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Abstract. The recurrent and integral relations for characteristic functions of Marko-
vian random evolution in R

m

, m ≥ 2, are presented.
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The particular models of random evolutions in various Euclidean spaces of lower
dimensions were studied in [1-5]. In this note we announce the recent results on the
characteristic functions for the most general m-dimensional random evolution.

The subject of our interests is the following stochastic motion. A particle starts
its motion from the origin x1 = · · · = xm = 0 of the space R

m, m ≥ 2 at time
t = 0. The particle is endowed with constant, finite speed c. The initial direction is
a random m-dimensional vector with uniform distribution on the unit m-sphere

Sm
1 =

{

x = (x1, . . . , xm) ∈ R
m : x2

1 + · · · + x2
m = 1

}

.

The particle changes direction at random instants which form a homogeneous Pois-
son process of rate λ > 0. At these moments it instantaneously takes on the new
direction with uniform distribution on Sm

1 , independently of its previous motion.

Let X(t) = (X1(t), . . . ,Xm(t)) be the position of the particle at an arbitrary
time t > 0. At first, we concentrate our attention on the conditional distributions

Pr{X(t) ∈ dx | N(t) = n} =

= Pr{X1(t) ∈ dx1, . . . ,Xm(t) ∈ dxm | N(t) = n}, n ≥ 1

where N(t) is the number of Poisson events that have occurred in the interval (0, t)
and dx = dx1 . . . dxm is the infinitesimal volume in the space R

m.

Consider the conditional characteristic functions:

Hn(t) = E
{

ei(α,X(t))| N(t) = n
}

, n ≥ 1, (1)

where α = (α1, . . . , αm) ∈ R
m is the real m-dimensional vector of inversion param-

eters and (α,X(t)) denotes the scalar (inner) product of the vectors α and X(t).
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Computing the expectation in (1) we obtain

Hn(t) =
n!

tn

∫ t

0
dτ1

∫ t

τ1

dτ2 . . .

∫ t

τn−1

dτn×

×







n+1
∏

j=1

[

2(m−2)/2Γ
(m

2

) J(m−2)/2(c(τj − τj−1)‖α‖)

(c(τj − τj−1)‖α‖)(m−2)/2

]







. (2)

For the particular cases m = 2 (planar motion) and m = 4 (four-dimensional
motion) the conditional characteristic functions (2) were explicitly computed in [2]
(see formula (18) therein), and in [1] (see formula (15) therein), respectively.

We introduce the function

ϕ(t) = 2(m−2)/2 Γ
(m

2

) J(m−2)/2(ct‖α‖)

(ct‖α‖)(m−2)/2
, m ≥ 2. (3)

Then (2) can rewritten in the following form

Hn(t) =
n!

tn

∫ t

0
dτ1

∫ t

τ1

dτ2 . . .

∫ t

τn−1

dτn







n+1
∏

j=1

ϕ(τj − τj−1)







, n ≥ 1. (4)

Denote the integral factor in (4) as follows

In(t) =

∫ t

0
dτ1

∫ t

τ1

dτ2 . . .

∫ t

τn−1

dτn







n+1
∏

j=1

ϕ(τj − τj−1)







, n ≥ 1. (5)

The following theorem states that, for different n ≥ 1, the functions (5) are
connected with each other by a convolution-type recurrent relation.
Theorem 1. For any n ≥ 1 the following recurrent relation holds

In(t) =

∫ t

0
ϕ(t − τ) In−1(τ) dτ =

∫ t

0
ϕ(τ) In−1(t − τ) dτ, n ≥ 1, (6)

where, by definition, I0(x) = ϕ(x).
Note that formula (6) can be rewritten in the following convolution form

In(t) = ϕ(t) ∗ In−1(t), n ≥ 1. (7)

Corollary 1.1. For any n ≥ 1 the following relation holds

In(t) = [ϕ(t)]∗(n+1) , n ≥ 1, (8)

where the symbol ∗(n + 1) means the (n + 1)-multiple convolution.
Application of the Laplace transform

L [f(t)] (s) =

∫

∞

0
e−stf(t) dt, Re s > 0,
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to the equality (8) leads to the following important result.

