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On commutative Moufang loops with some restrictions

for subgroups of its multiplication groups

N.T. Lupashco

Abstract. Let M be the multiplication group of a commutative Moufang loop Q.
In this paper it is proved that if all infinite abelian subgroups of M are normal in M,
then Q is associative. If all infinite nonabelian subgroups of M are normal in M, then
all nonassociative subloops of Q are normal in Q, all nonabelian subgroups of M are
normal in M and the commutator subgroup M

′ is a finite 3-group.

Mathematics subject classification: 20N05.

Keywords and phrases: Commutative Moufang loop, minimum condition, multi-
plication IH-group, multiplication IH-group, metahamiltonian group.

While considering different classes of algebras (groups, rings, loops) it is of crucial
importance to analyze the existence of their subalgebras with certain predefined
features. To this end, it is advisable to consider the construction of algebras under
condition that they don’t have any subalgebras with predefined features. Before
providing the findings that we’ll need further, we will remind some notions from
group’s theory and commutative Moufang loops (abbreviated CMLs), found in [1]
and [2] respectively.

A finite nonabelian group is called a Miller-Moreno’s group if all its proper
subgroups are abelian. An IP-group (respect. IH-group) is an infinite group if all
its proper infinite abelian (respect. nonabelian) groups are normal within. But if all
its nonabelian subgroups are normal, then such a group is called a metagamiltonian
group.

In [1] the construction of IH-groups is described, elements of infinite order and
periodic IH-group, which does not satisfy the minimum condition for abelian sub-
groups. It also describes the solvable IH-groups with finite or infinite commuta-
tor subgroup and the (solvable) metagamiltonian or the non-metagamiltonian IH-
groups are characterized.

A commutative Moufang loop (abbreviated CMLs) is characterized by the iden-
tity x2 · yz = xy · xz.

The multiplicative group M(Q) of the CML Q is the group generated by all
the translations L(x), where L(x)y = xy. The subgroup I(Q) of the group M(Q),
generated by all the inner mappings L(x, y) = L−1(xy)L(x)L(y) is called the inner
mapping group of the CLM Q. The inner mappings are automorphisms in the CML.
A subloop H of the CML Q is called normal in Q if x · yH = xy· for all x, y ∈ Q.
The subloop H is normal in Q if I(Q)H = H.
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The associator (a, b, c) of the elements a, b, c of the CML Q is defined by the
equality ab · c = (a · bc)(a, b, c). The associator subloop Q′ of CML Q is generated
by all associators (x, y, z), x, y, z ∈ Q. The centre Z(Q) of the CML Q is a normal
subloop Z(Q) = {x ∈ Q|(x, y, z) = 1∀y, z ∈ Q}.

Let Q be an arbitrary CML and let H be a subset of the set Q. Let M(H)
denote a subgroup of the multiplicative group M(Q) of the CML Q, generated by
the set {L(x)|∀x ∈ H}. Takes place

Lemma 1 [3]. Let the commutative Moufang loop Q with the multiplicative group
M, Z(M), which is the centre of the group M and the centre Z(Q) decompose into
a direct product Q = D × H, moreover, D ⊆ Z(Q). Then M = M(D) × M(H),
besides, M(D) ⊆ Z(M),M(D) ∼= D.

Further, in papers [3–5] the CML is characterized with the help of various systems
of subloops of CML, and also various systems of multiplication groups of CML. In
particular, is proved

Lemma 2. The following statements are equivalent for an arbitrary non-associative
CML Q with the multiplication group M:

1) Q satisfies the minimum condition for subloops;

2) M satisfies the minimum condition for subgroups;

3) Q is a direct product of a finite number of quasicyclic groups, lying in the
centre of Q, and a finite loop;

4) M is a direct product of a finite number of quasicyclic groups, lying in the
centre of M, and a finite group;

5) Q satisfies the minimum condition for non-normal subloops;

6) M satisfies the minimum condition for non-normal subgroups;

7) M satisfies the minimum condition for nonabelian subgroups;

8) M satisfies the minimum condition for abelian subgroups.

The following are a natural reducing of statements 5) and 6):

i) all infinite associative subloops of Q are normal in Q;

ii) all infinite nonassociative subloops of Q are normal in Q;

iii) M is an IH-group;

iv) M is an IH-group;

The structure of CML with conditions i), ii) is examined in [5]. It is proved
that the CML with condition i) is associative, the CML with condition ii) has a
finite associator subloop and in such a CML any nonassociative (finite or infinite)
subloops are normal. In this paper it is proved that the CML with condition iii) is
associative. It is proved also that the CML with condition iv) satisfies the condition
ii), its multiplication group M is metagamiltonian and it commutators subgroup M′

is a finite 3-group.

