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Measure of stability for a finite cooperative game

with a generalized concept of equilibrium ∗

V.A. Emelichev, E.E. Gurevsky, A.A. Platonov

Abstract. We consider a finite cooperative game in the normal form with a para-
metric principle of optimality (the generalized concept of equilibrium). This principle
is defined by the partition of the players into coalitions. In this situation, two ex-
treme cases of this partition correspond to the lexicographically optimal situation and
the Nash equilibrium situation, respectively. The analysis of stability for a set of
generalized equilibrium situations under the perturbations of the coefficients of the
linear payoff functions is performed. Upper and lower bounds of the stability radius
in the l∞-metric are obtained. We show that the lower bound of the stability radius
is accessible.

Mathematics subject classification: 91A12, 90C29, 90C31.
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1 Introduction

Let us consider a finite game of several players in the normal form [1, 2], in
which each player i ∈ Nn = {1, 2, . . . , n}, n ≥ 2, has a finite number of options for
the selection of a strategy Xi ⊂ R, 2 ≤ |Xi| < ∞. The realization of the game and
its result is uniquely determined by the choice of each player. Assume that, on the
set of the situations X =

∏
i∈Nn

Xi of the game, linear payoff functions of the players

fi(x) = Cix, i ∈ Nn

are defined. Here Ci is the i-th row of the matrix C = [cij ]n×n ∈ Rn×n,

x = (x1, x2, . . . , xn)
T , xj ∈ Xj, j ∈ Nn. In the course of the game, which is called the

game with matrix C, each player i receives the payoff fi(x), which he or she wants
to maximize by using certain relationships of preference. For any game in normal
form, the cooperative and noncooperative principles of optimality (equilibrium con-
cepts) are used, which usually leads to different situations (results). In this paper a
parametric principle of optimality is considered. Such principle leads to the set of
generalized equilibrium situations. The parameter of this principle is the partition
of players into coalitions, for which two extreme cases (one coalition of all players
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and the set of one-player coalitions) correspond to the lexicographically optimal sit-
uation and the Nash equilibrium situation, respectively. The analysis of stability
for the set of situations, optimal for a given partition under the perturbations of
coefficients of the linear payoff functions is performed. Lower and upper bounds
of the stability radius for the problem of finding the set of generalized equilibrium
situations are obtained. Note that back in [3–6], formulas of the stability radius of
the optimal situation with various generalizations of the concept of equilibrium was
obtained.

2 Basic definitions and properties

Now we introduce the binary relation of lexicographic order ≺
L

in the space Rd of

any dimension d ∈ N, assuming that, for any different vectors y = (y1, y2, . . . , yd)
and y′ = (y′1, y

′
2, . . . , y

′
d) of the space, the formula

y ≺
L
y′ ⇔ yk < y′k

holds, where k = min{i ∈ Nd : yi 6= y′i}.
The following property is obvious.

Property 1. Let y, y′ ∈ Rd, d ∈ N. If y1 < y′1, then y ≺
L
y′.

We will call any nonempty subset J ⊆ Nn of players a coalition. Here and below,
xJ is the projection of the vector x ∈ X onto the coordinate axes of the space Rn

with the numbers of coalition J . For any coalition J ⊆ Nn we introduce a binary
relation Ω(C, J) on a set of situations X as follows:

x Ω(C, J) x′ ⇔





CJx ≺

L
CJx

′ & xNn\J = x′
Nn\J

, if J 6= Nn,

Cx ≺
L
Cx′, if J = Nn,

where CJ is the submatrix of C consisting of the rows with the numbers of the
coalition J.

Let s ∈ Nn, Nn =
⋃

r∈Ns

Jr be the partition of the set Nn into s coalitions, i. e.

