where I1, K5 and IN(m_l are from (2). This identity shows that Ko is a particular
integral of the system (3) or, that is the same, of the system (1) with K,,4+; = 0.
Theorem 3 is proved.

Consider the differential operator

0 0
S| 2
X=¢ ox! ¢ ox?’ (6)

where ¢! and €2 are polynomials in variables 2!, 22 and in coefficients of the system

(3).
According to [8], we can show that the system (3) admits the operator (6) if and
only if its coordinates satisfy the system of constitutive equations

Ja P =P, (ja,B=1,2), (7)
. J . Pi
where &1 = g% and Piﬁ = ?)?

As well, according to [8] we have that if the system (3) admits the operator (6),
then we can apply Lie theorem on integrating factor: The system (3) admits a group
with the operator (6) if and only if the function p of the form

M—l — £1P2 _ £2P1 (8)
is an integrating factor of the equation

Pldz! — PYda® = 0. (9)

In what follows we shall say that p is an integrating factor of the system (3) if
it is an integrating factor of the equation (9).

Theorem 4. The system (1) with m = 2 and K3 = 0 has the invariant GL(2,R)-
integrating factor p of the form

ot = Kod,



6 0.V. DIACONESCU, M.N. POPA

where Ky is from (2) and
&, =811 K| —12K3+3(I} — L) =0 (10)

is a particular invariant GL(2,R)-integral of this system.

In (10) invariants and comitants Iy, Ko, K, = agﬁazﬁ are taken from (2), and

Kj = a%agﬂyxV

are defined in [1].

Proof. Consider the system (3) with m = 2 and 2! = z, 22 = y, written in the form

(11)
d
d_i = ex + fy + 2y(gz + hy) = P*(z,y).

where ¢,d, e, f,g,h € R.

Considering (7) it is easy to verify that the system (11) admits the two-
dimensional commutative Lie algebra of operators of the form

71 = <:13(% + y(%) [2(fg — eh)x + 2(ch — dg)y + cf — de],
Zy =A{[h(cf —de) + c(dg — ch)|z + d(dg — ch)y + 2 [g(dg — ch) + h(fg—

—eh)xz} } 8%; + {e(dg — ch)x + d(fg — eh)y + 2[g(dg — ch) + h(fg — eh)] zy} (%

Using any one of these operators and (8) we obtain up to a constant factor an
integrating factor of the system (11), in the form

pt = [2(fg — eh)x + 2(ch — dg)y + cf — de] [—ex® + (c — f)zy + dy?]. (12)
Remark 2. In what follows we will use invariants I; and I and comitant Ko from
(2) for the system (3) with a} =¢, al =d, a? =e¢, a3 = f

L=c+f L=c+2e+ f? Ky=—ex®+ (c— fley +dy*. (13)

Besides Iy, I, Ko, calculating for the system (11) the comitants K = agﬁxﬁ and
K3 we obtain

K1 =3(gz +hy), Ks=[g(2c+ f)+ eh]z + [h(c+ 2f) + dgy. (14)
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We observe that the second factor from (12) exactly coincides with Ky. Moreover,
considering (13),(14) we obtain the first factor from (12) in the form (10) up to a
constant factor.

Using the operator (5), one can verify that the first factor from (12) as well as
the second one (Theorem 3) is a particular integral for the system (11), or, that is
the same, for the system (1) with m = 2 and K3 = 0. Theorem is proved.

Theorem 5. The system (1) with m = 3 and K4 = 0 has an invariant GL(2,R)-
integrating factor p of the form

Pt = Ky®y,
and B
Dy = 3(411Qy — 3IF Ko + 2J7Ky) — AL(IF — 1) =0 (15)

is a particular invariant GL(2,R)-integral of this system.

In the last expression the invariants and comitants Iy, Is, Ko, Ky = agﬁﬂ/a:ﬁxV
are taken from (2), and

Jr = a;‘agﬁqepq, Qs = a%‘agw:ﬂa:é (16)

are defined in [9] (e =22 =0, e'2 = -2 =1).

