Factorization theorems for some spaces of analytic functions

R.F. Shamoyan

Abstract. We provide several factorization theorems for different subspaces of the space of all analytic functions in the unit disk, in particular we prove a strong factorization theorem for Classical Hardy classes with Muckenhoupt weights. Proofs are based on a new weighted version of Coifman–Meyer–Stein theorem on factorization of tent spaces and on properties of an extremal outher function, which was constructed by E. Dynkin.

Mathematics subject classification: 46B20, 46E40, 47B35.

Keywords and phrases: Weighted Tent spaces, strong factorization theorems, Muckenhoupt weights, Hardy Spaces.

1 Introduction

The aim of this note is to provide several factorization theorems for different subspaces of the $H(\mathbb{D})$ space, where \mathbb{D} is the unit disk on the complex plane \mathbb{C} and $H(\mathbb{D})$ is the space of all holomorphic in the unit disk functions. Let us mention several vital known results in that direction.

In [1] such theorem was proved by Gorowitz for B^p_{α} -Bergman spaces. Much later similar result was proven in [2] by W. Cohn and in much more general form by W. Cohn and I. Verbitsky in [3]. Such theorems are playing very important role in different questions in the theory of analytic functions.

2 Definition and main results

In order to formulate the main results of the paper we will give several definitions. Let Z, X and Y be subspaces of $H(\mathbb{D})$. We will say that Z admits strong factorization g from Z can be represented as a product $g = f_1 f_2$, where $f_1 \in X$, $f_2 \in Y$, and the reverse is also true: for any $f_1 \in X$ and $f_2 \in Y$ we have $f_1 f_2 \in Z$, so Z = XY.

Let $T = \{z : |z| = 1\}$ be the boundary of \mathbb{D} ,

$$\Gamma_{\alpha}(\xi) = \{ z : |1 - \xi z| \le \alpha (1 - |z|) \}, \quad \alpha > 1,$$

 $dm(\xi)$ and $dm_2(z)$ are normalized Lebesgue measures on the boundary T and in the unit disk \mathbb{D} ,

$$H^{p}(\mathbb{D}) = \bigg\{ f \in H(\mathbb{D}) : \sup_{r \in (0,1)} M_{p}(f,r) < \infty, p \in (0,\infty] \bigg\}.$$

[©] R.F. Shamoyan, 2006

Hardy spaces for $p \in (0, \infty]$, where

$$M_p^p(f,r) = \int_T |f(r\xi)|^p dm(\xi), \quad r \in [0,1),$$

Let : $\Box I = \{ z = r\xi : \xi \in I, 1 - |I| \le r < 1 \},$

where I is an arc on T, |I| is a length of the arc. Let further $T(E) = \{(x,t) \in \mathbb{R}^{n+1}, B(x,t) \subset E\}$ be a tent on $E, E \subset \mathbb{R}^n$ (see [3]), for example E can be a ball E = B(x,r) in \mathbb{R}^n with center at x and radius r. Denote as usual by $A^p(\mathbb{R}^n)$, $p \in [1, \infty)$ all measurable functions in $\mathbb{R}^n w(x)$ such that w is belonging to Muckenhoupt class (see [5]). $A^p(T)$ is a Muckenhoupt class on T. Further let

$$(A_q f)(\xi) = \left(\int_{\Gamma_{\alpha}(\xi)} \frac{|f(z)|^q}{(1-|z|)^2} dm_2(z) \right)^{\frac{1}{q}},$$

$$\begin{split} \left(\tilde{T}_q^{\infty}(w)\right) &= \left\{ f \text{ measurable in } \mathbb{D} : \sup_{I \subset T} \left(\int_I w^{\frac{q}{q-p}} dy \right) \left(\int_{T(I)} \frac{|f(z)|^q}{1-|z|} dm_2(z) \right) < \infty \right\}, \\ &\left(C_q^q f \right)(\xi) = \sup_{\xi \in I} \left(\frac{1}{|I|} \right) \left(\int_{\Box I} \frac{|f(z)|^q}{(1-|z|)} dm_2(z) \right), \\ &\left(A_{\infty} f \right)(\xi) = \sup_{\Gamma_{\alpha}(\xi)} \left\{ |f(z)| : z \in \Gamma_{\alpha}(\xi) \right\}, \ I \subset T, I \text{ is an arc.} \end{split}$$

