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Commutative Moufang loops with maximum conditions

for subloops
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Abstract. It is proved that the maximum condition for subloops in a commutative
Moufang loop Q is equivalent with conditions of the finite generating of different
subloops of the loop Q and different subgroups of the multiplication group of the loop
Q. An analogue equivalence is set for commutative Moufang ZA-loops.
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It is said that the maximum condition (respect. minimum condition) for subalge-
bras with the property α holds in an algebra A if any ascending (respect. descending)
system of subalgebras with the property α A1 ⊆ A2 ⊆ . . . (respect. A1 ⊇ A2 ⊇ . . .)
breaks, i.e. An = An+1 . . . for a certain n. It is well known that the fulfillment of
the maximum condition for subalgebras of an arbitrary algebra is equivalent to the
fact that both the algebra and any of its subalgebras are finitely generated.

Commutative Moufang loops (CML’s) with maximum condition for subloops are
considered in this paper. It is proved that for a non-associative CML Q this condition
is equivalent to one of the following equivalent conditions: a) if Q contains a centrally
nilpotent subloop of class n, then all its subloops of this type are finitely generated;
b) if Q contains a centrally solvable subloop of class s, then all its subloops of this
type are finitely generated; c) all invariant subloops of Q are finitely generated; d)
all non-invariant associative subloops of Q are finitely generated; e) at least one
maximal associative subloop of Q is finitely generated. This list is completed with
the condition of the finite generating of various subgroups of the multiplication group
of Q. If Q is a ZA-loop, then the list a) – e) is completed with the condition of the
finite generating of the center of Q, as well with the condition of the finite generating
of other subloops of Q and various subgroups of the multiplication group of Q.

It is worth mentioning that the following statement is proved in [1, 2].

Lemma 1. The following conditions are equivalent for an arbitrary CML Q:
1) Q is finitely generated;
2) the maximum condition for subloops holds in Q.

In [2] the list a) – e) is completed with equivalent statements: h) the CML Q
satisfies the maximum condition for invariant subloops; i) the CML Q is a subdirect
product of a finite CML of exponent 3 and a finitely generated abelian group; j) the
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CML Q possesses a finite central series, whose factors are cyclic groups of simple or
infinite order.

Let us bring some notions and results on the theory of commutative Moufang
loops, needed for further research.

A commutative Moufang loop (CML’s) is characterized by the identity x2 · yz =
= xy ·xz. The multiplication group M(Q) of a CML Q is the group generated by all
the translations L(x), where L(x)y = xy. The subgroup I(Q) of the group M(Q),
generated by all the inner mappings L(x, y) = L(xy)−1L(x)L(y) is called the inner
mapping group of the CLM Q. The subloop H of a CML Q is called normal (in-
variant) in Q if I(Q)H = H.

Lemma 2 [3]. Let Q be a commutative Moufang loop with the multiplication group
M. Then M/Z(M), where Z(M) is the centre of the group M, and M

′ = (M,M)
are locally finite 3-groups and will be finite if Q is finitely generated.

Lemma 3. The multiplication group M of an arbitrary CML is locally nilpotent.

Proof. Let N be the image of finitely generated subgroup of group M under
the homomorphism M → M/Z(M). It follows from Lemma 2 that N is a finite
3-group, therefore it is nilpotent. Let us write N in the form NZ(M)/Z(M). We
have NZ(M)/Z(M) ∼= N/(N ∩Z(M)). It is obvious that N ∩Z(M) ⊆ Z(N). Then

N/Z(N) ∼= (N/(N ∩ Z(M)))/(Z(N)/(N ∩ Z(M))).

Therefore N/Z(N) is nilpotent, as a homomorphic image of the nilpotent group
N/(N∩Z(M)). Then the group N is nilpotent as well. Consequently, the group M

is locally nilpotent, as required.

The center Z(Q) of a CML Q is an invariant subloop Z(Q) = {x ∈ Q|x · yz =
= xy · z∀y, z ∈ Q}.

Lemma 4 [3]. The quotient loop Q/Z(Q) of an arbitrary CML Q by its center
Z(Q) has the index three.

Lemma 5 [3]. A periodic CML is locally finite.

