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Abstract. The computation schemes of collocation and mechanical quadrature
methods for approximate solving of the complete singular integral equations with
piecewise continuous coefficients and a regular kernel with weak singularity are elab-
orated. The case when the equations are defined on the unit circumference of the
complex plane is examined. The sufficient conditions for the convergence of these
methods in the space L2 are obtained.
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1 The Problem Formulation

Let Γ0 be a unit circumference of the complex plane C with the center at the
origin, let D+ be a domain bounded by Γ0, D

− = C \ {D+ ∪ Γ0}, and let L2(Γ0)
be a space of all functions f : Γ0 → C that are Lebesgue measurable and square
integrable on Γ0.

We will denote by PC(Γ0) a Banach algebra of all functions a : Γ0 → C which
are continuous on Γ0 with exception of a finite number of points in such a way that
at each point of discontinuity there exist unilateral finite limits a(t−0), a(t+0) and
a(t− 0) = a(t).

To each element a ∈ PC(Γ0) we associate the function â : Γ0 × [0, 1] → C in the
following way â(t, µ) = µa(t+0)+(1−µ)a(t), t ∈ Γ0, 0 ≤ µ ≤ 1. The set Γâ of values
of the function â(t, µ) represents a closed curve. This curve is a union of the set of
values of the function a(t) and segments µa(tk+0)+(1−µ)a(tk) (0 ≤ µ ≤ 1, k = 1, n),
where t1, ..., tn are all points of discontinuity of the function a. The curve Γâ can be
oriented in a natural way.

We say that the function a ∈ PC(Γ0) is 2-nonsingular if the curve Γâ doesn’t go
through the origin. We denote the number of rotations of the curve Γâ around the
origin by index ind2a of the 2-nonsingular function a.

In L2(Γ0) we consider the following singular integral equation

(Aϕ ≡) a0(t)ϕ(t) +
b0(t)

πi

∫

Γ0

ϕ(τ)

τ − t
dτ +

1

2πi

∫

Γ0

h(t, τ)ϕ(τ)dτ = f(t), t ∈ Γ0, (1)
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where a0, b0, f : Γ0 → C, h : Γ0 × Γ0 → C are known functions, a0, b0 ∈
PC(Γ0), h(t, τ) = h0(t, τ)|τ − t|−γ (0 < γ < 1), h0 ∈ C(Γ0 × Γ0), f ∈ L2(Γ0) and
ϕ : Γ0 → C is an unknown function.

It is known that operators K,S : L2(Γ0) → L2(Γ0), defined in the follo-

wing way (Kϕ)(t) =
1

2πi

∫

Γ0
h(t, τ)ϕ(τ)dτ , (Sϕ)(t) =

1

πi

∫

Γ0

ϕ(τ)
τ−t dτ , are bounded

[1, 2]. Taking into account that ‖cϕ‖2 ≤ ‖c‖∞‖ϕ‖2 for all functions c ∈ PC(Γ0), the
operator A = a0I+b0S+K which describes the left term of equation (1) is bounded
in L2(Γ0).

In [3, 4] the theoretical foundation of the collocation and quadrature methods for
equation (1) in the norm of the space L2(Γ0) was obtained in the case of coefficients
that satisfy Holder condition on Γ0 and in [5] the foundation was obtained in the
case of continuous coefficients on Γ0. In the present paper we will state conditions of
convergence of these methods in L2(Γ0) in the case when coefficients of the equation
(1) belong to the space PC(Γ0).

2 The deduction of a computation schemes

We will denote by Pn the set of all trigonometric polynomials of the form
n
∑

k=−n

rkt
k (t ∈ Γ0), where rk (k = −n, n) are arbitrary complex numbers. We

will consider on Γ0 the following equidistant points

tj = exp (2πij/(2n + 1)), j = −n, n. (2)

In the following it is convenient to write equation (1) in the equivalent form

(Aϕ ≡)a(t)(Pϕ)(t) + b(t)(Qϕ)(t) + (Kϕ)(t) = f(t), t ∈ Γ0, (3)

where a(t) = a0(t) + b0(t), b(t) = a0(t) − b0(t), P = (I + S)/2, Q = I − P, I is the
identity operator, and S is a singular operator.

The presence of discontinuity in the kernel of the regular part of equation (1)
implies essential difficulties in the practical realization of the calculation scheme of
the collocation method applied to it, and the quadrature method cannot be applied.

In order to eliminate this drawback, in an analogous way to [3, 6], we introduce
a new equation

(Aρϕ ≡)a(t)(Pϕ)(t) + b(t)(Qϕ)(t) + (Kρϕ)(t) = f(t), t ∈ Γ0, (4)

in which

(Kρϕ)(t) =
1

2πi

∫

Γ0

hρ(t, τ)ϕ(τ)dτ,

hρ(t, τ) =

{

h0(t, τ)|τ − t|−γ , for |τ − t| ≥ ρ
h0(t, τ)ρ

−γ , for |τ − t| < ρ
, ρ ∈ (0, 1).

Equations (3) and (4) have the same characteristic part, and the kernel of the
regular part of equation (4) is a continuous function on Γ0 in both variables.
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In the following the collocation and quadrature methods will be applied to equa-
tion (4). The obtained approximate solutions will be considered as the approxima-
tions of the exact solution of equation (3), and, thus, of equation (1).

According to the collocation method we will seek for an approximate solution of
equation (4) in the form of the polynomial

ϕn(t) =
n
∑

k=−n

α
(n)
k tk ∈ Pn, (5)

unknown coefficients of which α
(n)
k = αk (k = −n, n) will be determined from the

following system of linear algebraic equations (SLAE)

a(tj)
n
∑

k=0

αkt
k
j + b(tj)

−1
∑

k=−n

αkt
k
j +

n
∑

k=−n

αk
1

2πi

∫

Γ0

hρ(tj, τ)τ
kdτ=f(tj), j = −n, n. (6)

The proposed calculation scheme essentially simplifies the process of its numerical
implementation.