Proof. Consider the system (3) with m = 3 and 2' = z, 2% = y, written in the form

d
d_f = cx +dy + 3x(ga® + hay +iy?) = Pl(x,y),

d .
d_l; = ex + fy + 3y(9a® + hay + iy®) = P*(x,y),

(17)

where ¢, d, e, f,g,h,i € R.

Then it is easy to verify with the aid of constitutive equations (7) that this
system admits the two-dimensional commutative Lie algebra of operators

7, = <a:(% +y(%> {(c+ f)(cf —de) + 3[(cf — de)g + 29 —efh+ 622']952—

—6(dfg — cfh + cei)zy + 3[d*g + clc + f)i — d(ch + ei)]y*},
Zy = {[defh+c(—2df g+deh— f2h)+c2(fh—2ei)|x+3[dg(—2fg+eh)+cg(fh—2ei)+
+h(—f2g+efh—e?i)|x —2d(df g—cfh+cei)y+3[—d>gh+ci(—ch+ fh—2ei)+d(ch?—

—2fgi+ ehi)]xy2}% +{—2e(df g — cfh+cei)x + (d(—2f2%g + ceh+ efh) + cf (—ch+
+fh—2ei))y+3(dg(—2fg+eh)+cg(fh—2ei)+h(—f2g+efh—e*i))x’y+3(—d>gh+

+ci(—ch + fh — 2ei) + d(ch® — 2fgi + ehz’))y?’}(%.
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Using any of these operators and equality (8) we obtain up to a constant an inte-
grating factor of the system (17) in the form

pt = {(c+ f)(cf —de) +3[(cf—de)g+f2g—efh+e2i]a;2 —6(dfg— cfh+ cei)xzy+

+3[d*g + c(c+ f)i — d(ch + ei)|y* }—ex® + (c — f)ay + dy?]. (18)

Calculating J7, Q2 and Ko = agﬁyxﬁzﬁ for the system (17) we obtain

Ky = 4(gz?® + hay + iy?), J; = —4dg + 2ch — 2fh + 4ei, Q2 = (3cg + fg + eh)z*+

+2(dg + ch + fh+ ei)xy + (dh + ci + 3fi)y>. (19)

We observe that the second factor from (18) exactly coincides with K. Moreover,
considering (13) and (19) we obtain the first factor from (18) in form (15) up to a
constant factor.

Using the operator (5), one can verify that the first factor from (18) as well as
the second one (Theorem 3) is a particular integral for the system (17) or, that is
the same, for the system (1) with m = 3 and K4 = 0. Theorem is proved.

Remark 3. In [7] it is shown that for the existence of a limit cycle for the system
(1) with m = 3 and K, = 0, surrounding the origin, it is necessary and sufficient
that the following conditions hold

2y —I? < 0; I2Jy+2J2 >0; L(41Qy — 313Ky + 2J7K5)|y—0 > 0,

where I, I3, J7, Ko, I~(2, Q2 are from (2) and (16) and J; = agpragqs&?msm. Moreover,

the limit cycle is unique and it is stable (unstable) if I; > 0 (I3 < 0) and has the
form (15).

Theorem 6. Differential system (1) with m = 4 and K5 = 0 has the invariant
GL(2,R)-integrating factor p of the form

pt = Ko®s,
and
&y = 8(517 — 1) (41, K3 —5M ) +96 Ko (Ms — 21y My) +15(51% — I,) (I3 — 1) = 0 (20)

is a particular invariant GL(2,R)-integral of this system.

Here invariants and comitants Iy, Is, Ko, I~(3 = agﬁwsxﬁaﬂxé are from (2), and

_ B 5 _ 0 5 _ 5
M, = agaa,ﬂmaﬂx o?, My = agaéawaz“sﬁ , Mg = agagaﬁwa: et
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Proof. Consider the system (3) with m = 4 and 2! = 2, 2% = y, written in the
form

dx ;
== ca+dy +da(ga® + haPy + iy’ + i),

21)
d_i/ — ex + fy + dy(gz® + haly + ixy? + i),

where ¢, d, e, f,g,h,i,5 € R.