The associator (a, b, c) of the elements a, b, c in CML Q is defined by the
equality ab · c = (a · bc)(a, b, c). We denote by Qi (respect. Q(i)) the subloop
of the CML Q, generated by all associators of the form (x1, x2, . . . , x2i+1) (re-
spect. (x1, . . . , x3i)(i)), where (x1, . . . , x2i−1, x2i, x2i+1) = ((x1, . . . , x2i−1), x2i, x2i+1)
(respect. (x1, . . . , x3i)(i) = ((x1, . . . , x3i−1)(i−1), (x3i−1+1, . . . , x2·3i−1)(i−1),
x2·3i−1+1, . . . , x3i)(i−1)), where (x1, x2, x3)

(1) = (x1, x2, x3) . The series of normal
subloops 1 = Q0 ⊆ Q1 ⊆ . . . ⊆ Qi ⊆ . . . (respect. 1 = Q(o) ⊆ Q(1) ⊆ . . .
. . . ⊆ Q(i) ⊆ . . .) is called the lower central series (respect. derived series) of
the CML Q. We will also use for associator loop the designation Q(1) = Q′.

A CML Q is centrally nilpotent (respect. centrally solvable) of class n if and
only if its lower central series (respect. derived series) has the form 1 ⊂ Q1 ⊂ . . .
. . . ⊂ Qn = Q (respect. 1 ⊂ Q(1) ⊂ . . . ⊂ Q(n) = Q) [3].
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An ascending central series of CML Q is a linearly ordered by the inclusion
system

1 = Q0 ⊆ Q1 ⊆ . . . ⊆ Qα ⊆ . . . ⊆ Qγ = Q

of invariant subloops of Q, satisfying the conditions:
1) Qα =

∑
β<α Qβ for limit ordinal α;

2) Qα+1/Qα ⊆ Z(Q/Qα).
A CML, possessing an ascending central series is called ZA-loop. If the ascending

central series of CML is finite, then it is centrally nilpotent [3].
We will often use the following statements in our further proofs.

Lemma 6. The following statements are equivalent for an arbitrary CML Q:
1) Q satisfies the minimum condition for subloops;
2) Q is a direct product of a finite number of quasicyclic groups, belonging to the

center CML Q, and a finite CML;
3) Q satisfies the minimum condition for invariant subloops;
4) Q satisfies the minimum condition for non-invariant associative subloops;
5) if Q contains a centrally nilpotent subloop of class n, then it satisfies the

minimum condition for centrally nilpotent subloops of class n;
6) if Q contains a centrally solvable subloop of class s, then it satisfies the mini-

mum condition for centrally solvable subloops of class s;
7) at least one maximal associative subloop of Q satisfies the minimum condition

for subloops.

The equivalence of conditions 1), 2), 3) is proved in [4], the equivalence of conditions
1), 4), 5), 6) is proved in [5] and the equivalence of conditions 1), 7) is proved in [6].

Lemma 7 [4]. The following statements are equivalent for an arbitrary non-
associative CML Q with a multiplication group M:

1) Q satisfies the minimum condition for subloops;
2) M satisfies the minimum condition for subgroup;
3) M is a product of a finite number of quasicyclic groups, lying in the center of

M, and a finite group;
4) M satisfies the minimum condition for invariant subgroup;
5) at least one maximal abelian subgroup of M satisfies the minimum condition

for subgroups;
6) if M contains a nilpotent subgroup of class n, then M satisfies the minimum

condition for nilpotent subgroups of class n.
7) if M contains a solvable subgroup of class s, then M satisfies the minimum

condition for solvable subgroups of class s.
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Lemma 8 [4]. If the center Z(Q) of a commutative Moufang ZA-loop Q sati-
sfies the minimum condition for subloops, then Q satisfies the minimum condition
for subloop itself.

Let us now consider an arbitrary non-periodic CML Q. Let Q3 = {x3|x ∈
∈ Q}. CML is di-associative [3], then it is easy to show that Q3 is a subloop.
It follows from Lemma 4 that Q3 ⊆ Z(Q), where Z(Q) is the center of CML Q,
therefore Q3 is an invariant subloop of Q. Let us suppose that the subloop Z(Q) is
finitely generated. Then the abelian group Q3 is also finitely generated. Therefore
it decomposes into a direct product of cyclic groups Q3 =< r1 > × . . .× < rk > ×
× < s1 > × . . .× < sm >=< R > × < S >, where < ri > are cyclic groups
of infinite order, < sj > are finite cyclic groups [7]. The group R is free abelian,
therefore it is without torsion. It is shown in [3] that the associator loop Q′ has the
exponent three, then

R ∩ Q′ = {1}. (1)

Lemma 9. Let Q be a CML, R be its subloop, which is considered above, and let
H be a subloop of CML Q/R = Q. The subloop H satisfies one of the properties:
1) H is centrally nilpotent of class n; 2) H is centrally solvable of class s; 3) H is
a maximal associative subloop of CML Q; 4) H is the center of CML Q; 5) H is
a non-invariant subloop of CML Q; 6) H is an invariant subloop of CML Q if and
only if the inverse image H of subloop H has the same property as the subloop H,
under the homomorphism ϕ : Q → Q/R.

