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Finite difference schemes for problems of mixture

of two component elastic materials

Ghenadie Bulgac

Abstract. In this paper we consider the numerical approximation of the solution of
the 2D unsteady equations of mixture on a rectangular domain using the operator-
splitting schemes for solving unsteady elasticity problems. Its major peculiarity is that
transition to the next time level is performed by solving separate elliptic problems for
each component of the displacement vector. The previous results make it possible to
design efficient numerical algorithms for two component mixture elasticity equations.
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1 Introduction

The continuum theory of mixtures has been a subject of study in recent years.
The linearized theory of elasticity for the indicated medium was given by T.R. Steel.
[1] The two-dimensional problems for the isotropic mixture are considered by
T.R. Steel [2] and M.O. Basheleishvili [3]. Some three-dimensional basic prob-
lems for indicated medium are considered by D.G. Natroshvili, A.J. Jagmaidze and
M.J. Svanadze [4].

In this work, we develop our study using the finite difference methodology for
spaces discretization. For dynamic problems of continuum mechanics the unsteady
system of elastic mixture equations is used. These equations constitute a hyperbolic
system of equations of second order. Stability analysis of the proposed schemes is
made in framework of the general theory of stability for operator-difference schemes
[5]. Discretization in space is performed in such a way that all basic properties of the
differential operator are preserved in the corresponding grid Hilbert spaces. Finally,
an additive scheme (of predictor-corrector type) is constructed using a triangular
splitting for the discrete matrix operator.

2 Differential problem

For simplicity let us treat the transient problem of elasticity of mixture where
there is no dependence on the longitudinal coordinate. Let us then consider the
stressed state of an elastic isotropic body of mixture with rectangular section Ω. In
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the two-dimensional case the basic equations of the theory of the elastic mixture
have the form [6–8]:

ρ11
∂2u

∂t2
− ρ12

∂2v

∂t2
+ α

(

∂u

∂t
−

∂v

∂t

)

−

− (a1 ∆u + b1 grad div u + c∆v + d grad div v) = f1 (x, t) ,

ρ22
∂2v

∂t2
− ρ12

∂2u

∂t2
− α

(

∂u

∂t
−

∂v

∂t

)

−

− (c∆u + d grad div u + a2 ∆v + b2 grad div v) = f2 (x, t) ,

(1)

where u = (u1, u2), v = (v1, v2) are partial displacements, a1, b1, c, d, a2, b2 are
the known constants characterizing the physical properties of the mixture, ∆ is the
two-dimensional Laplacian, f is the vector of volumetric forces, grad and div are the
operators on the field theory, ρ1 and ρ2 are the partial densities (positive constants),
α ≥ 0 ,

aj = µj − λ5, bj = µj + λj + λ5 +
(−1)j ρ3−jα2

ρ1 + ρ2
,

ρjj = ρj + ρ12, j = 1, 2, c = µ3 + λ5,

d = µ3 + λ3 + λ5 −
ρ1α2

ρ1 + ρ2
= µ3 + λ4 − λ5 +

ρ2α2

ρ1 + ρ2
, α2 = λ3 − λ4,

µ1, µ2, µ3, λ1, λ2, ... , λ5 are elastic constants of the mixture [1, 6, 10].

In the sequel it will be assumed that the following conditions are fulfilled
[1, 6, 10]:

µ1 > 0, µ1µ2 > µ2
3, λ1 −

ρ2α2

ρ1 + ρ2
+

2

3
µ1 > 0,

λ5 ≤ 0, ρ11 > 0, ρ11ρ22 > ρ2
12,

(

λ1 −
ρ2α2

ρ1 + ρ2
+

2

3
µ1

)(

λ2 +
ρ1α2

ρ1 + ρ2
+

2

3
µ2

)

>

(

λ3 −
ρ1α2

ρ1 + ρ2
+

2

3
µ3

)2

.

(2)

The system of equations (1) is supplemented with the corresponding boundary and
initial conditions. Namely, assume that the boundary ∂Ω is fixed, i.e. there is no
displacement

u (x, t) = 0, v(x, t) = 0, x ∈ ∂Ω. (3)

The initial state is specified by

u (x, t) = u0 (x) , v (x, t) = v0 (x) , x ∈ Ω, (4)

∂u

∂t
(x, 0) = u1(x),

∂v

∂t
(x, 0) = v1(x), x ∈ Ω. (5)
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To formulate the operator for (1)-(5), we first introduce appropriate functional spaces
and operators. Let us consider the standard Hilbert space L2 (Ω) the set of square-
integrable scalar valued functions defined on Ω, with the scalar product and the
corresponding norm

(u, v) =

∫

Ω

u (x) v (x) dx, ‖u‖ = (u, u)
1
2 ,

and the Hilbert space H = (L2 (Ω))4 with the inner product for 4D vector valued
functions u and v, given by

(u, v) =

4
∑

i=1

(ui, vi)

0

W 1
2 (Ω) denotes the usual Sobolev space of functions vanishing at the boundary ∂Ω,

with the inner product and norm defined by

(u, v) 0

W 1
2 (Ω)

=
2
∑

α=1

∫

Ω

∂u

∂xα

∂v

∂xα

dx, ‖u‖ 0

W 1
2 (Ω)

= (u, u)
1
2
0

W 1
2 (Ω)

,

and let V =

(

0

W 1
2 (Ω)

)4

.