If for solving equation (4) the method of quadratures is applied, then we will seek
for the approximate solution of this equation in the form (5) and we will determine
coefficients αk (k = −n, n) as solutions of SLAE

a(tj)
n
∑

k=0

αkt
k
j + b(tj)

−1
∑

k=−n

αkt
k
j +

1

2n+ 1

n
∑

k=−n

αk

n
∑

s=−n

hρ(tj , ts)t
k+1
s =f(tj), j = −n, n. (7)

Let a bounded and measurable function f : Γ0 → C be given. There exists a
unique interpolation polynomial

(Lnf)(t) =

n
∑

k=−n

Λkt
k ∈ Pn, Λk =

1

2n+ 1

n
∑

j=−n

f(tj)t
−k
j (8)

such that (Lnf)(tj) = f(tj) for each j = −n, n [7, p.151]. The operator Ln, for which
L2

n = Ln, is a Lagrange interpolation projector. Besides this nonorthogonal projec-
tor, we consider an orthogonal projector Sn : L2(Γ0) → Pn, which for each function
ϕ ∈ L2(Γ0) puts into correspondence a partial sum of order n of the Fourier series

after the system of functions {tk}+∞
k=−∞, (Snϕ)(t) =

n
∑

k=−n

ϕkt
k. Taking into account

that for functions of the form (5) the following equalities are true (Snϕn)(t) = ϕn(t),
we obtain that systems of equations (6), (7) are equivalent to the following operator
equations

(An, ρϕn ≡) Ln(aP + bQ+Kρ)Snϕn = Lnf, (9)

(A
′

n, ρϕ̃n ≡) Ln(aP + bQ+ ∆n)Snϕ̃n = Lnf, (10)

where (∆nϕ̃n)(t) = 1
2πi

∫

Γ0
Lτ

n(hρ(t, τ)ϕ̃n(τ))dτ . Notice that here and in what follows
Lτ

n denotes the operator Ln, applied with respect to the variable τ . Therefore in the
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following instead of systems (6) and (7) we will study operator equations (9) and,
respectively, (10) which are considered in the subspace Pn, in which the same norm
as in L2(Γ0) is introduced.

In the case of an equation with coefficients from PC(Γ0), in order to apply the
methods studied in the paper it is necessary to choose the right term f from a
subclass of L2(Γ0). As such a subclass the set R(Γ0) of all bounded, defined on
Γ0 and integrable by Riemann functions can be chosen. With the norm ‖g‖∞ =
sup
t∈Γ0

|g(t)| the set R(Γ0) becomes the Banach space.

3 Some preliminary results

In this section we will state some relations between integral operators with kernel
h0(t, τ)|τ − t|−γ and hρ(t, τ), considered in the space L2(Γ0). These results, as well
as other results from this section, will be used for the theoretical foundation of the
elaborated computational schemes.

We will denote by χρ(t) the function defined on Γ0 in the following way. If
ϕ(t) ∈ L2(Γ0), then

χρ(t) =
1

2πi

∫

Γ0

[h0(t, τ)|τ − t|−γ − hρ(t, τ)]ϕ(τ)dτ,

where h0(t, τ) and hρ(t, τ) are the defined above functions.

Lemma 1. Let h0(t, τ) ∈ C(Γ0 × Γ0) (in both variables) and ϕ(t) ∈ L2(Γ0). Then
it is true that

a) ‖χρ‖2 ≤ d1ρ
1−γ

2 ‖ϕ‖2;
b) (Kρϕ)(t) ∈ C(Γ0);
c) The operator Kρ : L2(Γ0) → C(Γ0) is completely continuous.

Proof. Let t ∈ Γ0 and Γρ := {τ ∈ Γ0 : |τ − t| < ρ}. Then, as χρ(t) = 0 for
|τ − t| ≥ ρ, we have

‖χρ‖
2
2 =

1

2π

∫

Γ0

|χρ|
2|dt| =

1

2π

∫

Γ0

∣

∣

∣

∣

1

2πi

∫

Γ0

[h0(t, τ)|τ − t|−γ − hρ(t, τ)]ϕ(τ)dτ

∣

∣

∣

∣

2

|dt| =

=
1

(2π)3

∫

Γ0

∣

∣

∣

∣

∣

∫

Γρ

h0(t, τ)
[

|τ − t|−γ − ρ−γ
]

ϕ(τ)dτ

∣

∣

∣

∣

∣

2

|dt| ≤

≤
1

(2π)3

∫

Γ0

(

∫

Γρ

|h0(t, τ)|
∣

∣|τ − t|−γ − ρ−γ
∣

∣ |ϕ(τ)||dτ |

)2

|dt|.

Since |τ − t|−γ − ρ−γ > 0 (τ ∈ Γρ), from the last relation we obtain

‖χρ‖
2
2 ≤

‖h0‖
2
C

(2π)3

∫

Γ0

(

∫

Γρ

|ϕ(τ)||dτ |

|τ − t|γ

)2

|dt|.
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Estimating the interior integral using the Holder inequality for integrals
(see [8, p.496]), we obtain

∫

Γρ

|ϕ(τ)|

|τ − t|γ
|dτ | =

∫

Γρ

1

|τ − t|γ/2

|ϕ(τ)|

|τ − t|γ/2
|dτ | ≤







∫

Γρ

|dτ |

|τ − t|γ







1
2






∫

Γρ

|ϕ(τ)|2

|τ − t|γ
|dτ |







1
2

.

Then

‖χρ‖
2
2 ≤

‖h0‖
2
C

(2π)3

∫

Γ0

(

∫

Γρ

|dτ |

|τ − t|γ

)(

∫

Γρ

|ϕ(τ)|2

|τ − t|γ
|dτ |

)

|dt|.

We estimate integral
∫

Γρ

|dτ |

|τ − t|γ
using the following relation (see [9, p.10])

|dτ | = |ds| ≤
π

2
dr, (11)

where ds is a length of the arc of the circumference
⌣
τt (the smallest arc from two

possible ones), and dr is a length of the chord that subtends the arc
⌣
τt (|τ − t| = r).

Then when τ passes the arc Γρ, the value r passes the segment [0; ρ]. Using relation
(11) we obtain

∫

Γρ

|dτ |

|τ − t|γ
≤
π

2

∫ ρ

0
r−γdr =

π

2(1 − γ)
ρ1−γ .

Then we have

‖χρ‖
2
2 ≤

‖h0‖
2
C

16π2

1

(1 − γ)
ρ1−γ

∫

Γ0

∫

Γρ

|ϕ(τ)|2

|τ − t|γ
|dτ ||dt| =

=
‖h0‖

2
C

16π2

1

1 − γ
ρ1−γ

∫

Γρ

|ϕ(τ)|2
∫

Γ0

|dt|

|τ − t|γ
|dτ |.

Repeating the above argumentation, we obtain for interior integral the following
estimation

∫

Γ0

|dt|

|τ − t|γ
≤
π

2

∫ 2

0
r−γdr =

π

1 − γ
2−γ .

Taking this into account, we obtain

‖χρ‖
2
2 ≤

‖h0‖
2
C

16π

2−γ

(1 − γ)2
ρ1−γ

∫

Γρ

|ϕ(τ)|2|dτ |,

from which results the inequality a), in which d1 =
2(−2−γ/2)

(1 − γ)π1/2
‖h0‖C .