Proof. Let us suppose that the subloop H is centrally nilpotent of class n. Let
h1, h2, . . . , h2n+1 be arbitrary elements from H. Let us denote ϕ(hi) = hi, ϕ(1) = 1.
Then hi = hiR, 1 = R. We have (h1, h2, . . . , h2n+1) = 1, (h1R,h2R, . . . , h2n+1R) =
= R. But R ⊆ Z(Q). Therefore, if u ∈ R, then (au, b, c) = (a, b, c) for any elements
a, b, c ∈ Q. Then (h1, h2, . . . , h2n+1) = r, where r ∈ R. It follows from (1) that
r = 1. We have obtained that (h1, h2, . . . , h2n+1) = 1, i.e. the subloop H is centrally
nilpotent of class n.

Conversely, let us suppose that the subloop H is centrally nilpotent of class n.
Then there exist such elements h1, h2, . . . , h2n−1 from H that (h1, h2, . . . , h2n−1) 6= 1.
It follows from (1) that (h1, h2, . . . , h2n−1) /∈ R. Therefore (h1, h2, . . . , h2n−1) /∈ 1.
Consequently H, as homomorphic image of subloop H, will be a centrally nilpotent
subloop of class n. It proves the statement 1). The statement 2) is proved by
analogy.

Let us now suppose that H is a maximal associative subloop of CML Q and
the inverse image H is not a maximal associative subloop of CML Q. Then there
exists such an element a /∈ H that (a, h1, h2) = 1 for all h1, h2 ∈ H. Obviously
R ⊆ H. Then ϕa = a /∈ H and (a, h1, h2) = 1 for all h1, h2 ∈ H. We have obtained
that the non-associative subloop < a,H >, generated by the set {a,H}, strictly
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contains H, i.e. H is not a maximal associative subloop of CML Q. Contradiction.
Consequently, H is a maximal associative subloop of CML Q.

Conversely, let us suppose that H is a maximal associative subloop of CML Q
and H is not a maximal associative subloop of CML Q. Then there exists such
an element a /∈ H that (a, h1, h2) = 1 for all h1, h2 ∈ H. We have obtained that
(aR, h1R,h2R) = R for all h1, h2 ∈ H. As R ⊆ Z(Q), then (a, h1, h2) = r, where
r ∈ R. It follows from (1) that r = 1, therefore (a, h1, h2) = 1 for all h1, h2 ∈ H and
a /∈ H. It means that the subloop H is strictly contained in the associative subloop
< a,H >. We have obtained a contradiction with the fact that the subloop H is a
maximal associative subloop. This proves statement 3). Statement 4) is proved by
analogy.

Statements 5), 6) follow from the fact that the natural homomorphism Q → Q/R
sets a one-to-one mapping between all non-invariant (respect. invariant) subloops
of CML Q, with contained R, and all non-invariant (respect. invariant) subloops of
CML Q/R. This completes the proof of Lemma 9.

Theorem 1. The following statements are equivalent for an arbitrary non-associ-
ative CML Q:

1) Q satisfies the maximum condition for subloops;

2) if Q contains a centrally nilpotent subloop of class n, then all its subloops of
this type are finitely generated;

3) if Q contains a centrally solvable subloop of class s, then all its subloops of
this type are finitely generated;

4) at least one maximal associative subloop of Q is finitely generated;

5) non-invariant associative subloops of Q are finitely generated;

6) invariant subloops of Q are finitely generated.

Proof. Let us suppose that the CML Q is non-periodic. It follows from Lemma
4 that the subloop Q3 belongs to the center of CML Q. If H is a centrally nilpo-
tent subloop of class n either a centrally solvable subloop of class s, or a maximal
associative subloop, or a non-invariant associative subloop, or an invariant subloop,
then the subloop < H,Q3 > will be of this type too. Therefore it follows from the
justice of one of the statements 2) – 6) of the theorem that the abelian group Q3

is finitely generated. Then it decomposes into a direct product Q3 = R × S, where
R is an abelian group without torsion, S is a finite abelian group [7]. It is obvious
that CML Q/R is periodic. Then by Lemma 5 it is locally finite.