Theorem 1. Let p < q, s > 0, $w_1 = w^{\frac{q}{q-p}}$, $w_1 \in L^1_{loc}$ and $w_1 \in A^1(T)$. Then $(HT^p_{s,q})(w) = (H^p(w_1))(HT^{\infty}_{s,q}(w))$ where

$$(HT_{s,q}^{p})(w) = \left\{ f \in H(\mathbb{D}) : \|A_{q}(f(z)(1-|z|)^{s})\|_{L^{p}(w)} < \infty \right\},$$

$$(HT_{s,q}^{\infty})(w) = \left\{ f \in H(\mathbb{D}) : f(z)(1-|z|)^{s} \in \tilde{T}_{q}^{\infty}(w) \right\},$$

$$(H^{p})(w_{1}) = \left\{ f \in H(\mathbb{D}) : \int_{T} |(A_{\infty}f)(\xi)|^{p} w_{1}(\xi) d\xi < \infty, \quad 0 < p < \infty \right\},$$

and moreover if $F = F_1F_2$, then $||F_1||_{H^p(w_1)} \le c||F||_{HT^p_{s,q}}$ and $||F_2||_{HT^{\infty}_{s,q}} \le 1$.

Remark 1. The pair $\left(\omega^{-\frac{p}{q-p}}, \omega^{\frac{q}{q-p}}\right)$ can be changed in Theorem 1 to $\left(\omega^{\tau_1}, \omega^{\tau_2}\right)$, $\tau_1 + \tau_2 = 1$.

The proof of Theorem 1 relies on the following extension of Coifman–Meyer– Stein theotem on factorization of tent spaces and some ideas from the article of W. Cohn and I. Verbitsky.

Let $\Gamma(\xi)$ be Luzin cone in \mathbb{R}^n [3].

Theorem 2. Let $0 , <math>\omega_1 = \omega^{\frac{q}{q-p}}$, $\omega_1 \in L^1_{loc}$, $\omega_1 \in A^1(\mathbb{R}^n)$. Then the following equality holds

$$\tilde{T}_q^p(\omega) = \tilde{T}_{\infty}^p\left(\omega^{\frac{q}{q-p}}\right) \left(\tilde{T}_q^{\infty}(\omega)\right),$$

where

$$\begin{split} \tilde{T}_q^{\infty}(\omega) &= \left\{ f \text{ is measurable in } \mathbb{R}^n : \\ \sup_B \left(\int_B \omega^{\frac{q}{q-p}} dy \right)^{-1} \int_{T(B)} \frac{|f(x,t)|^q}{t} dx \, dt < \infty \right\}, \\ \tilde{T}_{\infty}^p(\phi) &= \left\{ f \text{ is measurable in } \mathbb{R}^n : \| (A_{\infty}f)(x)(\phi(x))^{\frac{1}{p}} \|_{L^p(\mathbb{R}^n)} < \infty \right\}, \\ \tilde{T}_q^p(\omega) &= \left\{ f \text{ is measurable in } \mathbb{R}^n : \\ \int_{\mathbb{R}^n} \left(\int_{\Gamma(\xi)} \frac{|f(y,t)|^q}{t^{n+1}} dy \, dt \right)^{\frac{p}{q}} \omega(\xi) d\xi < \infty, \quad 0 < p, q < \infty \right\}, \end{split}$$

where ω is a locally integrable function, $\omega \in L^1_{loc}(\mathbb{R}^n)$.

Remark 2. Theorem 0.2 for $\omega = const$ is known and was proved in [3] and [4].

Remark 3. Note that many known spaces of holomorphic functions can be represented by T_q^p , $0 < p, q < \infty$, spaces. So such factorization are very useful in different problems, connected with the theory of spaces of analytic functions [4, 5].

We are going to formulate two theorems in similar direction. The proof relies on the existence of extremal outer function, that was constructed by Dynkin in [6].