On the H we consider the unbounded operator written in operator matrix form
as

Av =









A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44









v. (6)

Where (see (1) )

A11 = − (a1 + b1)
∂2

∂x2
1

− b1
∂2

∂x2
2

, A12 = A21 = −b1
∂2

∂x1∂x2
,

A22 = −b1
∂2

∂x2
1

− (a1 + b1)
∂2

∂x2
2

, A13 = A31 = − (c + d)
∂2

∂x2
1

− d
∂2

∂x2
2

,

A14 = A23 = A32 = A4‘1 = −d
∂2

∂x1∂x2
, A24 = A42 = −d

∂2

∂x2
1

− (c + d)
∂2

∂x2
2

,

A33 = − (a2 + b2)
∂2

∂x2
1

− b2
∂2

∂x2
2

, A34 = A43 = −b2
∂2

∂x1∂x2
,

A44 = −b2
∂2

∂x2
1

− (a2 + b2)
∂2

∂x2
2

The operator A has the domain D (A) = {v ∈ V |Av ∈ H } dense in H.
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We have (Av, v) ≥ 0. In this situation we will write A ≥ 0 in H.
Besides, it is known that A is maximal monotone, and

(Av, u) = (v,Au) ,

i.e., A is selfadjoint in H.
Finally, the following energetic equivalence holds

−b
(

∼

∆ v, v
)

≤ (Av, v) ≤ − (a + b)
(

∼

∆ v, v
)

, (7)

where

∼

∆ =









∆ 0 0 0
0 ∆ 0 0
0 0 ∆ 0
0 0 0 ∆









and b = min {b1, d, b2}, (a + b) = max {(a1 + b1) , (c + d) , (a2 + b2)} .

Problem (1)-(5) can be written in differential operator form as the abstract initial
value problem

ρ
d2v

dt2
+ α

dv

dt
+ Av = f, (8)

v (0) = v0,
dv

dt
(0) = v1, (9)

with the unique solution if v0 ∈ D (A) and v1 ∈ H.
The operator A is selfadjoint and positive on space H and, moreover, is energet-

ically equivalent to the analog for Laplace operator. The construction of discrete
analogs for A will be oriented to the fulfillment of the same important properties.

3 Space discretization

In considering difference schemes for the solution of problem (1)-(5), we begin
with making space approximation. We consider the problem on the rectangle

Ω = {x |x = (x1, x2) , 0 < xα < la, α = 1, 2}

discretized by a uniform rectangular grid mesh steps hα, α = 1, 2. Let ω be the set
of internal nodes of the grid

ω = {x |x = (x1, x2) , xα = iαhα, iα = 1, 2..., Nα − 1, Nαhα = lα, α = 1, 2} ,

and the ∂ω the set of boundary nodes. The finite difference solution of problem
(1)-(4) will be denoted by vh(x, t), x ∈ ω ∪ ∂ω, 0 < t ≤ T . Using the standard
index-free notation of the theory of difference schemes [8], for the right and left
difference derivatives we write

wx =
w (x + h) − w (x)

h
, wx =

w (x) − w (x − h)

h
,
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and the second difference derivative is given by the expression

wxx =
1

h
(wx − wx) =

w (x + h) − 2w (x) + w (x − h)

h2
.

For grid functions equal to zero on ∂ω we define the Hillbert space L2 (ω) where the
inner product and norm are as follows

(y,w) =
∑

x∈ω

y (x)w (x) h1h2, ‖y‖ = (y, y)
1
2 .

For the vector grid functions u (x), v (x) equal to zero on ∂ω we introduce
H̃ = (L2 (ω))4 with the inner product and norm given by

(u, v) = (u1, v1) + (u2, v2) , ‖u‖ = (u, u)
1
2 .

Also, given a self-adjoint and positive definite operator C, H̃C denotes the space H̃

provided by the scalar product (u, v)C = (Cu, v) and norm ‖u‖C = (Cu, u)
1
2 .

