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Discontinuous term of the distribution

for Markovian random evolution in R
3

Alexander D. Kolesnik

Abstract. We consider the random motion at constant finite speed in the space R
3

subject to the control of a homogeneous Poisson process and with uniform choice of
directions on the unit 3-sphere. We obtain the explicit forms of the conditional cha-
racteristic function and conditional distribution when one change of direction occurs.
We show that this conditional distribution represents a discontinuous term of the
transition function of the motion.

Mathematics subject classification: Primary 60K99 Secondary 62G30; 60K35;
60J60; 60H30.
Keywords and phrases: Random motions, finite speed, random evolution, charac-
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In this note we obtain the discontinuous term of the distribution for the three-
dimensional random motion at arbitrary finite speed (so-called, random evolution).
This is motivated by the previous works on planar random motions by Stadje (1987),
Masoliver et al. (1993), Kolesnik and Orsingher (2005) where the explicit form of the
transition function of the process was obtained by substantially different methods. It
was shown that the transition density of the motion is discontinuous on the boundary
of the diffusion area, and the discontinuous term of the distribution is the Green’s
function to the two-dimensional wave equation. Amazingly, this discontinuous term
is determined by the conditional distribution, corresponding to the case when only
one change of direction occurs (see Kolesnik and Orsingher (2005, Remark 1)). The
three-dimensional motion with unit speed was examined by Stadje (1989) where the
transition density was derived by means of recurrent arguments. This transition
density consists of two terms (see Stadje (1989, formulae (1.3) and (4.21)). The first
one is a continuous function and has the form of a fairly complicated integral, which
can scarcely be exactly evaluated. The second term is a logarithmic function which
is discontinuous on the boundary of the diffusion area.

Here we derive this discontinuous term for a motion at arbitrary finite speed by
means of characteristic functions and show that, similarly to the planar case, it is
determined by the conditional distribution corresponding to the case when only one
change of direction occurs. Such a behaviour of the distribution near the border of
diffusion area is a very interesting feature of the two and three-dimensional motions.
However, the nature of this phenomenon is not entirely clear.

Let’s consider a particle starting its motion from the origin x1 = x2 = x3 = 0 of
the space R3 at time t = 0. The particle is endowed with constant, finite speed c.
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The initial direction is a three-dimensional random vector with uniform distribution
on the unit 3-sphere

S1 =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1

}

.

The particle changes direction at random instants which form a homogeneous Pois-
son process of rate λ > 0. At these moments it instantaneously takes on the new
direction with uniform distribution on S1, independently of its previous motion.

Let X(t) = (X1(t),X2(t),X3(t)) be the position of the particle at an arbitrary
time t > 0. Consider the conditional distributions

Pr{X(t) ∈ dx | N(t) = n} =

= Pr{X1(t) ∈ dx1,X2(t) ∈ dx2,X3(t) ∈ dx3 | N(t) = n}, n ≥ 1,

where N(t) is the number of Poisson events that have occurred in the interval (0, t)
and dx = dx1dx2dx3 is the infinitesimal volume of the space R3.

At any time t > 0 the particle, with probability 1, is located in the three-
dimensional ball of radius ct

Bct =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 ≤ c2t2

}

.

The distribution Pr {X(t) ∈ dx} , x ∈ Bct, t ≥ 0, consists of two components.
The singular component corresponds to the case when no Poisson event occurs in
the interval (0, t) and is concentrated on the sphere

Sct = ∂Bct =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = c2t2

}

.

In this case the particle is located on the sphere Sct and the probability of this event
is

Pr {X(t) ∈ Sct} = e−λt.

If one or more than one Poisson events occur, the particle is located strictly
inside the ball Bct, and the probability of this event is

Pr {X(t) ∈ Int Bct} = 1 − e−λt.

The part of the distribution Pr {X(t) ∈ dx} corresponding to this case is concen-
trated in the interior

Int Bct =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 < c2t2

}

,

and forms its absolutely continuous component.
Therefore there exists the density p(x, t) = p(x1, x2, x3, x4, t), x ∈ Int Bct, t >

0, of the absolutely continuous component of the distribution Pr {X(t) ∈ dx}.
If N(t) = n, the displacement of the particle X(t) at any time t > 0 is determined

by the coordinates

Xk(t) = c

n+1
∑

j=1

(sj − sj−1)x
k
j , k = 1, 2, 3, (1)
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where xk
j are the components of the independent random vectors xj = (x1

j , x
2
j , x

3
j ),

j = 1, ..., n + 1, uniformly distributed on the unit sphere S1; the sj, j = 1, ..., n,
represent the instants at which Poisson events occur, and s0 = 0, sn+1 = t.

The conditional characteristic function can be written as follows:

Hn(α, t) = E
{

ei(α,X(t))| N(t) = n
}

, n ≥ 1, (2)

where α = (α1, α2, α3) ∈ R3 is the real vector of inversion parameters and (α,X(t))
denotes the scalar (inner) product of the vectors α and X(t).