Now we will show that the function (Kρϕ)(t) =
1

2πi

∫

Γ0
hρ(t, τ)ϕ(τ)dτ is con-

tinuous on Γ0. For ϕ ∈ L2(Γ0) we have ‖ϕ‖2 < α. The function hρ(t, τ), being
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continuous on the compact Γ0×Γ0, is uniformly continuous. In such a way for ε > 0
there exists δ > 0 such that the inequalities |t2 − t1| < δ, |τ2 − τ1| < δ imply the
relation |hρ(t2, τ2) − hρ(t1, τ1)| < ε/α. Taking into account the last inequality and
Holder inequalities, we obtain for |t2 − t1| < δ

|(Kρϕ)(t2) − (Kρϕ)(t1)| ≤
1

2π

∫

Γ0

|hρ(t2, τ) − hρ(t1, τ)||ϕ(τ)||dτ | ≤

≤
1

2π

(
∫

Γ0

|hρ(t2, τ) − hρ(t1, τ)|
2|dτ |

)1/2(∫

Γ0

|ϕ(τ)|2|dτ |

)1/2

≤
ε

α
‖ϕ‖2 < ε. (12)

In such a way, the function (Kρϕ)(t) is continuous.
The affirmation from point c) is stated using the Arzela-Ascoli theorem. The

linearity of the operator Kρ is evident. Let M be a bounded set in L2(Γ0). In
this way there exists α > 0 such that ‖ϕ‖2 < α (ϕ ∈ M). For every ϕ ∈ M ,
according to inequality (12), we obtain that inequality |t2 − t1| < δ implies
|(Kρϕ)(t2) − (Kρϕ)(t1)| < ε. This means that the functions of the set Kρ(M)
are equally continuous. Let us show that the set Kρ(M) is bounded in C(Γ0). Let
β = max

t,τ∈Γ0

|hρ(t, τ)|. We have

|(Kρϕ)(t)| ≤
1

2π

∫

Γ0

|hρ(t, τ)||ϕ(τ)||dτ | ≤

≤
1

2π

(
∫

Γ0

|hρ(t, τ)|
2|dτ |

)1/2 (∫

Γ0

|ϕ(τ)|2|dτ |

)1/2

≤ β‖ϕ‖2.

So, for each Kρϕ ∈ Kρ(M) we have ‖Kρϕ‖C(Γ0) = max
t∈Γ0

|(Kρϕ)(t)| < αβ. Therefore,

the set Kρ(M) ⊂ C(Γ0) is uniformly bounded and functions of this set are equally
bounded.

According to the Arzela-Ascoli theorem the set Kρ(M) is relatively compact in
C(Γ0) and in such a way the operator Kρ is completely continuous. The lemma is
proved.

Lemma 2. Let the operator A, defined by the left term of equation (3), be invertible
in the space L2(Γ0). Then for ρ such that

ερ := d1ρ
(1−γ)/2

∥

∥A−1
∥

∥

2
≤ q1 < 1, (13)

the operator Aρ, defined by the left term of equation (4), is invertible in L2(Γ0)
as well and the inequality ‖A−1

ρ ‖2 ≤ (1 − ερ)
−1‖A−1‖2 is true. For the solutions

ϕ = A−1f and ϕρ = A−1
ρ f of equations (3) and (4), respectively, we have

‖ϕ− ϕρ‖2 ≤ ερ(1 − ερ)
−1
∥

∥A−1
∥

∥

2
‖f‖2.

Proof. Using item a) from Lemma 1 we obtain the estimation ‖(A−Aρ)x‖2 = ‖(K−
Kρ)x‖2 = ‖χρ‖2 ≤ d1ρ

(1−γ)/2‖x‖2, ∀x ∈ L2(Γ0). Then ‖A − Aρ‖2 ≤ d1ρ
(1−γ)/2.
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We will show that if inequality (13) holds, then the operator Aρ is invertible for
sufficiently small values of ρ. For this we will use the representation Aρ = A− (A−
Aρ) = A(I−A−1(A−Aρ)). Since ‖A−1(A−Aρ‖2 ≤ ‖A−1‖2d1ρ

(1−γ)/2 = ερ ≤ q1 < 1
is true, then according to Banach theorem about small perturbations of an invertible
operator, results the existence of the inverse operator A−1

ρ = (I−A−1(A−Aρ))
−1A−1

the norm of which satisfies the inequality

∥

∥A−1
ρ

∥

∥

2
≤
∥

∥(I −A−1(A−Aρ))
−1
∥

∥

2

∥

∥A−1
∥

∥

2
= (1 − ερ)

−1
∥

∥A−1
∥

∥

2
.

For solutions ϕ and ϕρ of equations (3) and (4), respectively, we have

‖ϕ− ϕρ‖2 ≤
∥

∥A−1 −A−1
ρ

∥

∥

2
‖f‖2 ≤

∥

∥A−1
∥

∥

2
‖Aρ −A‖2

∥

∥A−1
ρ

∥

∥

2
‖f‖2 ≤

≤ (1 − ερ)
−1
∥

∥A−1
∥

∥

2

2
d1ρ

(1−γ)/2‖f‖2 = ερ(1 − ερ)
−1
∥

∥A−1
∥

∥

2
‖f‖2.

The lemma is proved.

Remark 1. As ερ → 0 when ρ→ 0, it results that ‖ϕ−ϕρ‖2 → 0 when ρ→ 0. This
fact justifies the made convention with relation to the possibility of approximation
of the exact solution of equation (3) with the approximate solution of equation (4),
obtained according to the collocation method. In the following we will consider that
ρ satisfies condition (13). This is true if ρ is sufficiently small.

It is known from [10, p.5; 11, p.12], that the operator Ln that acts in the space
L2(Γ0) is unbounded, but being looking for as an operator that acts from the space
R(Γ0) to L2(Γ0) it is bounded, and in [11] it is shown that

‖Lnf − f‖2 → 0, ∀f ∈ R(Γ0). (14)

Lemma 3. Let {tj}
n
j=−n be the system of points (2). Then for each integer number

m, such that |m| ≤ 2n the following relation is true:

1

2n + 1

n
∑

j=−n

tmj =

{

1, if m = 0
0, if m 6= 0

. (15)

Proof. For m = 0 relation (15) is evident. For m 6= 0, |m| ≤ 2n, we have tm 6= 1

and t2n+1
m = 1. In such a way we obtain

n
∑

j=−n

tmj =
n
∑

j=−n

tjm =
1 − t2n+1

m

tnm(1 − tm)
= 0. The

lemma is proved.