Ã =









Ã11 Ã12 Ã13 Ã14

Ã21 Ã22 Ã23 Ã24

Ã31 Ã32 Ã33 Ã34

Ã41 Ã42 Ã43 Ã44









, (10)

Ã11y = −a1yx1x1 − b1∆hy, Ã12y = Ã21y = −
b1

2
(yx1x2 + yx1x2) ,

Ã22y = −b1∆hy − a1yx2x2,

Ã13y = Ã31y = −cyx1x1 − d∆hy,

Ã14y = Ã23y = Ã32y = Ã41y = −
d

2
(yx1x2 + yx1x2) ,

Ã24y = Ã42y = −d∆hy − cyx2x2 ,

Ã33y = −a2yx1x1 − b2∆hy, Ã34y = Ã43 = −
b1

2
(yx1x2 + yx1x2) ,

Ã44y = −b1∆hy − a1yx2x2.

Here, we use the standard 5-point approximation of the Laplace operator

∆hy = yx1x1 + yx2x2.

For the grid functions u(x) and v(x) from H̃ we have

(

Ãv, u
)

=
(

v, Ãu
)

,

i.e., the operator Ã is selfadjoint.
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Besides, we have

−b
(

∆̃hv, v
)

≤
(

Ãv, v
)

≤ − (a + b)
(

∆̃hv, v
)

, (11)

where

∆̃h =









∆h 0 0 0
0 ∆h 0 0
0 0 ∆h 0
0 0 0 ∆h









.

The relation (11) is a discrete analog of (7) given for the differential operator Ã. We
approximate the differential operator A by the difference operator Ã, a self-adjoint
and positive definite operator.

After approximation in space and denoting by u (x, t), x ∈ ω ∪ ∂ω, 0 < t ≤ T ,
the semi-discrete solution at time t, we have the initial value problem

ρ
d2u

dt2
+ α

du

dt
+ Ãu = f (x, t) , x ∈ ω, 0 < t ≤ T, (12)

u (0) = vo (x) ,
du

dt
(x, 0) = v1(x), x ∈ ω. (13)

4 Approximation in time

For simplicity, we consider a uniform grid in [0, T ], with step τ > 0. Let
un (x) = u (x, tn), tn = nτ , n = 0, 1, . . . , N , Nτ = T . The simplest second-order
scheme for problem (12),(13) is

ρ
un+1 − 2un + un−1

τ2
+ α

un+1 − un−1

2τ
+ Ãun = fn, n = 1, 2, . . . , N, (14)

with prescribed u0, u1.

Let us highlight the class of additive schemes called alternating triangular meth-
ods. The schemes of this type for evolutionary equations of the first order have been
proposed and investigated by A.A. Samarskii in [11]. Here we consider the possibili-
ties of using this approach to construct additive schemes for system of second-order
equations.

The alternating triangular method is constructed on the basis of the operator
splitting:

Ã = Ã(1) + Ã(2),
(

Ã(1)
)

∗

= Ã(2), (15)
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where, taking into account (10), we define

Ã(1) =



















1

2
Ã11 0 0 0

Ã21
1

2
Ã22 0 0

Ã31 Ã32
1

2
Ã33 0

Ã41 Ã42 Ã43
1

2
Ã44



















,

Ã(1) =



















1

2
Ã11 Ã12 Ã13 Ã14

0
1

2
Ã22 Ã23 Ã24

0 0
1

2
Ã33 Ã34

0 0 0
1

2
Ã44



















.

(16)

Let us consider a simple predictor-corrector scheme for the numerical solution of
problem (12), (13). At the predictor stage we calculate ũn+1 from

ρ
un+1 − 2un + un−1

τ2
+ α

un+1 − un−1

2τ
+ Ã(1) ũn+1 − un−1

2
+ Ã(2)un = fn. (17)

After that, at the corrector stage, we improve the solution for the next time level:

ρ
un+1 − 2un + un−1

τ2
+ α

un+1 − un−1

2τ
+

+Ã(1) ũn+1 − un−1

2
+ Ã(2) un+1 − un−1

2
= fn.

(18)

Schemes (17), (18) can be written as follows
(

ρE +
τ2

2
Ã(1)

)

1

ρ

(

ρE +
τ2

2
Ã(2)

)

un+1 − 2un + un−1

τ2
+

+α
un+1 − un−1

2τ
+ Ãun = fn, n = 1, 2, . . . , N,

where E denotes the single operator.
The generalization of this scheme is the factorized scheme

D
un+1 − 2un + un−1

τ2
+ α

un+1 − un−1

2τ
+ Ãun = fn, n = 1, 2, . . . , N, (19)

D =
(

ρE + στ2Ã(1)
) 1

ρ

(

ρE + στ2Ã(2)
)

. (20)

This schemes is second order in time, since D = ρE + O
(

τ2
)

. To advance to a next
time-level, its implementation requires to solve four grid elliptic problems, one for
each component of the solution.
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