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On an algebraic method in the study

of integral equations with shift

Vasile Neaga

Abstract. The work is centred on the sdudy of algebra A generated by singular
integral operators with shifts with continuous coefficients. We determine the set of
maximal ideals of quotient algebra Â, Â = A/T, with respect to the ideal of compact
operators. Prove that the bicompact of maximal ideals of Â is isomorphic to the
topological product (Γ × j) × (Γ × k), where j = ±1 and k = ±1. Necessary and
sufficient condition are established for operators of A to be noetherian and to admit
equivalent regularization in space Lp(Γ, ρ), regularizators for noetherian operators are

constructed. The study is done in the space Lp(Γ, ρ) with weight ρ(t) =
n
Q

k=1

|t− tk|
βk

and is based on the theory of Ghelfand [1] concerning Banach algebras.

Mathematics subject classification: 45E05.
Keywords and phrases: Banach algebras, noetherian singular operators, regulari-
zation of operator.

I. We remind that an operator A ∈ L(B) admits a regularization if there
exists an operator M ∈ L(B) so that AM = I + T1,MA = I + T2, where T1 and
T2 are compact operators in the space B. The class of operators which admit a
regularization is of special interest due to the fact that operators of this class have
the fallowing properties (E.Noether theorems):

1) Ecuations Ax = 0 and A∗ϕ = 0 have a finite number of linear independent
solutions.

2) Ecuation Ax = y is solvable if and ouly if the right hand part is orthogonal to
all solutions of equation A∗ϕ = 0.

Operators with properties 1) and 2) are called noetherian and are essential
generalizations of the class of operators of the form I + T, T compact, for which
theorems similar to that of Fredholm are true.

Let A ∈ L(B) be a noetherian operator. If it is known the operator M, the
regularizator for A, then the problem of solvability of the equation

Ax = y (1)

can be reduced to the solvability of the equation

MAx = My, (2)

where the operator MA − I is compact. To the last equation different methods
to solve equations of the form (I + T )x = y can be applied, where T is a compact
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operator. Of special interest is the case when the ecuations Ax = y and MAx = My
are equivalent1 for every y. This is true if and only if kerM = {0}.

We say that an operator A admits an equivalent regularization if it possesses a
regularizator M for which equations (1) and (2) are equivalent for every y ∈ B. In
this case the operator M is called equivalent regularizator for the operator A. From
what we said above it results that operator M is an equivalent regularizator for A
if it is a regularizator for A and is left invertible.

It is well known [2] that a singular integral operator2 A = aI + bS + T admits
a regularization if and only if a2(t) − b2(t) 6= 0 for all t ∈ T. For example, as

a regularizator one can take the operator R =
a

a2 − b2
I −

b

a2 − b2
S. Under these

conditions the operator A∗, obviously, also admits a regularization and thus for A
and A∗ E.Noether theorems hold.

The main result of this work is given by (see [3])

Theorem 1. The operator

A = aI + bS + (cI + dS)V + T, a, b, c, d ∈ Cα(Γ) (3)

admits a regularization in Lp(Γ, ρ) if and only if

(a(t) + b(t))2 − (c(t) + d(t))2 6= 0, (a(t) − b(t))2 − (c(t) − d(t))2 6= 0 (4)

for every t ∈ T. Under conditions (4) the operator

R =
α

α2 − δ2
P +

β

β2 − γ2
Q − (

δ

α2 − δ2
P +

γ

β2 − γ2
Q)V, (5)

where α = a + b, β = a − b, δ = c + d, γ = c − d, P =
1

2
(I + S), Q =

1

2
(I − S), is a

regularizator for A.

II. Denote by Cω(Γ)(⊂ C(Γ) the set of functions a(t) continuous on Γ and
satifying the condition a(ω(t)) = a(t). Evidently, this set forms a commutative
algebra with identity and the norm ||a||Cω(Γ) = ||a||C(Γ). It is also obvious that
every function of the form a(t) = b(t) · b(ω(t)), where b ∈ C(Γ), is contained in
Cω(Γ). The converse of this statement is also true: every function a ∈ Cω(Γ) may
be represented in the form a(t) = b(t) · b(ω(t)) where b ∈ C(Γ). We can join these
remarks in the assertion that the algebra Cω(Γ) is characterized by the relation

Cα(Γ) = {b(t) · b(ω(t))|b ∈ C(Γ)}.

Representation of functions from Cω(Γ) in the form a(t) = b(t) ·b(ω(t)) is unique
up to some constant factors c1 and c2, c1 · c2 = 1. Later on we shall assume that
c1 = c2 = 1. Thus, for example, if Γ is the unit circle and ω(t) = −t, then the

1Equations Ax = y and MAx = My are called equivalent if they have the same set of solutions.
2By T with indices we denote compact operators.
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functions a1(t) = −t2, a2(t) = t2 belong to Cω(Γ) and they can be represented as
a1(t) = t · (−t) and, respectively a2(t) = it · (−it).