Lemma 4. For each measurable and bounded function g : Γ0 → C and each polyno-
mial pn ∈ Pn the following relation is true

‖Lng pn‖2 ≤ ‖g‖∞‖pn‖2, (16)

where ‖g‖∞ = sup
t∈Γ0

|g(t)|.
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Proof. Taking into account the fact that the functions tn, t = eiθ, n ∈ Z, form an
orthogonal basis in L2(Γ0) and relations (8) and (15), the norm of the polynomial
Lnf (f is measurable and bounded in L2(Γ0)) can be calculated:

‖Lnf‖
2
2 =

1

2π

∫ 2π

0

∣

∣

∣(Lnf)(eiθ)
∣

∣

∣

2
dθ =

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

n
∑

k=−n

Λke
iθk

∣

∣

∣

∣

∣

2

dθ =

n
∑

k=−n

|Λk|
2 =

=
1

(2n + 1)2

n
∑

k=−n





n
∑

j=−n

f(tj)t
−k
j





(

n
∑

l=−n

f(tl)t
k
l

)

=

=
1

(2n + 1)2

n
∑

j=−n

f(tj)

(

n
∑

l=−n

f(tl)

(

n
∑

k=−n

tl−j
k

))

=
1

2n+ 1

n
∑

j=−n

|f(tj)|
2 .

In this way we obtain:

‖Lng pn‖
2
2 =

1

2n + 1

n
∑

j=−n

|g(tj)|
2 |pn(tj)|

2 ≤ ‖g‖2
∞‖Ln pn‖

2
2 = ‖g‖2

∞‖pn‖
2
2,

which implies relation (16). The lemma is proved.

Lemma 5. Each 2-nonsingular function a ∈ PC(Γ0) can be represented in the form
a(t) = rn(t)h(t), where rn is a trigonometric polynomial from Pn and h ∈ PC(Γ0)
(h is 2-nonsingular and with the same discontinuities as a) such that ‖h − 1‖∞ =
sup
t∈Γ0

|h(t) − 1| ≤ q < 1.

Proof. The 2-nonsingular function a ∈ PC(Γ0) with discontinuity points t1, ..., tn
can be represented in the form a(t) = |a(t)| exp(iθ(t)). We set ρ(t) = |a(t)|. From
the hypothesis it results that ρ ∈ PC(Γ0) and there exists δ > 0 such that ρ(t) ≥ δ
for all t ∈ Γ0. In such a way we can include ρ in the factor h and so we can assume,
without loosing generality, that a(t) = exp(iθ(t)).

We choose an arbitrary point t0 ∈ Γ0, t0 6= tj (j = 1, n) as an initial point from
which the calculation of argument begins. The fact that â(t, µ) 6= 0 for all (t, µ) ∈
Γ0 × [0, 1] allows us to choose the function θ with real values in such a way that θ is
continuous at all points t ∈ Γ0 which are different from tj (j = 0, n), is left continuous
at t0, t1, ..., tn and for δ > 0 the relations |θ(tj) − θ(tj + 0)| < π − δ (j = 1, n) are
true while a(t0)− a(t0 + 0) is multiple of 2π. We define the functions b, c ∈ PC(Γ0)
with real values in the following way: b(tj) = θ(tj), b(tj + 0) = θ(tj + 0), j = 0, n,
c(t0) = θ(t0), c(t0 + 0) = θ(t0 + 0), c(tj) = c(tj + 0) = 1

2(θ(tj)+ θ(tj + 0)), j = 1, n,
and on residual arcs of Γ0, b(t) and c(t) are defined by linear interpolation. Then
the following inequality is true

sup
t∈Γ0

|b(t) − c(t)| <
1

2
(π − δ). (17)
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The mode of choice of functions b(t) and c(t) implies the fact that the functions
θ(t) − b(t) and exp(ic(t)) are continuous on Γ0. So, the following function

f(t) = exp(i(θ(t) − b(t) + c(t))) (18)

is continuous on Γ0. It is evident that |f(t)| = 1 for all t ∈ Γ0. Therefore, ac-
cording to the Wierstrass second theorem of approximation, there exists trigono-

metric polynomial pn(t) =

n
∑

k=−n

akt
k such that pn(t) 6= 0 on Γ0 and which approxi-

mates uniformly the function f , such that f can be represented in the following way
f = pn(1 −m), and for m ∈ C(Γ0) the following relations are true:

sup
t∈Γ0

|m(t)| <
1

2
, (19)

−
1

4
δ < arg(1 −m(t)) <

δ

4
. (20)

We mention the fact that relation (20) can be obtained by choosing the polynomial
pn in such a way that for the function m the value sup

t∈Γ0

|m(t)| is sufficiently small.

We define the function u in the following way u(t) = (1 − m(t)) exp(i(b(t) −
c(t))), t ∈ Γ0. Then u ∈ PC(Γ0). As the function f from relation (18) is equal to
pn(1−m), we conclude that a(t) = exp(iθ(t)) = f(t) exp(i(b(t)− c(t))) = pn(t)u(t).
Since pn ∈ C(Γ0), pn(t) 6= 0 on Γ0, and the function a is 2-nonsingular, from the
last relation it results that the function u is 2-nonsingular and it has the same
discontinuities as a. From relations (17) and (20) we obtain | arg u(t)| < π/2 − δ/4,
and from (19) we obtain |u(t)| ≥ 1/2. In such a way values of the function u are
situated in a semi-plane of the line Reu(t) ≥ δ0 > 0 (t ∈ Γ0). More exactly, the
values u(t) for all t ∈ Γ0 are situated in the triangular sector as it is indicated on
the figure.

Evidently, by the similarity transformation with the coefficient γ (> 0) this sector
can be translated into a sector all points of which are distant from point 1 with the
distance which is less than 1. So, a number γ > 0 can be chosen such that for all
t ∈ Γ0 the values γu(t) belong to the unit circle and ‖1−γu‖∞ = sup

t∈Γ0

|1−γu| ≤ q < 1.

Now we set rn(t) = γ−1pn(t), h(t) = γu(t). As a(t) = rn(t)h(t), it results that the
lemma is proved.
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Corollary 1. According to Lemma 5, each 2-nonsingular function a(t) ∈ PC(Γ0)
can be represented in the form

a(t) = rn(t)(g(t) + 1), (21)

where rn ∈ Pn, and the function g ∈ PC(Γ0) satisfies the condition ‖g‖∞ =
sup
t∈Γ0

|g(t)| ≤ q < 1. So, we have ind2(g(t) + 1) = 0, and, as rn(t) and g(t) + 1

do not have common discontinuity points, we obtain that ind2a(t) = ind rn(t).