This system admits a two-dimensional commutative Lie algebra with one of
operators in the form

0 0
Zl - <$% +ya_y> X (103(x>y)7

where

e3(z,y) = {—(cf —de)[2(c + f)* + (cf — de)] — 4[2¢* fg + de(—5fg + eh)—
—c[2deg+ f(=5fg+eh)]|+2(f2g—ef?h+e? fi—e3j)]ad —12[d%eg—d(cfg+2f? g+ceh)+
tclefh+2f2h—2efi+2e%) a2y —1212d> fg+c(2¢+ f)(fi—ej) +d[—2cfh+e(— fit
t-e9)]|zy® +42d3g—d* (2ch+ei) — c(2¢® +-5cf +2f2)j+d(2c%i+cfi+5cej+2ef5)]y> ).

Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (21) in the form

pot = gs(a,y) x [—ea® + (e = flay + dy?). (22)

Calculating My, Ms, M3 and K5 for the system (21) we obtain

K3 = 5(g2® + ha’y + izy® + jy*), My = (4cg + fg+ eh)z® + (3dg + 3ch + 2fh+
5

3
ch+ fh—ei)x — g(dh —ci+ fi—3ej)y, Ms= g(—?)cdg + 2h — deh — c¢fh+

+ 2ei)xy + (2dh + 2¢i + 3fi + 3ej)xy® + (di + cj + 4f§)y>, My = —=(3dg—

+ 2cei — efi + 3e%j)x + g(—3d2g + cdh — 2dfh + dei + cfi — f%i + 3efj)y.
(23)

The second factor from (22) exactly coincides with Ky. Moreover considering
(13) and (23) we obtain the first factor from (22) in the form (20) up to a constant.

Using the operator (5), one can verify that the first factor from (22) as well as
the second one (Theorem 3) is a particular integral for the system (21) or, that is
the same, for the system (1) with m =4 and K5 = 0. The theorem is proved.
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Theorem 7. The differential system (1) with m =5 and K¢ = 0 has the invariant
GL(2,R)-integrating factor u of the form

pt = Ka®y,
and
&y = 5(51% — 215) (513 K4 — 61;N1) — 60K (317 Ny — 211 N3 — Ko Ny)+

+H120(IF — I) (517 —2I5) = 0 (24)

is a particular invariant GL(2,R)-integral of this system.

Here invariants and comitants I, 1, Ko, K4 = agméuxﬁzﬁzn%“ are from (2),
and

22l ztzY, Ny = a%a®

v ..0 _pq _ o a, B 3 .l ~Pq
p Capre® TN, N3 = ayaza xlxteld,

_ a B
N = aga aByug

ayduv

— a%dPa? PgTs
N4—aparaamsqa e’

Proof. Consider the system (3) with m =5 and ! = z, 22 = y in the form

d
g_”t“’ — cx + dy + 5z gzt + hay + ia2y? + joyd + kyb), 25)
d—z; = ex + fy + by(ga* + ha’y + ix?y® + jay® + kyt),

where ¢, d, e, f,g,h,i,j,k € R. This system admits a two-dimensional commutative
Lie algebra with one of operators

