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Natural classes and torsion free classes

in categories of modules

A.I. Kashu

Abstract. The relation between natural classes and torsion free classes of modules
is studied. The mapping φ: R-nat → P between corresponding lattices is defined and
some properties of φ are shown, in particular, the compatibility of φ with operations
of unions in lattices.
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1 Preliminaries

The abstract class of modules K ⊆ R-Mod, (i.e. the class closed under isomor-
phisms) is called natural (or saturated) if it is closed with respect to submodules,
direct sums and essential extensions (or injective envelopes). This type of classes of
modules was studied from diverse points of view in a series of works, for example
in [1–4]. The purpose of this note is to elucidate the relation between the natural
classes and torsions (≡ hereditary radicals) of R-Mod, in special, torsion free classes
of R-modules. It is well known that every torsion r of R-Mod determines two classes
of modules:

Tr = {RM | r(M) = M}, Fr = {RM | r(M) = 0}.

The class of the form Tr, where r is a torsion, is called torsion class and is charac-
terized as a class closed under submodules, direct sums, homomorphic images and
extensions. Dually, the class of the form Fr, where r is a torsion, is called torsion

free class and can be described as a class closed under submodules, direct products
and essential extensions (or injective envelopes). We note that every torsion free
class is closed also under extensions. These and other facts on torsions can be found
in the books [5–8].

In such a way all results on torsions (and on radicals) can be expounded by classes
of modules, using the classes of the form Tr and Fr. The relation between these two
types of classes can be expressed by the following operators of Hom-orthogonality:

K ⊆ R-Mod, K
↑

= {RX |HomR (X,Y ) = 0 ∀Y ∈ K},

K
↓

= {RY |HomR (X,Y ) = 0 ∀X ∈ K}.
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For every torsion r of R-Mod the following relations are true:

Tr = F
↑

r , Fr = T
↓

r .

In the following statement we give an account of elementary properties of the oper-
ators of Hom-orthogonality [6, 8].

Lemma 1.1. (1) The operators (↑) and (↓) are anti-monotone, i.e. they converte

the inclusions of classes: if K1 ⊆ K2, then

K
↑

1
⊇ K

↑

2
, K

↓

1
⊇ K

↓

2
.

(2) For every K ⊆ R-Mod the class K
↑

is a radical class, i.e. it is closed under

homomorphic images, direct sums and extensions.

(3) For every K ⊆ R-Mod the class K
↓

is a semisimple class, i.e. it is closed

under submodules, direct products and extensions.

(4) For every K ⊆ R-Mod the class K
↓↑

is the smallest radical class containing K.

(5) For every K ⊆ R-Mod the class K
↑↓

is the smallest semisimple class contain-

ing K.

The abstract class K ⊆ R-Mod is called hereditary class if it is closed under
submodules, and K is called stable class if it is closed under essential extensions (if
K is hereditary, then the last condition is equivalent to the closeness under injective
envelopes). It is known that if (T,F) is a torsion theory in the sense of S.E. Dickson

(i.e. T = F
↑

and F = T
↓

), then the class T is hereditary if and only if F is stable.
This statement is a corollary of the following facts [6, 8].

Lemma 1.2. (1) If K is a hereditary and stable class, then K
↑

is hereditary.

(2) If K is a hereditary class, then K
↓

is a stable class.

Proof. 1). Let X ∈ K
↑

and X ′ ⊆ X. If X ′ 6∈ K
↑

, then there exists 0 6= f :
X ′ → Y, Y ∈ K and denoting Y ′ = Imf 6= 0, we have Y ′ ∈ K. Now we consider
the diagram:

-

-
?

X ′

Y ′

X

E(Y ′),
?

f f

i

j

where E(Y ′) is the injective envelope of Y ′ ∈ K and i, j are inclusions. Then
E(Y ′) ∈ K and there exists f : X → E(Y ′) which extends f . From f 6= 0 it follows

f 6= 0, a contradiction with X ∈ K
↑

.

2) Let Y ∈ K
↓

and Y ⊆
∗

Z (where ⊆
∗

is the essential inclusion). If
HomR(X,Z) 6= 0 for some X ∈ K, then there exists 0 6= f : X → Z with
0 6= Imf ⊆ Z. From Y ⊆

∗

Z it follows Y ∩Imf 6= 0. Denoting X ′ = f−1(Y ∩Imf),
we have X ′ ∈ K and the restriction of f to X ′ is a non-zero homomorphism
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0 6= f ′ : X ′ → Y ∩ Imf = Y ′, where Y ′ ∈ K
↓

(since K
↓

is hereditary), so
HomR(X ′, Y ′) 6= 0, a contradiction. Therefore HomR(X,Z) = 0 for every X ∈ K,

i.e. Z ∈ K
↓

. �

Corollary 1.3. (1) If K is a natural class, then K
↑

is a radical and hereditary

class, i.e. a torsion class.