Jr 6= ∅, r ∈ Ns; p 6= q ⇒ Jp∩Jq = ∅. Under the game with matrix C we understand
the problem Zn(C, J1, J2, . . . , Js) of finding the set of generalized equilibrium or,
in other words of (J1, J2, . . . , Js)-optimal situations according to the formula

Qn(C, J1, J2, . . . , Js) = {x ∈ X : ∀r ∈ Ns ∀x
′ ∈ X (x Ω(C, Jr) x

′)},

where Ω(C, Jr) denotes the negation of relation Ω(C, Jr).
Thus, in each coalition the relationships of players are constructed on the basis

of the lexicographic principle. Therefore, any Nn-optimal situation x ∈ Qn(C,Nn)
(all players form one coalition) is lexicographically optimal in the space X of all
situations. This means that all players are ordered (enumerated) by importance
in such a way that each preceding one is more important than all the next. This
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situation corresponds to the generic setup of an optimization problem with several
criteria (payoffs) applied consecutively [7, 8]. It is easy to see that the set Qn(C,Nn)
of Nn-optimal situations is a lexicographic set

Ln(C) = {x ∈ X : ∀ x′ ∈ X (Cx ≺
L
Cx′)},

which is a subset of the Pareto set.
Clearly, in another extreme case, where the game is noncooperative (s = n), any

individually optimal situation x ∈ Qn(C, {1}, {2}, . . . , {n}) is the Nash equilibrium
situation (or equilibrium) [9] (see also [1, 2]). Indeed, by the definition, situation x

is equilibrium if and only if the following formula

∄ k ∈ Nn ∄ x′ ∈ X (Ckx < Ckx
′ & xNn\{k} = x′Nn\{k}

)

holds. Therefore, the reasonability of equilibrium situation x means that any player
does not benefit from a deviation from it (while all others stick to it). We denote
by NEn(C) the set of all Nash equilibrium situations.

In this context, by the parametrization of the principle of optimality we mean
introducing a characteristic of binary relation Ω(C, J) of preference of situations
that allows us to relate the classical concepts of lexicographic optimality and Nash
equilibrium.

Without loss of generality, below we will assume that the elements of the partition
Nn =

⋃
r∈Ns

Jr have the form

Jr = {tr−1 + 1, tr−1 + 2, . . . , tr},

r ∈ Ns, t0 = 0, ts = n.

By taking into account the separability of the linear payoff functions Cix, i ∈ Nn,

we derive the following formula from the definition of the set (J1, J2, . . . , Js)-optimal
situations

Qn(C, J1, J2, . . . , Js) =
s∏

r=1

L|Jr|(Cr), (1)

where each factor L|Jr|(Cr) is the set of lexicographically optimal solutions of a
|Jr|-criteria vector problem

Crz → lex max
z∈XJr

,

i. e.
L|Jr|(Cr) = {z ∈ XJr : ∀z′ ∈ XJr (Crz ≺

L
Crz′)}.

Here Cr is a square |Jr|× |Jr| matrix consisting of the entries of matrix C, standing
at the intersection of the rows and columns with numbers from Jr; XJr is the
projection of the set X onto Jr, i. e.

XJr =
∏

j∈Jr

Xj ⊂ R|Jr|.
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It is known [7, 8] that the set L|Jr|(Cr) is the result of solving the sequence of
scalar problems

L
|Jr|
i = Arg max{Cri z : z ∈ L

|Jr|
i−1}, i ∈ N|Jr|, (2)

where L
|Jr|
0 = XJr ; C

r
i is the i-th row of matrix Cr. Thus, L|Jr|(Cr) = L

|Jr|
|Jr|

for each
index r ∈ Ns.

Owing to the fact that the set XJr is finite for any index r ∈ Ns, we conclude
that the lexicographic set L|Jr|(Cr) is nonempty for any index r ∈ Ns. Therefore
(in view of (1)) the set of (J1, J2, . . . , Js)-optimal situations Qn(C, J1, J2, . . . , Js)
is nonempty for any matrix C ∈ Rn×n and for any partition. In particular, the
equilibrium situations exist for any matrix C ∈ Rn×n (see Corollary 5).