0 0
Zl — <$8_x +ya_y> X <,04($,y),

where
pa(x,y) = (c+ f)(cf — de)[3(c + f)* +4(cf — de)] + 5[3d%e*g + 3¢® fg—

—c?[3deg+ f(—13fg+eh)] — de(13f%g — defh+ i) + c[de(—16 fg + eh) + f(13f2g—
—defhtei)|+3(frg—ef3hte? fri—e® fite'k)|a?+20[df (4de—3 f*)g+c> fh—c2(df g+
+deh—A4f h+efi)+c(d?eg—Aadf?g—Adefh+3f3h+de*i—3e f2i+3e% fj—3e3k)]z3y—
—10[3d3eg—d?[9f2g+3c(fg+eh)+e*i]—c(3c+f)(cfit+3f2i—3efi+3e’k)+d[3c* (fh+
tei)+ef (9fh+2ei)+3e(fri—efj+ek)||a?y? —20[3d> fg—d? f (3ch-+ei)—c(3c +4cf+
+1)(fi—ek)+d[3A fi+ef(fj—ek)+c(f2i+4efj—4e?k)]|xy® +5[3d g — d3(3ch+
+ei)+e(3+13 f+13¢f2+3 ) k+d? (3ci+cfit+dcej+ef j+3e2 k) —d(c+ f) (32 +
+cfj + 13cek + 3efk)|yt.
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Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (25), in the form

pt = pa(z,y) x [mea? + (¢ — fzy + dy?). (26)

Calculating I, I», Ko, K4 = agmxﬁzﬁ and N1, No, N3, Ny for the system (25)
we obtain the expression (26) in the invariant form. Theorem is proved.

In the same way for the system (3) with m = 6 and 2! = 2, 2% = y written in
the form

dx . .
priakey + dy + 6x(gz® + haty + ixdy? + joy3 + kxy* 4 1yP),
Y

i fy+ 6y(gxd + haty + ixdy? + ja2y3 + kay* + 1y°)

(27)

a two-dimensional commutative Lie algebra is obtained with one of operators in the

form
Z = <$% +y§y> x @5(7,y),

where
ps(2,y) = (cf —de)[d(c+f)?+9(cf—de)][6(c+f)*+cf —de]+6 [24¢ fg + d°e* (97 fg—
—9¢h) — 2c3[12deg + f(—T7fg+ 3eh)] + 2[2de(—103f g + 3eh) + £(269f%g — 37efh+
+4€20)|+2de(—T7f3g+29e f2h— 11e% fi+3e35) +2c[26d%e? g+ de(—183 f2 g+ 23e f h—
—2e2) + f(T7f3g—29ef>h+11e? fi—3e35)| +24(f°g —ef h+ 2 f3i— e f2j+et fl—

€’l) 125430 [ d(—9d>e>+58de f2—24 f4) g+6¢* fh—c2[6d(fg+eh)+ f(—37 fh-+4ei)|+
+c?(6d%eg—37df%g—46de fh+58f>h+4de*i — 22e f2i+6€ f ) + c[d®e(46 f g+ Yeh)—
—2d(29f3g + 29ef2h — 11€* fi + 3¢35) + 24(f*h — ef3i + 2 f%j — 3 fk + )]ty +
+30[8¢t fi — 2¢3[4d(fh + ei) + f(—23fi+ 6ej)] + 2[8d*(fg + eh) +59f3i — 5lef2j—
—4d(11f2h412efi—3e%))+48¢? fk—48e31| +d[—44d>ef g+d(48 f3g+11€? fi—3e3j)+
+12e(— flitefrj—e? fk+e3l)]|—2c[ad®eg—d? (22 f2g+22e f h+e%i)+df (24 f2h+-11e fi—
—3¢2))+6f (- flitef?j—e® fh+e3D))]ady?+30[12d  eg—3d3[16 f2g+4c( f g+eh)+e%i]+
+d*[12¢* (fht-ei)+2e f (6 fi+ef)+c(48 2 h+-6efit+11e2)]|+c(12¢2+11ef+2f2) (cfj+
+4f%j—defk+4e’)—d[12¢3(fite))+c2 f(51fi+22e))+8ef (f2i—efk+el)+4c(3f3i+
+12ef2j—11€2 fk+11e31))Jxy3+30[24d" f g—6d> f (4ch+ei)+c(24¢3 +58¢2 f+3Tcf2+
+6£3)(fk —el) —2d[12¢% f§ + 3ef?(fk —el) + A (11f2f +29e fk — 29¢%1) + cf (22 j+
+23efk—23¢2])]+d?[24c? fi+-2cf (3fi+11ef) +e(4f%j+9efk—9e2)||xy* —6[24d° g—
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—6d*(4ch+ei) +d> (24c%i +6¢fi+22cef +4defj +9e2k) — ¢(24¢* +154¢3 f 426962 f2+
+154ef3 424 f ) 14-d[24c k424 f314-2¢3 (20 f k+TTel)+2¢ f2 (3 f k+103el)+c2 f (37 fk+
+366¢l)] —d?[24cj +c2(22fj 4+ 58ek) +2e f (3 fk+26el) +c(4£%j +46e fk+97e*)]]y°.

Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (27), in the form

po = ps(@,y) x [—ea® + (¢ — flay + dy?).

Therefore we have the next

Theorem 8. Differential system (1) with m = 6 and K7 = 0 has the invariant
GL(2,R)-integrating factor p of the form

ot = Kyds,
and
®5 = 12(1717 — 91I5) (1317 — 1) (611 K5 — 701) — 480(131% — I5) Ko(41,05 — 303)+

+5760K3 (31,04 — O3) + 35(IF — L) (171} — 91,)(13I7 — 1) =0 (28)

is a particular invariant GL(2,R)-integral of this system.

Here invariants and comitants Iy, I, Ko, K5 = agﬁwwmﬁx”:ﬂ‘sx“m” are from
(2), and

B § B B 5

— q© Y 128 bt oV M) — q¢ Y 128 1ot PG — @ KoV 2PG
01 = 505, T 0 T, ) = Uy 55,2 L0, O3 = apasa,s. .00t e e,
— 0B 8.pq.rs — %8B a7 a0 K oPq TS

O4 = aya7 0,5, 5,527, Os = agayalagg, soate?e’™.

For the system (3) with m = 7 and ! =z, 22 = y written in the form

d

—‘: = cx + dy + Tz(92% + ha®y +izty? + jx3y® + ka?y? + Loy’ + ny®), (29)
29

d_?z =ex + fy+ Ty(gxb + haPy + izty? + jod3y> + ka?y* + lxy® + ny®)

a two-dimensional commutative Lie algebra is also found , for which one of operators
has the form

0 0
Zl - <$% +ya_y> X 906(%31)7

where
(. y) = (c+ f)(cf —de)[2(c+ f)* +cf —de][5(c+ f)* +16(cf —de)] + 7[-10d’e* g+