By substituting (1) into (2) we have

Hn(α, t) = E







exp



ic

3
∑

k=1

αk

n+1
∑

j=1

(sj − sj−1)x
k
j











=

= E







exp



ic

n+1
∑

j=1

(sj − sj−1)(α, xj)











,

where (α, xj) is the scalar (inner) product of the vectors α and xj. Computing the
expectation in this last equality we obtain

Hn(α, t) =
n!

tn

∫ t

0
ds1

∫ t

s1

ds2 . . .

∫ t

sn−1

dsn







n+1
∏

j=1

[

1

mes S1

∫

S1

eic(sj−sj−1)(α,xj) dxj

]







.

The surface integral over the unit sphere S1 in the last equality can easily be
computed by passing to three-dimensional polar coordinates, and it is

∫

S1

eic(sj−sj−1)(α,xj) dxj = 4π
sin(c(sj − sj−1)‖α‖)

c(sj − sj−1)‖α‖
, (3)

where ‖α‖ =
√

α2
1 + α2

2 + α2
3. Taking into account that mes S1 = 4π, we obtain

Hn(α, t) =
n!

tn

∫ t

0
ds1

∫ t

s1

ds2 . . .

∫ t

sn−1

dsn







n+1
∏

j=1

sin(c(sj − sj−1)‖α‖)

c(sj − sj−1)‖α‖







. (4)

This expression can scarcely be explicitly computed for arbitrary n ≥ 1. How-
ever, for the important particular case n = 1 this expression can be evaluated, and
its inverse Fourier transform leading to the conditional distribution, corresponding
to the case when only one change of direction occurs, can be explicitly given.

Theorem. For any t > 0 the conditional distribution corresponding to the only

change of direction has the form

Pr{X(t) ∈ dx | N(t) = 1} =
1

4π(ct)2‖x‖
ln

(

ct + ‖x‖

ct − ‖x‖

)

dx, (5)
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x = (x1, x2, x3) ∈ Int Bct, ‖x‖ =
√

x2
1 + x2

2 + x2
3, dx = dx1dx2dx3.

Proof. From (4) we have
H1(α, t) =

=
1

t

∫ t

0

sin(cs‖α‖)

cs‖α‖

sin(c(t − s)‖α‖)

c(t − s)‖α‖
ds =

=
1

(ct‖α‖)2

∫ t

0
sin(cs‖α‖) sin(c(t − s)‖α‖)

[

1

s
+

1

t − s

]

ds =

=
2

(ct‖α‖)2

∫ t

0

sin(cs‖α‖) sin(c(t − s)‖α‖)

s
ds =

=
sin(ct‖α‖)

(ct‖α‖)2

∫ t

0

2 sin(cs‖α‖) cos(cs‖α‖)

s
ds −

cos(ct‖α‖)

(ct‖α‖)2

∫ t

0

2 sin2(cs‖α‖)

s
ds =

=
sin(ct‖α‖)

(ct‖α‖)2

∫ t

0

sin(2cs‖α‖)

s
ds −

cos(ct‖α‖)

(ct‖α‖)2

∫ t

0

1 − cos(2cs‖α‖)

s
ds =

=
sin(ct‖α‖)

(ct‖α‖)2
Si(2ct‖α‖) +

cos(ct‖α‖)

(ct‖α‖)2
Ci(2ct‖α‖), (6)

where Si(x) and Ci(x) are the modified integral sine and cosine, respectively, given
by

Si(x) =

∫ x

0

sin z

z
dz, Ci(x) =

∫ x

0

cos z − 1

z
dz. (7)

To prove the statement of the theorem, we need to show that the inverse Fourier
transform of (6) with respect to α = (α1, α2, α3) leads to the conditional distribution
(5). However, it is simpler to show that, inversely, the Fourier transform of function
(5) in the ball Bct coincides with (6). Passing to three-dimensional polar coordinates
we have

∫

Bct

ei(α,x) Pr{X(t) ∈ dx | N(t) = 1} =

=
1

4π(ct)2

∫ ct

0
dr

{

r ln

(

ct + r

ct − r

)

×

×

∫ π

0

∫ 2π

0
eir(α1 sin θ1 sin θ2+α2 sin θ1 cos θ2+α3 cos θ1) sin θ1 dθ1 dθ2

}

.

According to formula 4.624 of Gradshteyn and Ryzhik (1980)

∫ π

0

∫ 2π

0
eir(α1 sin θ1 sin θ2+α2 sin θ1 cos θ2+α3 cos θ1) sin θ1 dθ1 dθ2 = 4π

sin(r‖α‖)

r‖α‖
.
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Therefore, applying the auxiliary Lemma (see below), we obtain

∫

Bct

ei(α,x) Pr{X(t) ∈ dx | N(t) = 1} =

=
1

(ct)2‖α‖

∫ ct

0
sin(r‖α‖) ln

(

ct + r

ct − r

)

dr =

=
1

ct‖α‖

∫ 1

0
sin(ct‖α‖z) ln

(

1 + z

1 − z

)

dz =

=
1

(ct‖α‖)2

[

sin(ct‖α‖) Si(2ct‖α‖) + cos(ct‖α‖) Ci(2ct‖α‖)

]

,

and this coincides with (6). The theorem is proved.