(2) If K is a natural class, then the class K
↑↓

is semisimple and stable, i.e. a torsion

free class.

Further we will use the following notations:
R-tors – the set (lattice) of all torsions of R-Mod;
R-nat – the set (lattice) of all natural clases of R-Mod;
R – the set of all torsion classes of R-Mod;
P – the set of all torsion free classes of R-Mod.
It is known that R-nat can be transformed in a lattice and this lattice is boolean

[1, 3, etc]. Similarly, the sets R and P are transformed in a natural way in lattices,
where the order relation is the inclusion and the lattice operations ”∧” and ”∨” are
defined as follows:

in R :
∧

α∈A

Rα =
⋂

α∈A

Rα,
∨

α∈A

Rα = ∩{R ∈ R |R ⊇ Rα ∀α ∈ A};

in P :
∧

α∈A

Pα =
⋂

α∈A

Pα,
∨

α∈A

Pα = ∩{P ∈ P |P ⊇ Pα ∀α ∈ A}.

Since there exists a monotone bijection between torsions and torsion free classes,
we have a lattice isomorphism R ∼= R-tors. The anti-monotone bijection between R

and P is established by the operators of Hom-orthogonality (↑) and (↓), and these
operators are compatible with lattice operations in the following sense.

Proposition 1.4. For every sets {Rα |α ∈ A} ⊆ R and {Pα |α ∈ A} ⊆ P the

following relations are true:

a)
(

∧

α∈A

Pα

)↑

=
∨

α∈A

(P
↑

α); b)
(

∧

α∈A

Rα

)↓

=
∨

α∈A

(R
↓

α);

c)
(

∨

α∈A

Pα

)↑

=
∧

α∈A

(P
↑

α); d)
(

∨

α∈A

Rα

)↓

=
∧

α∈A

(R
↓

α).

Therefore, the lattice R is anti-isomorphic to the lattice P.
Remark. Some results on the lattice of natural classes are contained in [9] and
[10]. In particular, the lattice R-nat is described as a skeleton (boolean part) of the
frame of closed classes of R-Mod.
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2 Natural classes and torsion free classes

From the definitions of §1 it is clear that every torsion free class (i.e. of the form
Fr, where r is a torsion) is natural, so we have the inclusion i : P → R-nat. Now we
define an inverse mapping φ : R-nat → P, considering that for every K ∈ R-nat the
class φ(K) is the smallest torsion free class containing K (i.e. the intersection of all
torsion free classes of R-Mod which contain K).

From the Lemma 1.1 and Corollary 1.3 it follows

Proposition 2.1. For every natural class K the following relation is true:

φ(K) = K
↑↓

.

The next specification of this relation follows from the fact that every class
K ∈ R-nat is hereditary (to compare with Prop. 2.5, chapter VI of [5]).

Proposition 2.2. For every natural class K of R-Mod we have:

φ(K) = {RY | ∀ 0 6= Y ′ ⊆ Y, ∃ epi 0 6= f : Y ′ → Y ′′, Y ′′ ∈ K},

i.e. φ(K) consists of all modules Y such that for every non-zero submodule Y ′ ⊆ Y

there exists a non-zero epimorphism f : Y ′ → Y ′′ with Y ′′ ∈ K.

Proof. Denote by K the class of right part of this relation.
φ(K) ⊆ K: From definitions we have:

K
↑↓

= {RY |HomR(X,Y ) = 0 ∀ X ∈ K
↑

} =

= {RY |HomR(X,Z) = 0 ∀ Z ∈ K ⇒ HomR(X,Y ) = 0} =

= {RY |HomR(X,Y ) 6= 0 ⇒ ∃Z ∈ K, HomR(X,Z) 6= 0}.

Let Y ∈ φ(K) = K
↑↓

and 0 6= Y ′ ⊆ Y . Then HomR(Y ′, Y ) 6= 0, therefore there
exists Z ∈ K such that HomR(Y ′, Z) 6= 0. For 0 6= f : Y ′ → Z and Y ′′ = Imf ,
we obtain a non-zero epimorphism f : Y ′ → Y ′′ ⊆ Z, where Y ′′ ∈ K (since K is
hereditary), therefore Y ∈ K.