Under the measure of stability in cooperative game with matrix C we under-
stand the stability radius of the problem Zn(C, J1, J2, . . . , Js) of finding the set
Qn(C, J1, J2, . . . , Js) which analogously to [6, 10, 11] is defined as follows:

ρn(C, J1, J2, . . . , Js) =

{
sup Φ if Φ 6= ∅,

0 otherwise,

where

Φ = {ε > 0 : ∀B ∈ Ξ(ε) (Qn(C +B, J1, J2, . . . , Js) ⊆ Qn(C, J1, J2, . . . , Js))},

Ξ(ε) = {B ∈ Rn×n : ||B||∞ < ε},

||B||∞ = max{|bij | : (i, j) ∈ Nn ×Nn}, B = [bij ]n×n.

In other words, the stability radius determines the limit level of perturbations
of the parameters of payoff function in the l∞-metric, for which new generalized
optimal situations do not appear. Obviously, the problem Zn(C, J1, J2, . . . , Js) is
stable and the stability radius is infinite if the equality Qn(C, J1, J2, . . . , Js) = X

holds. If the set

Qn(C, J1, J2, . . . , Js) = X \Qn(C, J1, J2, . . . , Js)

is nonempty, then we say that the problem Zn(C, J1, J2, . . . , Js) is non-trivial.
Suppose

L|Jr|(Cr) = XJr \ L
|Jr|(Cr),

K(C) = {r ∈ Ns : L|Jr|(Cr) 6= ∅},

||a||1 =
m∑

i=1

|ai|, a = (a1, a2, . . . , am) ∈ Rm.

The following properties are obvious.

Property 2. The situation x0 ∈ Qn(C, J1, J2, . . . , Js) if and only if there exists an

index k ∈ K(C) such that x0
Jk

∈ L|Jk|(Ck).
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Property 3. The problem Zn(C, J1, J2, . . . , Js) is non-trivial if and only if the set
K(C) is nonempty.

From formula (1) and property 2 we derive

Property 4. If r ∈ K(C) and there exists a perturbing matrix B̂ ∈ Rn×n such
that the following formula holds

∀ z ∈ L|Jr|(Cr)
(
z ∈ L|Jr|(Cr + B̂r)

)
, (3)

then we have

∀ x ∈ Qn(C, J1, J2, . . . , Js)
(
x ∈ Qn(C + B̂, J1, J2, . . . , Js)

)
. (4)

3 Bounds of the stability radius

Suppose

ϕn(C, J1, J2, . . . , Js) = min
r∈K(C)

min
z∈L|Jr|(Cr)

max
z′∈L|Jr |(Cr)

Cr1(z′ − z)

||z′ − z||1
.

Theorem. The stability radius ρn(C, J1, J2, . . . , Js) of the non-trivial problem

Zn(C, J1, J2, . . . , Js), n ≥ 2, s ≥ 1, has the following bounds

ϕn(C, J1, J2, . . . , Js) ≤ ρn(C, J1, J2, . . . , Js) ≤ min{||Cr1 ||∞ : r ∈ K(C)}.

Proof. Note that in view of property 3 the non-triviality of the problem
Zn(C, J1, J2, . . . , Js) implies the non-emptiness of the set K(C).

Let us introduce the notations

ϕ := ϕn(C, J1, J2, . . . , Js), ρ := ρn(C, J1, J2, . . . , Js).

It is easy to see that ϕ ≥ 0.

At first we prove the inequality ρ ≥ ϕ. If ϕ = 0, then this inequality is obvious.

Let ϕ > 0, B ∈ Ξ(ϕ), x0 ∈ Qn(C, J1, J2, . . . , Js). Let us show that x0 ∈
∈ Qn(C +B, J1, J2, . . . , Js).