4 The formulation and the proof of the convergence theorems

Let equation (3) have a unique solution, i.e. the operator A that describes the left
term of the given equation is invertible in L2(Γ0). We will show that this condition
is sufficient for the convergence of the collocation and quadrature methods applied
to this equation.

The integral operator K with the weak singularity (see equation (1)) is com-
pletely continuous in the space L2(Γ0) [1].

Let the operator M = aP +bQ ∈ L(L2(Γ0)) be invertible. Then M is nöetherian
and IndM = 0, that implies the nöetherian character of the operator A = M +K
and the condition IndA = IndM = 0 [2, p.145]. Let dimkerA = 0. Then,
as IndA = dimkerA − dim co kerA, we obtain that dim co kerA = 0, and thus
ImA = L2(Γ0), that implies the invertibility of the operator A in L2(Γ0).

Taking into account all the mentioned above and the necessary and sufficient
conditions of invertibility of the operator M (see [12, 13]), the following results
about convergence of the collocation and quadrature methods can be formulated:

Theorem 1. Let the following conditions be true:

1) a0(t), b0(t) ∈ PC(Γ0), f(t) ∈ R(Γ0), h0(t, τ) ∈ C(Γ0 × Γ0);

2) (i) b(t ± 0) 6= 0, t ∈ Γ0; (ii) ĉ(t, µ) 6= 0, (t, µ) ∈ Γ0 × [0, 1], where
c = ab−1;

3) The number k := ind2c(t) = 0;

4) dim kerA = 0;

5) Nodes tj (j = −n, n) are calculated according to formula (2).

Then, for sufficiently small ρ (ερ ≤ q1 < 1) and for sufficiently large n
(n ≥ n0), system (6) has a unique solution αk (k = −n, n). The approximate
solutions ϕn(t), constructed according to formula (5), converge when ρ → 0 and
n → ∞ to exact solution ϕ(t) of equation (1) in the norm of the space L2(Γ0)
limρ→0 limn→∞ ‖ϕ− ϕn‖2 = 0.

Theorem 2. Let all conditions of Theorem 1 be true with the exception of
h0(t, τ) ∈ Hα(Γ0 × Γ0), where Hα is the Banach space of all functions that satisfy
Hölder condition on Γ0 (see, for example [4, 6]). Then the affirmations of Theorem
1 are true with the condition that SLAE (6) is changed with SLAE (7).
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Proof of Theorem 1. According to condition (ii) we have that the function
c ∈ PC(Γ0) is 2-nonsingular. Then according to the above corollary c is repre-
sented in the form (21) and ind2c(t) = ind rn(t). From condition 3) it results that
ind rn(t) = 0.

As the trigonometric polynomial rn(t) 6= 0 on Γ0, it can be represented in the
form (see [14, p.30])

rn(t) =

n+k
∏

j=1

(

1 − t+j t
−1
)

tk
n−k
∏

j=1

(

t− t−j

)

, (22)

where k = ind rn(t), and t+j (j = 1, n + k) (t−j (j = 1, n − k)) are all zeroes (taking
into account their multiplicity) of the polynomial rn(t) which belong to the domain
D+ (the domain D−). As polynomials

r−n+k(t) =
n+k
∏

j=1

(

1 − t+j t
−1
)

, r+n−k(t) =
n−k
∏

j=1

(

t− t−j

)

(23)

satisfy conditions r−n+k(t) 6= 0, t ∈ D− ∪ Γ0, r
+
n−k(t) 6= 0, t ∈ D+ ∪ Γ0, and

(r−n+k)
±1 (respectively (r+n−k)

±1) are analytical in D− (respectively in D+), and
k = ind rn(t) = 0, we obtain that equality (22) is a canonic factorization of the
polynomial rn with respect to the closed contour Γ0

rn(t) = r−n (t)r+n (t). (24)

Taking into account properties of polynomials (23) (for k = 0) and the equality
P +Q = I, we obtain that Pr−nQϕn = Q(r+n )−1Pϕn = 0. From this we have

P (r+n )±1P = (r+n )±1P ; P (r−n )±1P = P (r−n )±1. (25)

The condition (i) implies the existence of the inverse of the function b ∈ PC(Γ0).
We have that b−1 ∈ PC(Γ0). Relations (21), (24) imply for the 2-nonsingular
function c = ab−1 ∈ PC(Γ0) (a, b are coefficients of equation (3)) the representation

c(t) = r−n (t)r+n (t)h(t), (26)

where h(t) = g(t) + 1 is a function that possesses properties described above (in
Lemma 5).

According to equality (26) equation (4) is equivalent to the equation

h(t)r−n (t)(Pϕ)(t) + (r+n (t))−1(Qϕ)(t) + (r+n (t))−1b−1(t)(Kρϕ)(t) = f1(t), (27)

where f1 = (r+n )−1b−1f ∈ R(Γ0). Thus, system (6) is equivalent to the sys-
tem h(tj)r

−
n (tj)(Pϕn)(tj) + (r+n (tj))

−1(Qϕn)(tj) + (r+n (tj))
−1b−1(tj)(Kρϕn)(tj) =

f1(tj), j = −n, n. As the last system is equivalent to the following operator equation

Ln(hr−n P + (r+n )−1Q+ (r+n )−1b−1Kρ)Snϕn = Lnf1, ϕn ∈ Pn, (28)
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equations (9) and (28) are equivalent. Thus, the invertibility of the operator Ln(aP+
bQ+Kρ)Sn implies the invertibility of Ln(hr−n P + (r+n )−1Q+ (r+n )−1b−1Kρ)Sn and
vice versa.

Using relations (25), we obtain

hr−n P + (r+n )−1Q = hPr−n P + hQr−n P + P (r+n )−1Q+Q(r+n )−1Q =

= hPr−n +Q(r+n )−1 + hQr−n P + P (r+n )−1Q,

and, as

hPr−n +Q(r+n )−1 = (hP +Q)(Pr−n +Q(r+n )−1) = (I + gP )(Pr−n +Q(r+n )−1)

is true, it results that equation (28) has the form

Ln

(

(I + gP )(Pr−n +Q(r+n )−1)+hQr−n P +P (r+n )−1Q+(r+n )−1b−1Kρ

)

Snϕn = Lnf1.

Introducing notations V = (I + gP )(Pr−n + Q(r+n )−1), K1 = (r+n )−1b−1Kρ,
K2 = hQr−n P + P (r+n )−1Q, the last equation is written in the following form

Ln(V +K1 +K2)Snϕn = Lnf1. (29)

We will show that for sufficiently large n, the operator Ln(V + K1 + K2)Sn,
defined by the left term of equation (29), is invertible as an operator that acts from
Pn to Pn, and approximate solutions ϕn converge to the solution ϕρ of equation (4).
Toward this end we will show that for sufficiently large values n all conditions of
the following known affirmation about the relation between convergence manifolds
of operators C and C + T , where T is a complete continuous operator (see [4, p.22;
15, p.432]) are true.