If the CML Q satisfies one of the conditions 2) – 6) of theorem, then by Lemma
9 CML Q/R satisfies this condition as well. Then all centrally nilpotent subloops of
class n either all centrally solvable subloops of class s, or at least one maximal as-
sociative subloop, or all non-invariant associative subloops, or all invariant subloops
are respectively finite in CML Q/R. Therefore by Lemma 6 the CML Q/R sat-
isfies the minimum condition for subloops in any case. The center of CML Q/R
is finite. Then by 2) of Lemma 6 the CML Q/R is finite. Therefore the CML
Q is finitely generated and by Lemma 1, the condition 1) holds in it. It proves
the implications 2) → 1), 3) → 1), 4) → 1), 5) → 1), 6) → 1). The case when the
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CML Q is periodic is contained in the proof of previous case. As the implications
1) → 2), 1) → 3), 1) → 4), 1) → 5), 1) → 6) are obvious, the theorem is proved.

Theorem 2. The following statements are equivalent for an arbitrary non-associ-
ative CML Q with the multiplication group M:

1) Q satisfies the maximum condition for subloops;

2) M is finitely generated;

3) M satisfies the maximum condition for subgroups;

4) all invariant subgroups of M are finitely generated;

5) at least one maximal abelian subgroup of M is finitely generated;

6) if M contains a nilpotent subgroup of class n, then all its subgroups of this
type are finitely generated;

7) if M contains a solvable subgroup of class s, then all its subgroups of this type
are finitely generated.

Proof. If the CML Q satisfies the condition 1), then it is finitely generated, and by
[3] the associator loop Q′ is finite. By Lemma 2 the inner mapping group I(Q) of
Q is also finite. It is show in [8] that the relation

M(G/G′) ∼= M(G)/ < I(G),M(G′) >, (2)

holds in an arbitrary CML G, where M(G′) denotes a subgroup of the group M(G),
generated by the set {L(a)|a ∈ G′}. It is obvious that the group < I(Q),M(Q′) > is
finitely generated in our case. As the abelian group M(Q/Q′) is finitely generated,
then it follows from (2) that the group M is finitely generated as well. Consequently,
1) → 2).

If the group M is finitely generated, then by Lemma 3 it is nilpotent. It is
known (for instance, see [7]) that the maximum condition for subgroups holds in
such groups.

Let Z(Q) be the center of an arbitrary CML Q, {Z(M)} be the upper central
series of its multiplication group M(Q). Then

Z(Q) ∼= Z(M). (3)

Indeed, if ϕ ∈ Z(M), then ϕL(x) = L(x)ϕ for any x ∈ Q. Further, ϕL(x)y =
= L(x)ϕy, ϕ(xy) = xϕy. Let y = 1. Then ϕx = xϕ1, ϕx = L(ϕ1)x, ϕ = L(ϕ1).
Now, using the equality ϕ(xy) = xϕy we obtain that xy · ϕ1 = ϕ(xy) = x · ϕy =
= x · ϕ(y · 1) = x · yϕ1. Consequently, if ϕ ∈ Z(M), then ϕ = L(a) and a ∈ Z(Q).
Conversely, let a ∈ Z(Q). Then a · xy = ax · y, L(a)L(y)x = L(y)L(a)x,L(a)L(y) =
= L(y)L(a). It follows from the definition of group M that L(a) ∈ Z(M). Finally,
if a, b ∈ Z(Q), then the homomorphism (3) follows from the equalities a · bx =
= ab · x,L(a)L(b)x = L(ab)x,L(a)L(b) = L(ab).

In order to prove the implication 3) → 1) we use the relation

M/Z2(M) ∼= M(Q/Z(Q)) (4)
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which takes place in an arbitrary CML [3]. By Lemma 2 the group M/Z(M) is peri-
odic. Then the group M/Z2(M), as an homomorphic image of the group M/Z(M),
is also periodic. If the group M satisfies the maximum condition for subgroups, then
the center Z(M) and by (3), also the center Z(Q), are finitely generated. By Lemma
3 the group M is nilpotent. Then the group M/Z2(M) is also nilpotent and, as it
is periodic, then is finite. Hence it follows from (4) that the CML Q/Z(Q) is also
finite. Therefore the CML Q is finitely generated and by Lemma 1, the condition
1) holds in it. Consequently, 3) → 1).