φ(K) ⊇ K: Let Y ∈ K and we will prove that HomR(X,Y ) = 0 for every X ∈ K
↑

.

Suppose the contrary: there exists an X ∈ K
↑

such that HomR(X,Y ) 6= 0. Then
we have 0 6= f : X → Y and denote 0 6= Y ′ = Imf ⊆ Y . Since Y ∈ K, there exists
a non-zero epimorphism 0 6= g : Y ′ → Y ′′, Y ′′ ∈ K. Therefore we have a non-zero
epimorphism 0 6= gf : X → Y ′ → Y ′′, Y ′′ ∈ K, in contradiction with X ∈ K

↑

. �

Now we will show another description of the class φ(K) for K ∈ R-nat, using
the closeness properties. Comparing the respective definitions, it is clear that for
the natural class K to be torsion free class it is necessary in addition to be closed
under direct products. In continuation we will prove that to obtain the class φ(K)
for K ∈ R-nat it is sufficient to close the class K with respect to submodules and
direct products. For that we consider the class of all modules of R-Mod cogenerated

by the natural class K:
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Cog (K) = {RM | ∃ mono 0 →M →
Y

α∈A

Mα, Mα ∈ K},

i.e. Cog (K) is the smallest class of R-Mod, which contains K and is closed under
submodules and direct products.

Proposition 2.3. For every class K ∈ R-nat the following relation is true:

φ(K) = Cog (K).

Proof. Firstly we verify that the class Cog (K) is torsion free. From definition it
follows that the class Cog (K) is closed under submodules and direct products, so it
remains to prove that Cog (K) is a stable class.

Let M ∈ Cog (K) and E(M) be the injective envelope of M . Then there exists

a monomorphism 0 → M
φ
−→

∏

α∈A

Mα, Mα ∈ K. Since
∏

α∈A

E(Mα) is an injective

module, the inclusion
∏

α∈A

Mα ⊆
∏

α∈A

E(Mα) can be extended to a monomorphism

ψ : E
(

∏

α∈A

Mα

)

→
∏

α∈A

E(Mα). Now we consider the diagram:

?

M

E(M)

Y

α∈A

Mα

E(
Y

α∈A

Mα)

-0

j i

ϕ

Y

α∈A

E(Mα),-
?

-

-

ϕ ψ

where i, j are inclusions. By injectivity of E
(

∏

α∈A

Mα

)

the monomorphism iϕ can

be extended to a ϕ : E(M) → E
(

∏

α∈A

Mα

)

and, since M ⊆
∗

E(M), ϕ is a monomor-

phism. So we obtain a monomorphism ψϕ : E(M) →
∏

α∈A

E(Mα), where E(Mα) ∈ K

for every α ∈ A, since K is a stable class. Therefore E(M) ∈ Cog (K) and so the
class Cog (K) is stable.

Taking into account that K ⊆ Cog (K), from the preceding result it follows the

inclusion K
↑↓

⊆ Cog (K), since K
↑↓

is the smallest torsion free class containing K

(Corollary 1.3).

It remains to prove that Cog (K) ⊆ K
↑↓

. Let M ∈ Cog (K), i.e. we have a

monomorphism 0 → M
ϕ
−→

∏

α∈A

Mα, Mα ∈ K for every α ∈ A. We will verify that

HomR(X,M) = 0 for every X ∈ K
↑

.

Suppose the contrary: there exists X ∈ K
↑

such that HomR(X,M) 6= 0. Then



106 A.I. KASHU

we have 0 6= f : X →M and since ϕ is mono, there exists β ∈ A such that p
β
ϕf 6= 0:

X
f
−→M

ϕ
−→

∏

α∈A

Mα

pβ
−→Mβ,

where p
β

is the canonical projection. Therefore, HomR(X,Mβ) 6= 0, where Mβ ∈ K

and X ∈ K
↑

, a contradiction. �

The studied mapping φ : R-nat → P can be extended to a mapping ψ :
R-nat → R, where R is the lattice of torsion classes of R-Mod, taking by definition:

ψ(K) = [φ(K)]
↑

(since φ(K) is stable, [φ(K)]
↑

is a torsion class by Corollary 1.3). By Prop. 2.1

φ(K) = K
↑↓

, so we have:

ψ(K) = (K
↑↓

)
↑

= K
↑

.

Moreover, we can define the mapping j : R → R-nat by the rule:

j (R) = R
↓

, R ∈ R.

So we obtain the diagram:

6

?