Lemma 3. If the element a of an infinite order or of order three of the multiplication
group M of arbitrary CML generates a normal subgroup, then it belongs to the centre
Z(M) of the group M.
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Proof. We denote (x, y) = x−1y−1xy, xy = y−1xy. Then xy = x(x, y). If the
element 1 6= a ∈ M generates a normal subgroup, then ab = ak for a certain natural
number k and for arbitrary fixed element b ∈ M. We have a(a, b) = ak, (a, b) = ak−1.
If k = 1, then (a, b) = 1. Hence a ∈ Z(M). Let us now suppose that k > 1. Let
a3 = 1. Then k = 2 and a = (a, b). The multiplication group M is locally nilpotent
[3]. Then a = (a, b) = ((a, b), b) = (((a, b), b), b) = . . . = 1. We have obtained
a contradiction, as a 6= 1. By [2, Theorem 11.4] the commutator subgroup of the
group M is locally finite 3-group. If a has an infinite order, then for a certain natural
number n (ak−1)3

n

= (a, b)3
n

= 1, a = 1. We have obtained a contradiction again.
Therefore the case of k > 1 is impossible. This completes the proof of Lemma 3.

Theorem 1. If the multiplication group M of CML Q is a IH-group, then M is
abelian and, consequently, the CML Q is associative.

Proof. We suppose that the group M is nonabelian. In this cases M must be
periodic. We suppose the contrary, that the group M, then the CML Q, is not
periodic as well. Let a be an element of infinite order in Q. By [2] the element a3

belongs to the centre Z(Q) of CML Q. Then it is easy to show, considering the
definition of group M, that the element α = L(a3) belongs to the centre Z(M) of
group M. Hence, the group A =< α > is an infinite abelian normal subgroup of
group M. Let β be an arbitrary periodic element of group M and let B =< β >. As
A ⊆ Z(M), then it is easy to show that the product AB will be an infinite abelian
subgroup of the group M. By supposition the subgroup AB is normal in M, hence
if ϕ is an inner automorphism of group M, then AB = ϕ(AB) = ϕ(A) · ϕ(B) =
A ·ϕ(B). Consequently, AB = A ·ϕ(B). Let β1 be an arbitrary element in B. Then
there exists such elements α1 ∈ A, β2 ∈ B that ϕ(β1) = α1β2 or ϕ(β1)β

−1
2 = α1.

As β1 is a periodic element then ϕ(β1) also is a periodic element and α1 as an
element of infinite cyclic group is not periodic. Further, as ϕ(β1), β2 ∈ M, then
let ϕ(β1) = L(u1) . . . L(uk), β−1

2 = L(v1) . . . L(vn), where ui, vj ∈ Q. We denote
by H the subloop of CML Q generated by the set {a, u1, . . . , uk, v1, . . . , vn}. The
CML H is finitely generated, then by Bruck-Slaby’s Theorem [2, Theorem 10.1] it
is centrally nilpotent. Again by [2, Theorem 11.5] its multiplication group M(H) is

nilpotent. Further, we denote by ϕ(β1), β
−1
2 , α1 the restriction on H of mappings

ϕ(β1), β
−1
2 , α1 of set Q. It is obvious that ϕ(β1), β

−1
2 , α1 ∈ M(H), that ϕ(β1), β

−1
2

are periodic elements and α1 is an element of infinite order. The periodic elements

form a subgroup in nilpotent groups, hence the product ϕ(β1) · β
−1
2 is a periodic

element. From the equality ϕ(β1)β
−1
2 = α1 follows the equality ϕ(β1) ·β

−1
2 = α1 and

further α1 = 1, ϕ(β1) = β2, ϕ(B) = B. We get that any element in M generates
a normal subgroup. Hence any subgroup from M is normal in M. Then M is a
hamiltonian group.

Indeed, arbitrary hamiltonian groups are described by the next theorem. A
hamiltonian group can be decomposed into a direct product of the group of quater-
nions and abelian groups, whose each element’s order is not higher than 2. Con-
versely, a group that has such a decomposition is hamiltonian. A group of quater-
nions is the group generated by the generators a, b and that satisfies the identical
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relations α4 = 1, α2 = β2, β−1αβ = α−1. In [2, Theorem 11.4] it is proved that the
quotient group M/Z(M) is a locally finite 3-group. Then from α4 = 1 it follows
α ∈ Z(M), from β−1αβ = α−1 it follows α2 = 1, from α2 = β2 it follows β2 = 1
and, finally, from β2 = 1 it follows β ∈ Z(M). We get that the hamiltonian subgroup
of multiplication group of CML is abelian.