It follows directly from the definition of ϕ that

∀r ∈ K(C) ∀z ∈ L|Jr|(Cr)

(
max

z′∈L|Jr|(Cr)

Cr1(z′ − z)

||z′ − z||1
≥ ϕ

)
. (5)
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According to the property 2 there exists an index k ∈ K(C) such that x0
Jk

∈

∈ L|Jk|(Ck). Therefore the formula (5) implies the existence of a vector
z′ ∈ L|Jk|(Ck), such that the following inequalities

Ck1 (z′ − x0
Jk

)

||z′ − x0
Jk
||1

≥ ϕ > ||B||∞ ≥ ||Bk||∞

hold. Due to the obvious inequality

|uv| ≤ ||u||1||v||∞,

which is valid for all u = (u1, u2, . . . , un) ∈ Rn and v = (v1, v2, . . . , vn)
T ∈ Rn, we

obtain
(Ck1 +Bk

1 )(z′ − x0
Jk

) = Ck1 (z′ − x0
Jk

) +Bk
1 (z′ − x0

Jk
) ≥

≥ Ck1 (z′ − x0
Jk

) − ||Bk||∞||z′ − x0
Jk
||1 > 0.

Thus, according to property 1 we have (Ck + Bk)x0
Jk

≺
L

(Ck + Bk)z′, i. e.

x0
Jk

∈ L|Jk|(Ck + Bk). In view of property 2, we conclude that x0 ∈ Qn(C +
+B, J1, J2, . . . , Js).

So, the following formula is true

∀B ∈ Ξ(ϕ)
(
Qn(C +B, J1, J2, . . . , Js) ⊆ Qn(C, J1, J2, . . . , Js)

)
,

which means that ρ ≥ ϕ.

To prove the upper bound we need to show that for any index r ∈ K(C) the
following formula ρ ≤ ||Cr1 ||∞ is valid.

Let r ∈ K(C), ε > ||Cr1 ||∞, ψi = ||Cri ||∞, i ∈ N|Jr|. We build a perturbing

matrix B̂ =
[
b̂ij

]

n×n
, assuming

b̂ij =

{
−cij − δci+p−1,j if i = tr−1 + 1, j ∈ Jr,

0 otherwise,

where 0 < δ < ε−ψ1

ψp
. Here

p = min{i ∈ N|Jr| : XJr 6= L
|Jr|
i },

and L
|Jr|
i is defined by the formula (2). It is easy to see that ψp 6= 0. After a simple

calculation we obtain ||B̂||∞ < ε, i. e. B̂ ∈ Ξ(ε).

Let z∗ ∈ X\L
|Jr|
p . Then for any vector z ∈ L|Jr|(Cr) we have

Crp(z
∗ − z) < 0.

Using this and taking into account the construction of the row B̂r
1, we derive

(Cr1 + B̂r
1)(z − z∗) = δCrp(z

∗ − z) < 0.
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This inequality in view of property 1 is equivalent to the following relation

(Cr + B̂r)z ≺
L

(Cr + B̂r)z∗.

From this we obtain the formula (3), and therefore by virtue of property 4 we have
(4). Hence

Qn(C + B̂, J1, J2, . . . , Js) 6⊆ Qn(C, J1, J2, . . . , Js). (6)

Resuming all the said above, we conclude that for any index r ∈ K(C) and for
any number ε > ||Cr1 ||∞ there exists a matrix B̂ ∈ Ξ(ε) such that the formula (6)
is true. This means that the stability radius ρ ≤ ||Cr1 ||∞ for any index r ∈ K(C).
That complete the proof.

4 Some of special cases

The theorem allows us to formulate the following corollaries.

Corollary 1. If |Xj | = 2, j ∈ Nn, then for the stability radius ρn(C, J1, J2, . . . , Js)
of non-trivial problem Zn(C, J1, J2, . . . , Js) the formula

ρn(C, J1, J2, . . . , Js) = ϕn(C, J1, J2, . . . , Js) (7)

holds.