Let X,Y be Banach spaces, and {Pn}, {Qn} (n = 1, 2, . . .) are two sequences
of projectors with domains D(Pn) ⊂ X, D(Qn) ⊂ Y and closed images ImPn ⊂
X, ImQn ⊂ Y . By L(X,Y ) we will denote the Banach algebra of all linear and
bounded operators that acts from X to Y , and by K(X,Y ) - the ideal of all complete
continuous operators that acts from X to Y . By GL(X,Y ) we denote the set of all
invertible elements of L(X,Y ).

Lemma 6. Let the operator C ∈ GL(X,Y ), for n ≥ n0 the relation C(ImPn) ⊂
D(Qn) be true and operators QnCPn ∈ GL(ImPn, ImQn). Let Z be a Banach space
that is continuously embedded in Y , such that Z ⊂ L(C,Pn, Qn) := {f ∈ Y : f ∈
D(Qn), n ≥ n1(f), ‖C−1f − (QnCPn)−1Qnf‖X → 0} - the convergence manifold of
the operator C after the system of projectors Qn and Pn. Also, let T ∈ K(X,Z) and
the following two conditions be true:

1) dimKer(C + T ) = 0; 2) Qn|Z ∈ L(Z, Y ).

Then the operators Qn(C + T )Pn ∈ GL(ImPn, ImQn) for n ≥ n2 and the
equality L(C,Pn, Qn) = L(C + T, Pn, Qn) holds.
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We set X = Y = L2(Γ0), Qn = Ln Pn = Sn C = V D(Qn) = R(Γ0),
Z = R(Γ0), T = K1 +K2. Let us show that all conditions of the lemma take place.

Using relations (23) and (25), it can be easily verified that the operator
B = Pr−n + Q(r+n )−1 is invertible in L2(Γ0), with the inverse operator B−1 =
P (r−n )−1 +Qr+n .

As ‖S‖2 = 1 and P = (I + S)/2 is a projector, it results that ‖P‖2 = 1. From
here we have ‖gP‖2 ≤ ‖g‖2 ≤ ‖g‖∞, and, as ‖g‖∞ < 1 (see Corollary 1), it results
that the operator D = I+ gP is invertible in L2(Γ0). In such a way the invertibility
of operators B and D implies the invertibility of the operator V in L2(Γ0).

Lemma 7. The inclusion BPn ⊆ Pn takes place.

Proof. Let xn(t) =

n
∑

k=−n

qkt
k be an arbitrary polynomial from Pn. As r−n (t) =

0
∑

k=−n

lkt
k and

(

r+n (t)
)−1

=
∞
∑

k=0

mkt
k. It results that r−n (t)xn(t) =

0
∑

k=−n

lkt
k

n
∑

j=−n

qjt
j =

n
∑

k=−2n

nkt
k, and

(

r+n (t)
)−1

xn(t) =

∞
∑

k=0

mkt
k

n
∑

j=−n

qjt
j =

∞
∑

k=−n

skt
k. Then we have

P (r−n xn) =

n
∑

k=0

nkt
k and Q

(

(r+n )−1xn

)

=

−1
∑

k=−n

skt
k, from which we obtain

P (r−n xn) + Q
(

(r+n )−1xn

)

=

n
∑

k=0

nkt
k +

−1
∑

k=−n

skt
k ∈ Pn. Thus, BPn ⊆ Pn takes

place, and the lemma is proved.

On the basis of this result and thanks to the fact that PC(Γ0) is an algebra, we
obtain ∀xn ∈ Pn, V xn = DBxn = (I + gP )yn ∈ PC(Γ0) ⊂ R(Γ0) = D(Qn). As the
operators LnV Sn are linear and dimPn < ∞, it results that they are bounded as
operators that act in Pn.

We consider the operator Dn = Ln(I + gP )Sn ∈ L(Pn). Using the evident
relations Snxn = xn, Pxn ∈ Pn, and ‖Pxn‖2 ≤ ‖xn‖2, where xn ∈ Pn, as well
as relation (16), we obtain ‖Ln(I + gP )Snxn‖2 = ‖(Sn + LngPSn)xn‖2 = ‖xn +
LngPxn‖2 ≥ ‖xn‖2 − ‖LngPxn‖2 ≥ ‖xn‖2 − ‖g‖∞‖Pxn‖2 ≥ ‖xn‖2 − ‖g‖∞‖xn‖2 =
(1−‖g‖∞)‖xn‖2, ∀xn ∈ Pn. The constant C = 1−‖g‖∞ > 0, because ‖g‖∞ ≤ q < 1,
therefore the operator Dn is bounded below in Pn. As ImDn = Pn, according to
the known criterion of invertibility (see [16, p.209]), the operator Dn is invertible in
Pn. At the same time the following inequality is true:

‖xn‖2 ≤
1

1 − ‖g‖∞
‖(Sn + LngPSn)xn‖2, xn ∈ Pn. (30)

The relation Bxn ∈ Pn (xn ∈ Pn), implies the representation LnV Sn = Ln(I +
gP )Sn(Pr−n +Q(r+n )−1) = DnB, and the invertibility of the operators Dn and B in
Pn implies the invertibility of the operator LnV Sn in Pn.
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The Banach space R(Γ0) is included continuously in L2(Γ0). We will show that
R(Γ0) ⊂ L(V, Sn, Ln).

