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The particular models of random evolutions in various Euclidean spaces of lower
dimensions were studied in [1-5]. In this note we announce the recent results on the
characteristic functions for the most general m-dimensional random evolution.

The subject of our interests is the following stochastic motion. A particle starts
its motion from the origin 1 = -+ = =z, = 0 of the space R™, m > 2 at time
t = 0. The particle is endowed with constant, finite speed ¢. The initial direction is
a random m-dimensional vector with uniform distribution on the unit m-sphere

St ={x=(21,...,7m) ER™: af + - +22, =1}.

The particle changes direction at random instants which form a homogeneous Pois-
son process of rate A > 0. At these moments it instantaneously takes on the new
direction with uniform distribution on S7", independently of its previous motion.
Let X(t) = (X1(¢),...,Xmn(t)) be the position of the particle at an arbitrary
time ¢ > 0. At first, we concentrate our attention on the conditional distributions

Pr{X(t) edx | N(t) =n} =

= Pr{Xi(t) edzy,...,X;n(t) €dey, | N(t) =n}, n>1

where N (t) is the number of Poisson events that have occurred in the interval (0, )
and dx = dxq ...dx,, is the infinitesimal volume in the space R™.
Consider the conditional characteristic functions:

Ho(t)=E {ei<a’x<t>>| N(t) = n} . on>1, (1)

where a = (aq, ..., q;,) € R™ is the real m-dimensional vector of inversion param-
eters and (a, X(t)) denotes the scalar (inner) product of the vectors e and X(¢).

© Alexander D. Kolesnik, 2006

117



118 ALEXANDER D. KOLESNIK

Computing the expectation in (1) we obtain

/ dmy / dry .. / dry, X
n+1

1 [Q(m—2)/2r () Tom—2)2(c(7 —Tj_l)\la\l)] | o)

(e(mj = mj-)llexl ) =2/

j=1
For the particular cases m = 2 (planar motion) and m = 4 (four-dimensional
motion) the conditional characteristic functions (2) were explicitly computed in [2]

(see formula (18) therein), and in [1] (see formula (15) therein), respectively.
We introduce the function

J(m—2)2(ct]le])
_ o9(m—2)/2 m (m—2)/2 >
o(t) = 2 r ( 2) lenmE M= (3)

Then (2) can rewritten in the following form

1ot t t
Hn(t)Z%/OdTl/dﬁ---/ ng Tj — Tj—1) ¢ n>1. (4
T1 Tn—

Denote the integral factor in (4) as follows

n+1

t t t
t) :/ d’Tl/ dTQ.../ dr, H o(tj —Tj-1) ¢, n > 1. (5)
0 T1 Tn—1

J=1

The following theorem states that, for different n > 1, the functions (5) are
connected with each other by a convolution-type recurrent relation.
Theorem 1. For any n > 1 the following recurrent relation holds

In(t) = /0 ot —7) Ip_1(7) dr = /0 o(T) Ip—1(t — 1) dr, n>1  (6)

where, by definition, Typ(x) = ¢(x).
Note that formula (6) can be rewritten in the following convolution form

Zn(t) = o(t) * T—1(1), n > 1. (7)
Corollary 1.1. For any n > 1 the following relation holds
L(t) = @] ", =1, (8)

where the symbol x(n + 1) means the (n + 1)-multiple convolution.
Application of the Laplace transform

LIf()](s) = /OOO e St f(t) dt, Re s > 0,
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to the equality (8) leads to the following important result.
Corollary 1.2. For any n > 1 the Laplace transform of functions (5) has the form

LT (s) = (Llp®)] (s))",  nx>L (9)

These results show that the function (t) given by (3) plays a key role in our
analysis. The reason is that o(t) is exactly the characteristic function (Fourier
transform) of the uniform distribution on the surface of the m-sphere S7} of the
radius ct.

From both the Theorem 1 and its corollaries we see that the conditional charac-
teristic functions Hy,(t) and their Laplace transforms, in fact, are expressed in terms
of function ¢(¢). Formula (9) shows that the possibility of obtaining the explicit
form of the conditional characteristic functions (4) entirely depends on whether the
exact Laplace transform of the function ¢(t) and its inverse Laplace transform can
be explicitly computed.

Our next result presents a general formula for the conditional characteristic
functions H,(t) in terms of inverse Laplace transform.

Theorem 2. For anyn > 1 and any t > 0 the conditional characteristic functions

(4) are given by

N T N R R e R
Ho(t) = o £ ( 32+(c||a\|)2F<2’ 2 ’2’32+(CHOLH)Q>> "

(10)
where L1 means the inverse Laplace transform and
— (Or(m)x 2"
F(&n;¢2) = oF1(§,m;¢2) = Zm_'
k=0 (C)k k!

is the standard hypergeometric function.
In view of (4), the characteristic function of X(t), ¢ > 0, is given by the uniformly
converging series

H(t)=e M i A" T, (t). (11)
n=0

The following theorem presents the integral equation for the function H ().
Theorem 3. The characteristic function H(t), t > 0, satisfies the following
convolution-type Volterra integral equation of second kind with the kernel e p(t):

H(t) = e Mo(t) + A /0 t et — )H(r) dr,  t>0. (12)

The integral equation (12) can be rewritten in the following convolution form

H(t) = e Mp(t) + A [(e—%(t)) « H(t)} . t>0. (13)
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From this we immediately obtain the general formula for the Laplace transform of
the characteristic function H (t):

_ Lle®)(s+ M)
L=XL[p@®)](s+A)’
The explicit form of (14) is
I m—2m (c|le|))?
P (3" T G s i)

m—2 m (cllee])) >
2 727 (s+ A+ (cll)?

LI[H(t)] (s) Re s > 0. (14)

LIH(®)) (s) =

1
VEFNTE @l - A F (5
From (11) and (8) it follows that the solution of equation (13) has the form

mww%ivwmmm. (16)
n=0

One should emphasize that, although formula (16) gives a general form of the char-
acteristic function H(t), the multiple convolutions of the function ¢(t) with itself
can scarcely be explicitly evaluated for arbitrary dimension.
From (12) we can see that
OH (t)
= 0’
ot |,
and, therefore, the transition density f(x,t), x € R™, ¢t > 0, of the process X()
satisfies the following initial conditions

H(t)|t:0 = 17

FO6 1) img = 6(x), w

where 0(x) is the m-dimensional Dirac delta-function.

=0,
t=0
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