Proof. Taking into account the proved inequality ρ ≥ ϕ (see theorem) for deriving
the formula (7) it remains to show that ρ ≤ ϕ. Let us introduce the notations:

Xj = {x−j , x
+
j }, x−j , x

+
j ∈ R, x−j < x+

j , j ∈ Nn.

By the definition of number ϕ, there exist an index r ∈ K(C) and a vector

z∗ ∈ L|Jr|(Cr) such that for any vector z ∈ L|Jr|(Cr) we have

Cr1(z − z∗) ≤ ϕ||z − z∗||1.

Then, assuming ε > ϕ, B̂ =
[
b̂ij

]

n×n
∈ Ξ(ε), where

b̂ij =






−α if z∗j−tr−1
= x−j , i = tr−1 + 1, j ∈ Jr,

α if z∗j−tr−1
= x+

j , i = tr−1 + 1, j ∈ Jr,

0 otherwise,

ε > α > ϕ,

we derive
(Cr1 + B̂r

1)(z − z∗) = Cr1(z − z∗) + B̂r
1(z − z∗) =

= Cr1(z − z∗) − α||z − z∗||1 ≤ ϕ||z − z∗||1 − α||z − z∗||1 < 0,

i. e. z ∈ L|Jr|(Cr + B̂r). Therefore we have (Cr + B̂r)z ≺
L

(Cr + B̂r)z∗.
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Using this we obtain the formula (3), and therefore by virtue of property 4 we
have (4). Hence the formula (6) is true.

Resuming all the information given above, we conclude that for any number
ε > ϕ there exists a matrix B̂ ∈ Ξ(ε) such that the formula (6) is true. This means
that ρ ≤ ϕ. That completes the proof of Corollary 1.

Note, that Corollary 1 shows the accessibility of the lower bound of the stability
radius ρ.

Corollary 2. If Qn(C, J1, J2, . . . , Js) = {x0}, then

ρn(C, J1, J2, . . . , Js) = min
r∈Ns

min
z∈XJr\{x

0
Jr

}

Cr1(x0
Jr

− z)

||x0
Jr

− z||1
. (8)

Proof. Denote the right side of the formula (8) by ζ. It is easy to see that the prob-
lem Zn(C, J1, J2, . . . , Js) is nontrivial and the number ζ is ϕ = ϕn(C, J1, J2, . . . , Js).
Therefore, in view of inequality ρ ≥ ϕ (see the theorem) it remains to show that
ρ ≤ ζ.

By the definition of number ζ, we have that there exist an index r ∈ Ns and a
vector z∗ ∈ XJr \ {x

0
Jr
} such that

Cr1(x0
Jr

− z∗) = ζ||x0
Jr

− z∗||1, {x0
Jr
} = L|Jr|(Cr).

Therefore, assuming ε > ζ and building a perturbing matrix B̂ =
[
b̂ij

]

n×n
∈ Ξ(ε)

with elements

b̂ij =






−α if x0
j ≥ z∗j−tr−1

, i = tr−1 + 1, j ∈ Jr,

α if x0
j < z∗j−tr−1

, i = tr−1 + 1, j ∈ Jr,

0 otherwise,

where ε > α > ζ, we obtain

(Cr1 +B̂r
1)(x

0
Jr
−z∗) = Cr1(x0

Jr
−z∗)−α||x0

Jr
−z∗||1 = ζ||x0

Jr
−z∗||1−α||x

0
Jr
−z∗||1 < 0.

Hence, taking into account property 1 we have

(Cr + B̂r)x0
Jr

≺
L

(Cr + B̂r)z∗.

From here we find the formula (3), and therefore according to the property 4 we
have (4), i. e. the formula (6) is true.

Resuming the said above we conclude that for any number ε > ϕ there exists
a perturbing matrix B̂ ∈ Ξ(ε) such that the formula (6) is true. This means that
ρ ≤ ϕ. The proof of Corollary 2 is completed.