As it was shown above, the operators V and LnV Sn are invertible respectively
in L2(Γ0) and in Pn, with the inverse operators V −1 = (P (r−n )−1 +Qr+n )(I + gP )−1

and (LnV Sn)−1 = (P (r−n )−1 + Qr+n )(Ln(I + gP )Sn)−1. Then for f1 ∈ R(Γ0) we
have

‖V −1f1 − (LnV Sn)−1Lnf1‖2 ≤

≤ ‖P (r−n )−1 +Qr+n ‖2‖(I + gP )−1f1 − (Ln(I + gP )Sn)−1Lnf1‖2. (31)

Let
ψ = (I + gP )−1f1 ∈ L2(Γ0), (32)

ψn = (Ln(I + gP )Sn)−1Lnf1 ∈ Pn. (33)

Evidently, the following relation is true:

‖ψn − ψ‖2 ≤ ‖Snψ − ψn‖2 + ‖Snψ − ψ‖2. (34)

As Snψ−ψn ∈ Pn, using consecutively inequalities (30) and (33), we obtain for the
first term from the right term of inequality (34)

‖Snψ − ψn‖2 ≤
1

1 − ‖g‖∞
‖(Sn + LngPSn)(Snψ − ψn)‖2 =

=
1

1 − ‖g‖∞
‖(Sn + LngPSn)ψ − Lnf1‖2. (35)

From relation (32) we obtain ψ = f1 − gPψ. Then we have (Sn + LngPSn)ψ =
Snf1 − SngPψ + LngPSnψ, but in relation (35)

‖Snψ − ψn‖2 ≤
1

1 − ‖g‖∞
‖Snf1 − SngPψ + LngPSnψ − Lnf1‖2 ≤

1

1 − ‖g‖∞
×

×(‖LngPSnψ − gPψ‖2+ ‖SngPψ − gPψ‖2+ ‖Snf1 − f1‖2+ ‖Lnf1 − f1‖2). (36)

Lemma 8. For every x ∈ L2(Γ0)

‖LngPSnx− gPx‖2 → 0. (37)

Proof. For the proof of the lemma we will use the Banach-Steinhaus theorem [16,
p.271]. Consecutively using relations (16), ‖Pxn‖2 ≤ ‖xn‖2 (xn ∈ Pn) and ‖Sn‖2 =
1, we obtain for every x ∈ L2(Γ0), ‖LngPSnx‖2 ≤ ‖g‖∞‖PSnx‖2 ≤ ‖g‖∞‖Snx‖2 ≤
‖g‖∞‖x‖2 := cx <∞. Such sequence of operators LngPSn : L2(Γ0) → Pn is simply
bounded. As L2(Γ0) is the Banach space, it results that the sequence LngPSn is
uniformly bounded (see [16, p.269, Theorem 1]) ‖LngPSn‖2 ≤ const, n = 1, 2, . . . .

If Pm = {xm(t) =
m
∑

k=−m

skt
k|sk ∈ C} is the set of trigonometrical polynomials of

order m (m ≥ 0), defined on Γ0, the set
⋃∞

m=0 Pm is dense in L2(Γ0). If x ∈
⋃∞

k=0 Pk,
then there exists m such that x = xm ∈ Pm, and it is true that Snxm = xm for



COLLOCATION AND QUADRATURE METHODS FOR INTEGRAL EQUATIONS . . . 41

n ≥ m. The inclusions g ∈ PC(Γ0) ⊂ R(Γ0) and Pxm ∈ Pm ⊂ R(Γ0) imply the fact
that gPxm ∈ R(Γ0). Then according to relation (14) it results:

‖LngPSnxm − gPxm‖2 = ‖LngPxm − gPxm‖2 → 0, ∀xm ∈

∞
⋃

k=0

Pk.

On the basis of all the mentioned above, according to the Banach-Steinhaus theorem,
we have that

‖LngPSnx− gPx‖2 → 0, ∀x ∈ L2(Γ0).

The lemma is proved.

As ψ ∈ L2(Γ0), relation (37) implies

‖LngPSnψ − gPψ‖2 → 0. (38)

Let L∞(Γ0) be a Banach algebra of all essentially bounded functions on Γ0.
An alternative characterization for this space is L∞(Γ0) = {ϕ ∈ L2(Γ0) : ϕf ∈
L2(Γ0), ∀f ∈ L2(Γ0)} [17, p.39]. Then, as g ∈ PC(Γ0) ⊂ L∞(Γ0) and Pψ ∈ L2(Γ0),
we have gPψ ∈ L2(Γ0), and thus (see [11, 16])

‖SngPψ − gPψ‖2 → 0. (39)

Analogously, as f1 ∈ R(Γ0) ⊂ L2(Γ0), we have

‖Snf1 − f1‖2 → 0, (40)

and according to relation (14),

‖Lnf1 − f1‖2 → 0. (41)

Using relations (38)–(41), we obtain from (36) ‖Snψ − ψn‖2 → 0. The last
relation with ‖Snψ − ψ‖2 → 0, implies in (34) ‖ψn − ψ‖2 → 0, i.e. ‖(Ln(I +
gP )Sn)−1Lnf1 − (I + gP )−1f1‖2 → 0. As the operator P (r−n )−1 +Qr+n is bounded
in L2(Γ0), from (31) we obtain:

‖V −1f1 − (LnV Sn)−1Lnf1‖2 → 0, ∀f1 ∈ R(Γ0).

In such a way the inclusion R(Γ0) ⊂ L(V, Sn, Ln) takes place.

It is easy to verify (see [18, p.96]) that for every x ∈ L2(Γ0), the functionsQr−n Px,
P (r+n )−1Qx are continuous on Γ0. Taking into account item b) from Lemma 1 we ob-
tain that the bounded operators K1 = (r+n )−1b−1Kρ and K2 = hQr−n P +P (r+n )−1Q,
where (r+n )−1b−1, h ∈ PC(Γ0), act from L2(Γ0) to PC(Γ0) ⊂ R(Γ0). As the
operator Kρ is completely continuous (see item c) of Lemma 1) and equalities
Qr−n P = 1

2(r−n S − Sr−n ), P (r+n )−1Q = −1
2((r+n )−1S − S(r+n )−1), are true, and

r−n , (r+n )−1 are continuous functions on Γ0, we obtain that the operators K1, K2

are completely continuous (see [2, p.33]) K1,K2 ∈ K(L2(Γ0), R(Γ0)).
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The conditions 1)–4) of the convergence theorem assure the invertibility of the
operator A of equation (3). Then, according to Lemma 2, if relation (13) is true,
the operator Aρ is invertible as well, which implies the relation dimKerAρ = 0. As
Aρ = V +K1 +K2, we obtain that dimKer(V +K1 +K2) = 0. As it was mentioned
above, the operator Ln ∈ L(R(Γ0), L2(Γ0)).

In such a way all conditions of Lemma 6 about the lineal of convergence of
the operator V + K1 + K2 are verified, and according to it we obtain that the
operators Ln(V +K1 +K2)Sn : Pn → Pn are invertible for sufficiently large n and
L(V, Sn, Ln) = L(V +K1+K2, Sn, Ln) is true. Then R(Γ0)⊂L(V +K1+K2, Sn, Ln)
and, as equations (29), (9) and, respectively, (27), (4), are equivalent, we obtain
that equation (9) for sufficiently large n has a unique solution, and the approximate
solutions ϕn converge to the exact solution ϕρ of equation (4) ‖ϕρ − ϕn‖2 → 0.
From here and from Lemma 2, using the relation ‖ϕ−ϕn‖2 ≤ ‖ϕ−ϕρ‖2+‖ϕρ−ϕn‖2,
we obtain ‖ϕ − ϕn‖2 → 0 when n→ ∞ and ρ→ 0.