Let Γ be a closed Liapunov type contour, S a singular integral operator with
Cauchy kernel and V an operator of shifting, (V ϕ)(t) = ϕ(α(t)), where the function
ω : Γ → Γ satisfies conditions:

a) ω(ω(t)) ≡ ω(t), (ω(t) 6= t);

b) there exists derivative ω
′

(t) 6= 0;

c) ω
′

(t) ∈ Hµ(Γ).

Denote by A the algebra generated by S, V and the set of alle operators of
multiplication by functions a(t), a ∈ Cω(Γ). A is a subalgebra of algebra L(Lp(Γ, ρ))
formed by the set of linear and bounded operators acting in the space Lp(Γ, ρ).

Theorem 2. A is a closed algebra.

In the proof of this theorem we use properties of S and V, caracterization of
algebra Cω(Γ) and the following result [2].

Lemma 1. If the operator (Mϕ) = a(t)ϕ(t) of multiplication by function a(t)
continuuous on Γ, can be represented in the form M = B + T, where B is invertible
and T is an operator compact in Lp(Γ, ρ), then a(t) is not vanished on Γ.

Remark. The norm in algebra A, defined as operator norm, is topologically equi-
valent to the norm

||A||1 = max |a(t)| + max |b(t)| + max |c(t)| + max |d(t)| + ||T ||.

The set T = T(L(Lp(Γ, ρ))) of compact operators in the space Lp(Γ, ρ) is included

in A and form a twosided closed ideal. Consider the quotient algebra Â = A/T, which
is also a Banach algebra. Four continuous functions a(t), b(t), c(t) and d(t) define
uniquely a coset Â and; conversely, every element belonging to some coset of Â is of
the form aI + bS + (cI + dS)V + T, where T is a compact operator. Really, if the
elements aI +bS+(cI+dS)V +T and a1I +b1+(c1I +d1S)V +T1 are in some coset,
then their difference (a−a1)I +(b−b1)S +((c−c1)I +(d−d1)S)V +T −T1 must be
a compact operator. Under these condutions from Theorem 2 one can deduce that
the operators (a− a1)I, (b− b1)I, (c− c1)I, (d− d1)I are compact, but from Lemma
1 this is possible if and only if a(t) ≡ a1(t), b(t) ≡ b1(t), c(t) ≡ c1(t), d(t) ≡ d1(t).

Let us return to algebra Â. The element of Â determined by the functions
a(t), b(t), c(t) and d(t) is denoted by {aI + bS + (cI + dS)V }. From properties of
operators S and V [4–6] and by direct calculations we get

Theorem 3. The algebra Â is commutative and, besides, the equality

{aI + bS + (cI + dS)V } · {a1I + b1S + (c1I + d1S)V } =

= {aa1 + bb1 + cc1 + dd1)I + (ab1 + a1b + cd1 + c1d)S+ (6)
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+((ac1 + a1c + bd1 + b1d)I + (ad1 + a1d + bc1 + b1c)S)V }

is true.

The norm in Â is defined by the equality

|{aI + bS + (cI + dS)V }| = inf
T∈T

||aI + bS + (cI + dS)V ||

and it is topologically equivalent to the norm

|{aI + bS + (cI + dS)V }|1 = max |a(t)| + max |b(t)| + max |c(t)| + max |d(t)|.

III. Further, elements of algebra Â will be expressed in the form

{aP + bQ + (cP + dQ)V }, a, b, c, d ∈ Cω(Γ), (7)

where P =
1

2
(I + S) and Q =

1

2
(I − S).

We shall describe all maximal ideals of Â. This result will enable us to establish
necessary and sufficient condition under which elements of Â are invertible. Using
this result we shall also construct regularizators for noetherian operators.

Theorem 4. The set of elements {ap + bQ + (cP + dQ)V } ∈ Â does form a
maximal ideal of Â if the function a(t) + c(t) is vanished at the same point t0 ∈ Γ.
The set of elements {aP + bQ + (cP + dQ)V } ∈ Â for which one of the functions
a(t)− c(t), b(t) + d(t), or b(t)− d(t) is vanished at the same point (every function at
its own point) also form a maximal ideal. There are no other maximal ideals.

By virtue of I.Ghelfand [1] results, according to which an element of some Banach
algebra is invertible if and only if it does not belong to ony maximal ideal, we obtain
the following

Theorem 5. An element {aP + bQ + (cP + dQ)V } ∈ Â is invertible in Â if and
only if the functions a(t) ± c(t) and b(t) ± d(t) are not vanished on contour Γ.

We shall establish some other properties of algebra Â. Observe that the intersec-
tion of all maximal ideals of Â coincides to the null ideal. In fact, by Theorem 4, if
{aP + bQ+(cP +dQ)V } ∈ ∩M1, then a(t)+ c(t) ≡ 0, a(t)− c(t) ≡ 0, b(t)+d(t) ≡ 0
and b(t) − d(t) ≡ 0, that is {aP + bQ + (cP + dQ)V } = {0}. Consequently,

1
o. Algebra has no radical.

2
o. Â is an involution algebra.

Define involution by

{aP + bQ + (cP + dQ)V }
′

= {āP + b̄Q + (c̄P + d̄Q)V }.