The theorem implies
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Corollary 3. The stability radius ρn(C,Nn) of a non-trivial problem Zn(C,Nn) of

finding the lexicographic set Ln(C) has the following bounds:

min
x∈Ln(C)

max
x′∈Ln(C)

C1(x
′ − x)

||x′ − x||1
≤ ρn(C,Nn) ≤ ||C1||∞.

Here L
n
(C) = X\Ln(C) = X\Qn(C,Nn).

Obviously, in case we have a noncooperative game (s = n), for any index r ∈ Ns

the inequality L1(Cr) 6= ∅, where Cr = crr, is equivalent to the inequality crr 6= 0.
Therefore, the theorem implies

Corollary 4 [12]. For the stability radius ρn(C, {1}, {2}, . . . , {n}), n ≥ 2, of the

problem Zn(C, {1}, {2}, . . . , {n}) of finding the set of Nash equilibrium situations

NEn(C) the formula

ρn(C, {1}, {2}, . . . , {n}) =

{
min{|ckk| : k ∈ K(C)} if K(C) 6= ∅,

∞ if K(C) = ∅

holds.

Taking into account the formula (1) we obtain

Corollary 5 [3]. The situation x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ X of a noncooperative game

with matrix C ∈ Rn×n is a Nash equilibrium situation if and only if the strategy of

each player i ∈ Nn has the form

x0
i =






max{xi : xi ∈ Xi} if cii > 0,

min{xi : xi ∈ Xi} if cii < 0,

xi ∈ Xi if cii = 0.
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[1] Moulen H. Théorie des jeux pour l’économie et la politique. Harmann Paris, 1979.

[2] Petrosyan L.A., Zenkevich N.A., Semina E.A. Games theory. Moscow, Vysshaya shkola,
1998 (in Russian).

[3] Emelichev V.A., Bukhtoyarov S.E. Stability of generally efficient situation in finite coop-
erative games with parametric optimality principle (”from Pareto to Nash”). Computer Science
Journal of Moldova, 2003, 11, N 3, p. 316–323.

[4] Bukhtoyarov S.E., Emelichev V.A., Stepanishina Yu.V. Stability of discrete vector prob-
lems with the parametric principle of optimality. Cybernetics and Systems Analysis, 2003, 39,
p. 604–614.

[5] Emelichev V.A., Kuzmin K.G. Finite cooperative games with a parametric concept of equi-
librium under uncertainty conditions. J. of Computer and Systems International, 2006, 45,
N 2, p. 276–281.



26 V.A. EMELICHEV, E.E. GUREVSKY, A.A. PLATONOV

[6] Bukhtoyarov S.E., Emelichev V.A. Measure of stability for a finite cooperative game with a
parametric optimality principle (from Pareto to Nash). Comput. Math. and Mathem. Physics,
2006, 46, N 7, p. 1193–1199.

[7] Podinovskiy V.V., Gavrilov V.M. Optimization on sequential applied criteria. Moskow,
Sovetskoe radio, 1975 (in Russian).

[8] Chervak Yu. Unimprovable choice. Uzhgorod, Uzhgorod National University, 2002
(in Ukrainian)

[9] Nash J.F. Non-cooperative games. Ann. Math., 1951, 54, N 2, p. 286–295.

[10] Sotskov Yu., Leontev V., Gordeev E. Some concepts of stability analysis in combinatorial
optimization. Discrete Appl. Math., 1995, 58, N 2, p. 169–190.

[11] Emelichev V., Girlich E., Nikulin Yu., Podkopaev D. Stability and regularization of
vector problems of integer linear programming. Optimization, 2002, 51, N 4, p. 645–676.

[12] Bukhtoyarov S.E., Kuzmin K.G. On stability in game problems of finding Nash set.
Computer Science Journal of Moldova, 2004, 12, N 3, p. 381–388.

Belarussian State University
ave. Independence, 4
Minsk, 220050, Belarus

E-mails: emelichev@bsu.by, emelichev@tut.by,
Eugen Eugen@tut.by

Received August 25, 2006