In such a way Theorem 1 is proved.

Proof of Theorem 2. It is easy to verify that equation (10) is equivalent to the
following operator equation

(An + Γn)ϕ̃n = Lnf, (42)

where Anϕ̃n = Ln(aP + bQ+Kρ)ϕ̃n, Γnϕ̃n = −Ln(Kρ −∆n)ϕ̃n, and the operators
Kρ and ∆n were defined above.

Of course, Anϕ̃n = Lnf is an operator equation of the collocation method studied
above. So, equation (42), which describes the quadrature method, can be interpreted
as the perturbation of the equation of the collocation method.

In such a way to state the convergence of the quadrature method we will use the
following lemma about the stability in the sense of Mikhlin of the approximation
method [4, p.31; 15, p.438].

LetX,Y be Banach spaces, and {Pn}, {Qn} be sequences of projectors considered
in Lemma 6.

Lemma 9. Let A ∈ GL(X,Y ) and An := QnAPn ∈ GL(ImPn, ImQn) (n ≥ n0),
and Z is a Banach space which is continuously embedded in Y in such a way that
ImQn ⊂ Z ⊂ L(A,Pn, Qn), Qn|Z ∈ L(Z, Y ), and let y ∈ Z.

Then there exist positive constants p, γ which do not depend on n and y in such
a way that for the operator Rn ∈ L(ImPn, ImQn), which verifies the relation

‖Rn‖X→Z < γ, (43)

we have

1) The equation

(An +Rn)x̃n = Qny (44)

has the unique solution (n ≥ n0);
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2) For solutions x̃n, xn ∈ ImPn of equation (44) and, respectively Anxn = Qny,
the estimation

‖x̃n − xn‖X ≤ p‖y‖Z‖Rn‖X→Z (45)

holds.

We set X = Y = L2(Γ0), Z = R(Γ0)4, Qn = Ln, Pn = Sn, A = Aρ, Rn = Γn,
y = f . The conditions of the last lemma with the exception of relation (43) were
already verified in the proof of Theorem 1. Evidently Γn ∈ L(ImSn, ImLn). We will
show that for Γn condition (43) holds and even more, ‖Γn‖L2→R → 0 when n→ ∞.
In such conditions, taking into account estimation (45), we have ‖x̃n − xn‖2 → 0
when n→ ∞.

Taking into account the identity
∫

Γ0

Lτ
n(hρ(t, τ)ϕn(τ))dτ=

∫

Γ0

1
τL

τ
n[τhρ(t, τ)]ϕn(τ)dτ ,

∀ϕn ∈ Pn (see [18, p.72]), and the fact that (∆nϕn)(t) − (Kρϕn)(t) ∈ C(Γ0),
as well as Hölder inequalities, we obtain ‖(Kρϕn)(t) − (∆nϕn)(t)‖C =

(2π)−1 max
t∈Γ0

∣

∣

∣

∣

∣

∫

Γ0

τ−1(τhρ(t, τ) − Lτ
n[τhρ(t, τ)])ϕn(τ)dτ

∣

∣

∣

∣

∣

≤ (2π)−1 max
t∈Γ0

∫

Γ0

|τhρ(t, τ) −

Lτ
n[τhρ(t, τ)]| |ϕn(τ)| |dτ | ≤ (2π)−1 max

t∈Γ0

‖τhρ(t, τ) − Lτ
n[τhρ(t, τ)]‖2‖ϕn‖2. As t 7→

‖τhρ(t, τ) − Lτ
n[τhρ(t, τ)]‖2 is a continuous function on Γ0,∃ tn ∈ Γ0 such that

max
t∈Γ0

‖τhρ(t, τ) − Lτ
n[τhρ(t, τ)]‖2 = ‖τhρ(tn, τ) − Lτ

n[τhρ(tn, τ)]‖2. As τhρ(t, τ) ∈

C(Γ0) by τ , using the relation ‖g−Lng‖2 ≤ 2En(g),∀g ∈ C(Γ0) (see [19, p.63]),
we obtain ‖τhρ(tn, τ) − Lτ

n[τhρ(tn, τ)]‖2 ≤ 2Eτ
n(τhρ(tn, τ)). According to Jackson

theorem in C(Γ0) (see [19, p.43]) we have Eτ
n(τhρ(tn, τ)) ≤ 12ωτ (τhρ;

1

n+ 1
) ≤

12ωτ (hρ;
1

n+ 1
), where ω(g; δ) is the modulus of continuity of the function g(t).

In such a way we have ‖(Kρϕn)(t) − (∆nϕn)(t)‖C ≤
12

π
ωτ (hρ;

1

n+ 1
)‖ϕn‖2.

Then taking into account the estimation ‖Ln‖C ≤ d1 lnn (see [19, p.49]), we have

‖Γnϕn‖C ≤ ‖Ln‖C‖(Kρϕn)(t) − (∆nϕn)(t)‖C ≤ d2 lnn ωτ (hρ;
1

n+ 1
)‖ϕn‖2.

Taking into account that hρ(t, τ) ∈ Hδ(Γ0 × Γ0), δ = min(α, γ) (see [20,

p.22; 6, p.10]), we have ωτ

(

hρ;
1

n+ 1

)

= sup
|τ ′−τ ′′|≤ 1

n+1

|hρ(t, τ
′) − hρ(t, τ

′′)| ≤

sup
|τ ′−τ ′′|≤ 1

n+1

d3|τ
′ − τ ′′|δ = d3

1

(n+ 1)δ
. Consequently, as Γnϕn ∈ C(Γ0), we have

‖Γnϕn‖R(Γ0) = ‖Γnϕn‖C(Γ0) and then ‖Γn‖L2→R ≤ d4n
−δ lnn→ 0 when n→ ∞.

In virtue of Theorem 1, the equation Anϕn = Lnf , which describes the colloca-
tion method, for all sufficiently large n, has the unique solution ϕn and ‖ϕn−ϕ‖ → 0
when n → ∞ (ϕ is the solution of equation (1)). Applying Lemma 9 we obtain
that equation (42) (equivalent to equation (10)) has the unique solution ϕ̃n and
‖ϕ̃n − ϕn‖ → 0 (n→ ∞).
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Then ‖ϕ̃n − ϕ‖ ≤ ‖ϕ̃n − ϕn‖ + ‖ϕn − ϕ‖ → 0 when n → ∞ and in such a way
we convince of the verity of statements of Theorem 2.
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