Let

$$\left(F_{s,p,k}^{\infty,q}\right) = \left\{ f \in H(\mathbb{D}) : |\tilde{\mathbb{D}}^k f(z)|^q \left(1 - |z|\right)^{(k-s)q-1} - p \text{ is Carleson measure } \right\},\$$

where $k \in \mathbb{R}$, k > s, $s \in \mathbb{R}$, $q \in (0, \infty)$,

$$(\tilde{\mathbb{D}}^{\alpha}f)(z) = \sum_{k\geq 0} (k+1)^{\alpha} a_k z^k, \quad \alpha \in \mathbb{R}, \qquad f(z) = \sum_{k\geq 0} a_k z^k$$

is a fractional derivate and a positive Borel measure μ in $\mathbb D$ is a p-Carleson measure if

$$\left\| \sup_{\xi \in I} \frac{1}{|I|^p} \int_{\Box I} d\mu(z) \right\|_{L^{\infty}(T)} = \left\| \phi(\xi) \right\|^{\infty(T)} < \infty, \quad 0 < p \le 1.$$

Below $L^{p,q}(T)$ are Lorentz spaces on T. In order to formulate our next theorem we need the following notation. We will write $||f||_X \subseteq Y \cdot Z$, X, Y, Z are subspaces of $H(\mathbb{D})$, if any functions f, $||f||_X < \infty$ can be written in the following form $f = (f_1)(f_2), f_1 \in Y, f_2 \in Z$.

Let

$$\Lambda^{s} \stackrel{def}{=} \left\{ f \in H(\mathbb{D}) : \sup_{|z|<1} |f'(z)| (1-|z|)^{1-s} < \infty \right\}, \quad s \in (0,1) \text{ be the Goelder space.}$$

Theorem 3. Let Y, Z be subspaces of $H(\mathbb{D})$.

Let
$$(Y)\left(F_{-\frac{s}{q},1-q,k}^{\infty,q}\right) \subset Z, \quad q \in (0,1), \ s \in (0,1),$$

then $Y \subset (\Lambda^s)(Z)$.

Theorem 4.

(i) Let $s > 0, q > 1, f \in H(\mathbb{D}), \frac{1}{q} + \frac{1}{q'} = 1.$ Then $\left\| \left(\int_{\Gamma_{\alpha}(\xi)} \left| f(z) \right|^{2q'} (1 - |z|)^{s-2)} dm_2(z) \right)^{\frac{1}{2}} \right\|_{L^{q,1}} \subseteq (\Lambda^s) \left(\tilde{S}_{\frac{sq'}{2}}^{2(q')^{-1}, 2(q')^{-1}} \right), s < 1.$ (ii) Let $v > 0, q > 1, f \in H(\mathbb{D}), t \ge 0$ and $v - t = s \in (0, 1).$ Then $\left\| \sup_{z \in \Gamma_{\alpha}(\xi)} |f(z)|^{q'} (1 - |z|)^t \right\|_{L^{q,1}} \subseteq (\Lambda^s) \left(\tilde{S}_{vq'}^{(q')^{-1}, (q')^{-1}} \right),$

where

$$\tilde{S}_{s}^{p,q} = \left\{ f \in H(\mathbb{D}) : \int_{0}^{1} \left(M_{p}(f,|z|) \right)^{q} \left(1 - |z| \right)^{sq-1} d|z| < \infty \right\}, \quad p,q,s, \in (0,\infty).$$

The proofs of these theorems will be presented elsewhere. Here we indicate that some ideas from [3] are being used.

References

- GOROWITZ CH. Factorization theorems for functions in the Bergman space. Duke Math. Journal, 1977, 44, p. 201–213.
- [2] COHN W. A factorization theorem for the derivative of a function on Hp. Proc. AMS, 1999, 127, N 2, p. 509–517.
- [3] COHN W., VERBITSKY I. Factorization of Tent spaces and Hankel operators. Journal of Functional Analysis, 2000, 175, p. 308–329.
- [4] COIFMAN R., MEYER Y., STEIN E. Some new functional spaces and their application to harmonic analysis. Journal of Functional Analysis, 1985, p. 304–335.
- [5] GRAFAKOS L. Classical and Modern Fourier Analysis. Prentice Hall, 2003.
- [6] DYNKIN E. Sets of Free interpolation for Hoelder classes. Mat. Sbornik, 1979, 109, N 1, p. 107–128.

Bryansk State University 241050 Bryansk, Russia E-mail: rsham@mail.ru Received June 19, 2006