Corollary 1.2. For any n ≥ 1 the Laplace transform of functions (5) has the form

L [In(t)] (s) = (L [ϕ(t)] (s))n+1 , n ≥ 1. (9)

These results show that the function ϕ(t) given by (3) plays a key role in our
analysis. The reason is that ϕ(t) is exactly the characteristic function (Fourier
transform) of the uniform distribution on the surface of the m-sphere Sm

ct of the
radius ct.

From both the Theorem 1 and its corollaries we see that the conditional charac-
teristic functions Hn(t) and their Laplace transforms, in fact, are expressed in terms
of function ϕ(t). Formula (9) shows that the possibility of obtaining the explicit
form of the conditional characteristic functions (4) entirely depends on whether the
exact Laplace transform of the function ϕ(t) and its inverse Laplace transform can
be explicitly computed.

Our next result presents a general formula for the conditional characteristic
functions Hn(t) in terms of inverse Laplace transform.

Theorem 2. For any n ≥ 1 and any t > 0 the conditional characteristic functions
(4) are given by

Hn(t) =
n!

tn
L−1





(

1
√

s2 + (c‖α‖)2
F

(

1

2
,
m − 2

2
;
m

2
;

(c‖α‖)2

s2 + (c‖α‖)2

)

)n+1


 (t),

(10)
where L−1 means the inverse Laplace transform and

F (ξ, η; ζ; z) = 2F1(ξ, η; ζ; z) =

∞
∑

k=0

(ξ)k(η)k
(ζ)k

zk

k!

is the standard hypergeometric function.

In view of (4), the characteristic function of X(t), t ≥ 0, is given by the uniformly
converging series

H(t) = e−λt
∞
∑

n=0

λn In(t). (11)

The following theorem presents the integral equation for the function H(t).

Theorem 3. The characteristic function H(t), t ≥ 0, satisfies the following
convolution-type Volterra integral equation of second kind with the kernel e−λtϕ(t):

H(t) = e−λtϕ(t) + λ

∫ t

0
e−λ(t−τ)ϕ(t − τ)H(τ) dτ, t ≥ 0. (12)

The integral equation (12) can be rewritten in the following convolution form

H(t) = e−λtϕ(t) + λ
[(

e−λtϕ(t)
)

∗ H(t)
]

, t ≥ 0. (13)
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From this we immediately obtain the general formula for the Laplace transform of
the characteristic function H(t):

L [H(t)] (s) =
L [ϕ(t)] (s + λ)

1 − λ L [ϕ(t)] (s + λ)
, Re s > 0. (14)

The explicit form of (14) is

L [H(t)] (s) =

F

(

1

2
,
m − 2

2
;
m

2
;

(c‖α‖)2

(s + λ)2 + (c‖α‖)2

)

√

(s + λ)2 + (c‖α‖)2 − λ F

(

1

2
,
m − 2

2
;
m

2
;

(c‖α‖)2

(s + λ)2 + (c‖α‖)2

) .

(15)
From (11) and (8) it follows that the solution of equation (13) has the form

H(t) = e−λt
∞
∑

n=0

λn [ϕ(t)]∗(n+1) . (16)

One should emphasize that, although formula (16) gives a general form of the char-
acteristic function H(t), the multiple convolutions of the function ϕ(t) with itself
can scarcely be explicitly evaluated for arbitrary dimension.

From (12) we can see that

H(t)|t=0 = 1,
∂H(t)

∂t

∣

∣

∣

∣

t=0

= 0,

and, therefore, the transition density f(x, t), x ∈ R
m, t ≥ 0, of the process X(t)

satisfies the following initial conditions

f(x, t)|t=0 = δ(x),
∂f(x, t)

∂t

∣

∣

∣

∣

t=0

= 0,

where δ(x) is the m-dimensional Dirac delta-function.
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