It follows from the aforementioned that the multiplication group M of CML
Q is abelian. But this contradicts our supposion about the nonabelian group M.
Consequently, the group M is periodic.

From Lemmas 1.4 and 3.1 of [3] it follows that the periodic multiplication group
M of CML Q decomposes into a direct product of its maximal p-subgroups Mp,
in addition Mp belongs to the centre Z(M) for p 6= 3. We denote M = N × M3,
where N =

∏
p 6=3 Mp. We suppose that N is an infinite group and let α be an

arbitrary element in M3. If A =< α > then by supposition the infinite abelian
group N × A is normal in M. Let ϕ be an inner automorphism of M. Then
N × A = ϕ(N × A) = ϕN × ϕA = N × ϕA, i.e. N × A = N × ϕA. Then for
a certain α1 ∈ A there exist such elements α2 ∈ A, β ∈ N that βα2 = ϕα1.
Further, β3α3

2 = ϕα3
1, β3k

α3k

2 = ϕα3k

1 and for a certain integer n α3n

2 = ϕα3n

1 = 1.

Hence β3k

= 1. But the order of β doesn’t divide 3. Hence β = 1 and we get
ϕα1 = α2, ϕA = A. From here it follows that the subgroup M3 is hamiltonian.
Hence, as in the above case, M3, then also M, are abelian groups. Consequently,
in the decomposition M = N × M3 we should consider the case when the subgroup
N is finite. Further, without breaking the generality, we will consider that M is a
3-group.

We suppose that the CML M doesn’t satisfy the minimum condition for sub-
groups. Then by 8) of Lemma 2 M contains an abelian subgroup that doesn’t
satisfy the minimum condition for subgroups. Then it contains an infinite elemen-
tary abelian group H. Let H = H1×H2×. . .×Hn×. . . be a decomposition of H into a
direct product of cyclic groups of order 3. For any element α ∈ H there will be such
an infinite subgroup H(α) ⊆ H that < α > ∩H(x) = 1. Let H(α) = H1(α) × H2(α)
be a certain decomposition of group H(α) in direct product of two infinite factors.
As the cyclic group < α > is, obvious, the intersection of two infinite associative
subgroups < α > H1(α) and < α > H2(α), then it is normal in M. Given the
arbitrary element α ∈ H it follows that all factors Hn are normal in M. Every factor
Hn is a cyclic group of order 3 and by Lemma 3 belongs to the centre Z(M). Hence
H ⊆ Z(M). Let now β be an arbitrary element from M, let H(β) be an infinite
subgroup of H such that < β > ∩H(β) = 1, and let H(β) = H1(β) × H2(β) be a
certain decomposition of group H(β) into a direct product of two infinite factors. As
H(β) ⊆ Z(M), then H1(β),H2(β) are normal in M and the products βH1(β), βH2(β)
are infinite abelian subgroups. Then βH1(β), βH2(β) are normal subgroups, hence
also < β >=< β > H1(y) ∩ βH2(β) is also normal subgroup. We get that any ele-
ment in M generates a normal subgroup in M. Consequently, M is a hamiltonian
group and, as proved above, it is abelian. This contradicts our assumption about
nonabelian group M. Hence M satisfies the minimum condition for subgroups.
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From minimum condition for subgroups for M it follows by Lemma 2 that M =
B × C, where C ⊆ Z(M) and B is a finite group. If γ is an arbitrary element in
M then < γ > C is an infinite abelian subgroup. Further, from the normality of
< γ > C in M follows the normality of < γ > in M. Hence M is a hamiltonian
group. According to the above proofs M is an abelian group. This completes the
proof of Theorem 1.

Let us now consider a CML with certain restriction on nonabelian subgroups of
it multiplication group. We suppose that the multiplication group M of the CML
Q doesn’t have proper infinite nonabelian subgroups. Then by Lemma 2 M satisfies
the minimum condition for subgroups and M = K × G, where K is a direct product
of a finite number of quasicyclic groups, lying in the centre Z(M) of the group M,
G is a finite group. But as M doesn’t have proper infinite nonabelian subgroups
then K is a quasicyclic group, G is a Miller-Moreno group.