+10¢° fg+c[—10deg+ f (87 f g—2eh)|+d%e? (101 f? g—16e f h42¢%i) +c®[2de(—61 f g+
teh)+ f(227f2g—1Tefh+e?i)]+c2[35d%e® g — de(353f2g — 23e fh+e2i) + f (227 f3g—
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—42e f2h+8e? fi—e3j)|+de(—87 fg+3Tef3h—17€? f2i+7e3 fj—2e*k)+c[2d?® (68 f g—
—3¢h)+de(—328f3g+58ef>h—10e? fi+e3j) + f(8Tf g —3Tef3h+17e* f2i—Te3 fj+
+2e* k)] +10(f0g — efoh+ €2 f4i — e 35 + * f2k — € f1+ 5n)] a8 4 42[df (—16d%e% +
+37def? —10f1) g+ 26 fh—c*[2d(fg+eh) + f(—=1Tfh+ei)] + 3 [2d%eg + d(—17 f? g—
—23efh+ei)+ f(42f°h—8efite®j)|+c?[d?e(23 f g+6eh) —d(42f3 g+58e f2h—10e? fi+
+&2))+ f(37f3h— 1Tef2i+ T fj — 263k)] + c[—6d3e® g + 2d%e(29f? g + Sefh — €2i)+
+d(—37f g—37ef3h417e? f2i—7e3 fj+2e k) +10(fPh—efli+e? 35 —e3 f2h+et fl—
—eon) ||’y +21[5¢° fi—ct [5d(fh+ei)+ f(—41 fi+5ej)]+c2[5d (fg+eh)+d(—40f2h—
—52efi+5e%j)+ f(93f%i—36efj+10e?k)|+ ?[—bd3eg+67f4i+d? (40 f?g+50efh+
+11e%i) —57ef3j+52¢% 2k — d(85 f>h+103e f%i — 37€? f j+ 103 k) — 50e> 1+ 50 n] +
+d[10d3e®g—d*(85ef2g+2¢%1) +d(50 f1g+17e® f2i—7e® fj+2ek) — 10e(fri—ef3 5+
+e2f2k — e3fl+ e*n)] — c[10d3e(5fg + eh) + d*(—85f3g — 85ef2h — 122 fi + €35)+
+2df (253 h 4+ 1Tef?i — Te® fj42e3k) — 10 (f4i — ef3) + €% f2k — &2 fl + e*n)||xty?+
+14[10¢° 5 — cH10d(fi+ej) + f (=TT fj+20ek)| 423 [5d* (fh+ei) +T5 3§ — 5Te f2k—
—2d(18f%i+21efj—5e2k) +50€? f1—50e3n] 4 2 [—10d3 (fg+eh) +d? (70 f2h+ T4e fi+
+7€2§)—2df (57 f2i+50efj—14e>k)+ f (773 j—T2e f2k+70e% f1—70e3n)|+-df [70d>eg—
—2d%(50f2g 4 7e%i) + de(20f%i + Tefj — 2¢%k) + 10e(—f3] + ef?k — e* fl + 3n)]+
+2¢c[5d eg—d3(35f2g+35efh+e%i) +d* (502 h4-14e f2i+25e2 fj —Te3k) +5 2 (35—
—ef?k+e? fl—e3n)+d(—10f4i—42ef3j+37e? f2k—35¢3 f14-35en)]|23y® —21[10d° eg—
—2d*25 % g+5¢(fg+eh)+e%i)+d> [10¢* (fh+ei)+c(50 f2h+de fi+Te? ) +e(10 f2it-ef j+
+2€%k)] — c(10¢® +17¢* f +8cf? + f2)(cfk 4+ 5%k — Sefl + 5e*n) — d?[10¢* (fi + ej) +
+cf(10f%i+37efj+12¢%k) + 2(52f%i+ 1def +17e*k) +e(5£%j + 11ef*k — 10e® fl1+
+10e3n)] + d[10c* (fj + ek) + S f(57ff + 34ek) + 5ef?(f2k —efl + €*n) + cf (53 5+
+52e f2k—50€e? f1450e3n) +c? (36 f3j+103ef 2k —85e? f1+85¢3n)]|zy* —42[10d° f g—
—2d* f (5ch+ei)+d> f(10c2i+2c fi+Tcej+efj+2e2k)—c(10ct+37¢3 f+42¢2 f2+1Tcf3+
+2fH(fl—en)+d(c+ f)[10¢3 fl+2e f2(fl—en)+A(Tf2k+3Tefl—37e*n) +cf (f2k+
+21efl — 21e*n)] — d2[103 f5 + P f(Tf] + 17ek) + ef (f2k + 6efl — 6€2n) + c(f3j+
+10ef2k+16€2 fl—16€>n)||zy° +7[10d° g—2d° (5eh+-ei)+d* (10c%i+-2¢ fi+ Teej+ef j+
+2e2k)+c(10¢° +-87c* f4227¢3 242272 £34-87c fA+10 2 n—d(c+ f) [10c 1 +10e f2n+
+3¢3(9f1 4+ 29en) + 2¢f2(f1 + 56en) + ¢ f(15f1 + 241en)] — d*[10¢%5 + A(Tfj+
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+17ek) 4 c(f?j + 10efk + 16€%1) + e(f2k + 6efl + 10e?n)] + d*(c + f)[103k+
+c2(Tfk + 37el) + ef (21 + 35en) + c(f2k + 21efl + 101e*n)]]y°.

Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (29), in the form

poh = (e y) x [—ea? + (e — fzy + dy’]. (30)
Analogously to previous cases we have the next

Theorem 9. Differential system (1) with m = 7 and Ks = 0 has the invariant
GL(2,R)-integrating factor u of the form

pt = Ko,
and
B¢ = 711 (1317 — 81y)(51% — L) (711 Kg — 8S1) — 2101, (517 — 1) Ko(511 So — 453)+
+840K32 (6138, — 311S5 — K9Sg) + 2411 (I? — I,)(1317 — 8I,) (512 — I,) =0 (31)

is a particular invariant GL(2,R)-integral of this system.

Here invariants and comitants Iy, I, Ko, K¢ = agméwnxﬁx'yx‘gx“x”x” are from
(2), and
Sy = a%” 2Vl 22?. Sy = a%a’ 2V 20wtV Pl
1= 28%aysuwme 0 22 = YpSgapysuw )
_ a By 8 bt oV 21 DG _ a B 8,1 pq s
S3 = Up U5 o gt T 2" T, Sq = Up U G s 0L T EPIET,

.« o v rs _ « ) rs _kl
Sy = apaga;yaaﬁ,ﬂ;yqsx“x el Sg = apafakaaﬁ,ﬂgqslapqa e,

It is shown in [2,3] that all singular points of Darboux type differential system
(3), different from the origin, are located on its integral straight lines, coinciding
with integral straight lines of this system for R,,_1 = 0. Therefore the necessary
condition for the existence of a limit cycle for the Darboux type differential system
(3) is the condition that the eigenvalues of the matrix of linear terms should be
imaginary, i.e. the condition [1] 21y — I? < 0.

We observe that the expression ®,,_; from (10), (15), (20), (24), (28) and (31)
with m = 2,7 are only algebraic integrals of the form (4) for the Darboux type
system (3) with m = 2,7. To prove this remark it is sufficient to examine the
explicit form of first integrals for the system (3) with m = 2, 7.

One can verify easily that holds

Theorem 10. The Darbouz type differential system (3) with 2I; — I? < 0 has the
first real integral in the form

2 2.1 2 1)\,.2 1 1
arctan — A7 + (4~ a)x —|——ln|K2|——11n|<I>m_1| =C (m=2,7),
m_

I
112—2]2 ]xz\\/I%—QIQ 2
(32)

where Ko is from (2), ®,,—1 (m = 2,7) are from (10), (15), (20), (24), (28) and
(81).
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It is clear from (32) that ®,,_1 (m = 2,7) is the only one algebraic integral of
the form (4).

As for differential systems (11), (21) and (27) the corresponding algebraic invari-
ant integrals (10), (20) and (28) have the homogeneities of odd degree with respect
to ! and 22, than with the aid of Remark 1 and Lemma 2 we prove

Theorem 11. The differential system (1) with m = 2l and Ky =0, (I =1,2,3)
does not have limit cycles.

The main idea of this theorem allow us to suppose that systems of the form (1)
with m = 2] and K41 = 0 where [ > 4 also do not have limit cycles.

It is easy to prove the next

Theorem 12. For a system (1) with Ky # 0 and Ky = 0,(m = 2,7) to have a
first invariant GL(2,R)-integral of the Darboux type [10] in the form

Ky mo?2 C (m=2.7)

m—1—

it is necessary and sufficient that I = 0, where Ko, Ky11,11 are from (2), and
®,, 1 (m=2,7) are from (10), (15), (20), (24), (28) and (31).

The proof of Theorem 12 results from the identity

AK; ™02 ) = (1 —m) K3 ™®2 _; (m=2,7),

where A is from (5).

There exists the supposition that Theorem 12 holds for m > 8.

The following question remains open: Are all first invariant GL(2, R)-integrals
of the differential system (3) with (m = 2,7) encapsulated by Theorem 12 or not?

The authors tender thanks to Professor N.I.Vulpe for effective discussions of the
results of this paper.
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