����������)
����������1

PPPPPPPPPPqP
PPPPPPPPPi

(↓) (↑)

R
ψ

j

φ

i

R – nat,

P

where i is the inclusion. By definitions it is clear that φ is a monotone mapping,
while ψ and j are anti-monotone. The following relations (commutativity of the
diagram) are obvious:

j · ψ = i · φ, i = j · (↑), ψ · i = (↑), ψ · j = (↓).

As we have seen above, the operators (↑) and (↓) are compatible with lattice
operations of R and P (Prop. 1.4), i.e. these mappings convert the lattice operations.
Now we will study the similar question for the mappings φ and ψ. We begin with
the following remark.

Lemma 2.4. The mapping φ preserves the lattice operations if and only if the

mapping ψ converts these operations.

Proof. Let, for example, φ preserves the unions:

φ
(

∨

α∈A

Kα

)

=
∨

α∈A

φ
(

Kα

)

.
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Then applying Prop. 1.4 we obtain:

(

∨

α∈A

Kα

)↑↓

=
∨

α∈A

(

K
↑↓

α

)

⇔
(

∨

α∈A

Kα

)↑

=
(

(

∨

α∈A

Kα

)↑↓
)↑

=

=
(

∨

α∈A

(

K
↑↓

α

)

)↑

=
∧

α∈A

(K
↑↓↑

α ) =
∧

α∈A

(K
↑

α),

i.e. φ preserves the unions if and only if ψ transforms the unions of classes in
intersections. �

From this statement it follows that it is sufficient to prove the respective relations
only for one of the mappings φ or ψ. Now we will show that the mapping ψ converts
the unions of the lattice R-nat in the intersections of the lattice R. For that we
would remind that the unions of classes of R-nat can be characterized as follows:

∨

α∈A

Kα = {RM | ∃
⊕

α∈A

Mα ⊆
∗

M, Mα ∈ Kα} (see [1, Theor. 2.15]),

where Kα ∈ R-nat for every α ∈ A and ⊆
∗

is the essential inclusion.

Theorem 2.5. For every set of natural classes {Kα |α ∈ A} the following relation

is true:
(

∨

α∈A

Kα

)↑

=
∧

α∈A

(

K
↑

α

)

,

i.e. ψ converts the unions of R-nat in the intersections of R.

Proof. (⊆). From
∨

α∈A

Kα ⊇ Kα for every α ∈ A it follows
(

∨

α∈A

Kα

)↑

⊆ K
↑

α for

every α ∈ A, therefore
(

∨

α∈A

Kα

)↑

⊆
∧

α∈A

(

K
↑

α

)

.

(⊇). Let X ∈
∧

α∈A

(

K
↑

α

)

. We must prove that HomR(X,M) = 0 for every

M ∈
∨

α∈A

Kα. Suppose the contrary: there exists M ∈
∨

α∈A

Kα such that

HomR(X,M) 6= 0. From the description of the class
∨

α∈A

Kα indicated above, it

follows that there exists a direct sum
⊕

α∈a

Mα ⊆
∗

M with Mα ∈ Kα for every α ∈ A.

Then we have a non-zero homomorphism 0 6= f : X → M, 0 6= Imf ⊆ M and

the essential inclusion
⊕

α∈A

Mα ⊆
∗

M implies
(

⊕

α∈A

Mα

)

∩ Imf 6= 0. Therefore,

there exists an element 0 6= mα1 + · · · + mαk
∈ Imf with mαi

∈ Mαi
. Then

0 6= Rmα1 + · · · + Rmαk
⊆ Imf and it is obvious that there exists αi ∈ A such
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that 0 6= Rmαi
⊆ Imf . So we obtain a non-zero homomorphism from f−1(Rmαi

)
in Mαi

:

X ⊇ f−1(Rmαi
)

f
−→

⊕

α∈A

Mα

pαi−−→Mαi
, Mαi

∈ Kαi
.

On the other hand, since X ∈
∧

α∈A

(K
↑

α), we obtain X ∈ K
↑

αi
, where K

↑

α is a hered-

itary class, so f−1(Rmαi
) ∈ K

↑

αi
. This means that f−1(Rmαi

) has no non-zero
homomorphism in the modules of Kαi

, a contradiction. �

From Theorem 2.5 and Lemma 2.4 immediatly follows

Corollary 2.6. The mapping φ preserves the unions, i.e.

(

∨

α∈K

Kα

)↑↓

=
∨

α∈K

(K
↑↓

α )

for every set {Kα |α ∈ A} of natural classes.
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Moldova

E-mail: kashuai@math.md

Received October 16, 2006