Remark 1. Taking into account the well-known equality

Arcth(z) =
1

2
ln

(

1 + z

1 − z

)

we can rewrite (5) as follows:

Pr{X(t) ∈ dx | N(t) = 1} =
1

2π(ct)2‖x‖
Arcth

(

‖x‖

ct

)

dx,

and, for c = 1, this is similar to the second term of formulae (1.3) and (4.21) of Stadje
(1989). The first (integral) term of these formulae, obviously, is determined by the
conditional distributions corresponding to the case when more than one change of
direction occurs.

Remark 2. The function (5) represents the discontinuous term of the distribution
of the process X(t). Formula (5) shows that the density near the border of the
ball Bct is large and this corresponds to the case when only one change of direction
occurs. In other words, if only one change of direction occurs, the conditional density
is minimal in the neighbourhood of the origin and increases as we approach to the
border. This is similar to the behaviour of the analogous conditional density in the
planar case (see Kolesnik and Orsingher (2005, Remark 1)).

Finally, we establish an auxiliary lemma which has been used in the proof of our
theorem.

Lemma. For arbitrary a > 0 the following relation holds

∫ 1

0
sin(ax) ln

(

1 + x

1 − x

)

dx =
1

a

[

sin a Si(2a) + cos a Ci(2a)

]

, (8)

where the integral is treated in the improper sense.
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Proof. We have
∫ 1

0
sin(ax) ln

(

1 + x

1 − x

)

dx =

=

∫ 1

0
sin(ax) ln(1 + x) dx −

∫ 1

0
sin(ax) ln(1 − x) dx. (9)

Let’s evaluate separately the integrals in the right-hand side of (9). Integrating
by parts and applying formula 2.641(2) of Gradshteyn and Ryzhik (1980) we obtain
for the first integral of (9):

∫ 1

0
sin(ax) ln(1 + x) dx =

= −
1

a

(

cos a ln 2 −

∫ 1

0

cos(ax)

1 + x
dx

)

=

= −
cos a

a
ln 2 +

1

a

[

cos a (ci(2a) − ci(a)) + sin a (si(2a) − si(a))

]

. (10)

Here si(x) and ci(x) are the standard integral sine and cosine, respectively, given by

si(x) = −
π

2
+ Si(x), ci(x) = C + ln x + Ci(x), (11)

and C = 0.5772 . . . being the Euler constant. From (11) we easily obtain

ci(2a) − ci(a) = ln 2 + Ci(2a) − Ci(a),

si(2a) − si(a) = Si(2a) − Si(a).

Substituting these expressions into (10) we obtain the first integral of (9):

∫ 1

0
sin(ax) ln(1 + x) dx =

=
cos a

a

(

Ci(2a) − Ci(a)
)

+
sin a

a

(

Si(2a) − Si(a)

)

, (12)

where Ci(x) and Si(x) are given by (7).
The function in the second integral of (9) is unbounded at the point x = 1.

Therefore we can evaluate this integral in the improper sense only. Similarly, inte-
grating by parts and applying formula 2.641(2) of Gradshteyn and Ryzhik (1980)
we have

∫ 1

0
sin(ax) ln(1 − x) dx = lim

ε→0+

∫ 1−ε

0
sin(ax) ln(1 − x) dx =

= −
1

a
lim

ε→0+

{

cos (a(1 − ε)) ln ε +

∫ 1−ε

0

cos(ax)

1 − x
dx

}

=
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= −
1

a
lim

ε→0+
{cos (a(1 − ε)) ln ε −

− [cos a (ci(−aε) − ci(−a)) − sin a (si(−aε) − si(−a))]} . (13)

Using (11) and the well-known equalities

si(−x) = −si(x) − π, Ci(−x) = Ci(x),

we get
ci(−aε) − ci(−a) = ln ε + Ci(aε) − Ci(a),

si(−aε) − si(−a) = Si(a) − Si(aε).

Substituting this into (13) we obtain the second integral in the right-hand side of
(9):

∫ 1

0
sin(ax) ln(1 − x) dx =

= −
1

a
lim

ε→0+
{(cos (a(1 − ε)) − cos a) ln ε −

− cos a (Ci(aε) − Ci(a)) + sin a (Si(a) − Si(aε))} =

= −
1

a
[sin a Si(a) + cos a Ci(a)] . (14)

Substituting now (12) and (14) into (9) we obtain (8). The lemma is proved.
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