All properties of involution are evident. We shall show only that for every element
{aP + bQ + (cP + dQ)V } ∈ Â there exists in Â the element

[I + {(aP + bQ + (cP + dQ)V ) · (āP + b̄Q + (c̄P + d̄Q)V }]−1.
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Compute

[I + {ap + bQ + (cP + dQ)V ) · (āP + b̄Q + (c̄P + d̄Q)V }] =

= {(1 + |a|2 + |c|2)P + (1 + |b|2 + |d|2)Q + ((ac̄ + āc)P + +(bd̄ + b̄d)Q)V },

I + |b(t)|2 + |d(t)|2 ± (b(t)d̄(t) + b̄(t)d(t) = 1 + |b(t) ± d(t)|2 > 0.

Hence, there exists

[I + {aP + bQ + (cP + dQ)V ) · (āP + b̄Q + (c̄P + d̄Q)V }]−1 =

=















1 + |a|2 + |c|2

(1 + |a − c|2)(1 + |a + c|2)
P +

1 + |b|2 + |d|2

(1 + |b − d|2)(1 + |b + d|2)
Q−

−
ac̄ + āc

(1 + |a − c|2)(1 + |a + c|2)
P +

bd̄ + b̄d

(1 + |b − d|2)(1 + |b + d|2)
Q)V















and this element belougs to Â. Property 2o is proved.
Denote by M the bicompact of maximal ideals of Â.

3
o. M is isomorphic to the topological product (Γ × j) × (Γ × k) : M = (Γ ×

j) × (Γ × k), where j = ±1 and k = ±1.
It is known [1] that every commutative Banach algebra without radical is isomor-

phically mapped into an algebra of functions defined on bicompact of maximal ideals.
It is easy to observe that in our case to the element A = {aP +bQ+(cP +dQ)V } ∈ Â

the function A(M) = (a(t) + jc(t))(b(t) + kf(t)) corresponds.

4
o. Algebra Â is a symmetric algebra without radical.

In commutative and symmetric algebra R every element is invertible or is a
generalized zero divisor (see [1]), that is, there exists a sequence (yn), yn ∈ R, |yn| = 1
and lim

n→∞

||ynx|| = 0. Thus, every element A = {aP + bQ + (cP + dQ)V }, for which

one of the functions a(t) + c(t), a(t)− c(t), b(t) + d(t) or b(t)− d(t) is vanished on Γ,
is a generalized zero divisor.

Obviously, L(Lp(Γ, ρ)) \ T is a (noncommutative) Banach algebra including Â.

5
o. An element A ∈ A is invertible in L(Lp(Γ, ρ))\T if and only if it is invertible

in Â.
In fact, let A be invertible in L(Lp(Γ, ρ)) \ T and suppose it is not invertible

in Â, A−1 6∈ Â. Then, by virtue of 4o, A is a generalized zero divisor. But this is
impossible, since in this case the invertible operator A should be a generalized zero
divisor in L(Lp(Γ, ρ)) \ T.

IV. Let us approach the problem of regularization of singular integral operators
with shift ω, A = aI + bS = (cI + dS)V + T. It is easy to observe that the operator
A admits a regularization in algebra L(Lp(Γ, ρ)) if and only if the element {aI +

bS + (cI + dS)V } ∈ Â is invertibile in L(Lp(Γ, ρ)) \ T. In order to apply assertions
of Theorem 5 and property 5o we use the operators P = 1

2(I + S), Q = 1
2(I − S),

I = P + Q and S = P −Q. Then the operators A is transcribed as, A = αP + βQ+
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(δP +γQ)V +T, where α = a+b, β = a−b, δ = c+d, γ = c−d. From Theorem 5 and
property 5o it results that {αP + βQ + (δP + γQ)V } is invertible in L(Lp(Γ, ρ)) \T

if and only if the functions α2(t) − δ2(t) and β2(t) − γ2(t) do not vanish on Γ. In
other words, a singular integral operator A with shift, A = ai+bS +(cI +dS)V +T,
admits a regularization in L(Lp(Γ, ρ)) if only if

α2(t) − δ2(t) = (a(t) + b(t))2 − (c(t) + d(t))2 6= 0,

β2(t) − γ2(t) = (c(t) + d(t))2 − (c(t) + d(t))2 6= 0.

Thus, condition (4) of Theorem 1 are satisfied. With the help of judgements
used in the proof of Theorem 5 it is supplementary obtained that AR = I + T1 and
RA = I + T2, where R is defined by relation (5) and T1, T2 are compact operators.

Theorem 6. The operator A = αP + βQ + (δP + γQ)V + T admits an equivalent
regularization if and only if the following conditions

α2(t) − δ2(t) 6= 0, β2(t) − γ2(t) 6= 0, ind
α2(t) − δ2(t)

β2(t) − γ2(t)
≤ 0

are verified. Under these conditions

IndA = −
1

2
ind

α2(t) − δ2(t)

β2(t) − γ2(t)
.

For IndA < 0 all solutions to equation Ax = y are obtained from the relation
x = Rz, where z runs all solutions to equation RAz = y and R is defined by (5).

Cases when the function of shifting, ω, changes the orientation of contour Γ and
systems of singular integral equation with shift will be approached, possibly, in other
works of the author.
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