By Lemma 2 the CML Q satisfies the minimum condition for sublooops and
Q = D × H, where D is a direct product of a finite number of quasicyclic groups,
lying in the centre Z(Q) of the CML Q, H is a finite loop. Further, by Lemma 1
M = M(D) × M(H) and M(D) ∼= D. Consequently, M(H) ∼= G. Further, if for
certain a, b, c ∈ H ab · c 6= a · bc then L(c)L(a)b 6= L(a)L(c)b, L(c)L(a) 6= L(a)L(c).
Hence if the CML H contains proper nonassiciative subloops, then the group M(H)
contains proper nonabelian subgroups. A CML is diassociative [2]. Then from the
relation M(H) ∼= G it follows that the CML H is generated by three elements.
Consequently, we proved.

Proposition 1. A multiplication group M of infinite nonassociative CML Q does
not contain proper infinite nonabelian subgroups if and only if Q = D×H, where D
is a quasicyclic group, H is a nonassociative 3-generate loop or M = D × G, where
G is a Miller-Moreno group.

Theorem 2. If the multiplication group M of the CML Q is an IH-group, then:

1) M is a metagamiltonian group;

2) all nonassociative sibloops of CML Q are normal in it;

3) if M is non-periodic, then the commutator subgroup M′ of group M is a finite
abelian 3-group;

4) if M is periodic, then the commutator subgroup M′ of group M is solvable of
a class not greater tha three finite 3-group;

Proof. By [3] the multiplication group M of an arbitrary CML is locally nilpo-
tent. Then by [1, Theorem 1.18] M posed a centrally system with cyclic factors of
simple orders. In this cases, if M is an IH-group, then by [1, Proposition 6.5] M

is solvable. Corollary 6.11 from [1] stipulated that a non-metagamiltonian solvable
IH-group satisfies the minimum condition for subgroups. Then from Lemma 2 it
follows that the multiplication IH-group M is metagamiltonian. Consequently, the
item 1) is proved.
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Now let H be an arbitrary nonassociative subloop of the CML Q and let its mul-
tiplication group M be an IH-group. Then the subgroup N, generated by mappings
L(a), a ∈ Q, is nonabelian and by item 1) is normal in M. The set Na, a ∈ Q,
partitions Q and

Na · Nb = L(Nb)Na = NL(Nb)a = N(Nb · a) =

= N(L(a)Nb) = N(NL(a)b) = NL(a)b = N(ab).

If N(ba) = N(ca), then

Nb · a = L(a)Nb = NL(a)b = N(ba) = N(ca) = NL(a)c = L(a)Nc = Nc · a,

so Nb = Nc. Hence the mapping ϕ defined by ϕa = Na is a homomorphism of the
CML Q upon a loop ϕQ and the kernel N1 = H, of ϕ, is a normal subloop of Q.
Consequently, any nonassociative subloop H of Q is normal in Q, i.e. the item 2) is
proved.

By Theorem 6.3 from [1] the commutator subgroup M′ of non-periodic IH-group
is a finite abelian p-group. But the commutator subgroup of multiplication group
of arbitrary CML is a 3-group [2, Theorem 11.4]. Hence the commutator subgroup
M′ is a finite abelian 3-group, i.e. the item 3) is proved.

By Theorem 6.7 from [1] all solvable IH-groups with infinite commutator sub-
group satisfy the minimum condition for subgroups. But from 4) of Lemma 2 it
follows that in these cases the commutator subgroup M′ of M is finite. Hence the
commutator subgroup M′ of IH-group M is finite and by [2, Theorem 11.4] is a
finite 3-group.

Now let us suppose that the second commutator subgroup M(2) of the group
M is nonabelian. Then any subgroup that contains M(2) is nonabelian, and by
item 2), it is normal in M. Obviously, the group M/M(2) is hamiltonian and as
shown during the proof of Theorem 1, it is an abelian group. Therefore, M′ ⊆ M(2),
i.e. M′ = M(2). But the commutator subgroup M′ is a finite 3-group, hence it is
nilpotent. Therefore M′ 6= M(2). Contradiction. Consequently, M(2) is an abelian
subgroup, and the group M is solvable of class not greater than three. This completes
the proof of Theorem 2.

As by Theorem 2 the commutator subgroup M′ of the multiplication IH-group
is finite, then from [6, 7] it follows that M is a group with finite classes of conju-
gate elements and the number of elements in each class doesn’t exceed the number
| M′ |. Further, in [3] it is proved that the quotient group M/Z(M) of an arbitrary
multiplication group M by it centre Z(M) is a locally finite 3-group. Thus
from [6, 8] it follows that if M is an IH-group, then any element in M/Z(M) is
contained in a normal finite 3-group.
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