Let us now suppose that the group M is non-periodic. By Lemma 2 the group
M/Z(M) is locally finite. It α is an element of infinite order in M, then αn ∈ Z(M)
for a certain natural number n. We denote by R the subgroup of group M, generated
by all elements of the form αn. It is obvious that the abelian group Z(M) is finitely
generated if the group M satisfies one of the conditions 4) – 7). Then Z(M) = N×S,
where N is a finitely generated abelian group without torsion, S is a finite abelian
group [7] and R = N. As N ∩ S = {1}, then Z(M)/N = (N × S) ∼= S. By Lemma
2 the group M/Z(M) is locally finite. It follows from the relation M/Z(M) ∼=
∼= (M/N)/(Z(M)/N) that the group M/N is the extension of the finite group
Z(M)/N by locally finite group M/Z(M). Therefore the group M/N is locally
finite.

By Lemma 2 the commutator group M
′ is locally finite and as the group N is

without torsion, then

N ∩ M
′ = {1}.

Let either the condition 4), or 5), or 6), or 7) hold in group M. By analogy with
the proof of Lemma 9 we can show that in the group M/N a condition analogue
with either conditions 4), or 5), or 6), or 7) holds. We have already shown that
group M/N is locally finite. Then either all invariant subgroups, or at least one
maximal abelian subgroup, or all nilpotent of class n subgroups, or all solvable of
class s subgroups are finite respectively in M/N. The group Z(M)/N is finite, then
it follows from the relation

M/Z(M) ∼= (M/N)/(Z(M)/N)

that in the group M/Z(M) the same condition as in group M/N holds. Further, it
follows from the relation

M/Z2(M) ∼= (M/Z1(M))/(Z2(M)/Z1(M)) = (M/Z1(M))/Z(M/Z1(M))

that M/Z2(M) satisfies the same condition as the group M/Z1(M), and it follows
from (4) that M(Q/Z(Q)) satisfies this condition as well, i.e. either all its invariant
subgroups are finite, or at least one maximal abelian subgroup is finite, or all its
nilpotent subgroups of class n are finite, or all its solvable subgroups of class s are
finite. In such a case, by Lemma 7 the group M(Q/Z(Q)) satisfies the minimum
condition for subgroups. It is obvious that the center of the group M(Q/Z(Q)) is
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finite. Then by 2) of Lemma 7 the group M(Q)/Z(Q) is finite, and consequently, the
CML Q/Z(Q) is also finite. The center Z(M) of the group M is finitely generated,
then it follows from (3) that the center Z(Q) of Q is finitely generated, too. Then
the CML Q is finitely generated and by Lemma 1 it satisfies the condition 1).
Consequently, if the group M is non-periodic the implications 4) → 1), 5) → 1),
6) → 1), 7) → 1) hold.

The case when the group M is periodic is proved by analogy for N = {1}.
Further, as the implications 3) → 4), 3) → 5), 3) → 6), 3) → 7) are obvious, the
theorem is proved.

Theorem 3. The following conditions are equivalent for an arbitrary non-associ-
ative commutative Moufang ZA-loop Q with the multiplication group M:

1) Q satisfies the maximum condition for subloops;

2) if Q contains a non-invariant (respect. invariant) centrally nilpotent subloop
of class n, then at least one maximal non-invariant (respect. invariant) centrally
nilpotent subloop of class n is finitely generated;

3) if Q contains a non-invariant (respect. invariant) centrally solvable subloop
of class s, then at least one maximal non-invariant (respect. invariant) centrally
solvable subloop of class s is finitely generated;

4) if Q contains a non-invariant (respect. invariant) centrally nilpotent subloop
of class n, then it satisfies the maximum condition for non-invariant (respect. in-
variant) centrally nilpotent subloops of class n;

5) if Q contains a non-invariant (respect. invariant) centrally solvable subloop
of class s, then it satisfies the maximum condition for non-invariant (respect. in-
variant) centrally solvable subloops of class s;

6) the center Z(Q) of CML Q is finitely generated;

7) the group M is finitely generated;

8) if M contains a non-invariant (respect. invariant) nilpotent subgroup of class
n, then at least one maximal non-invariant (respect. invariant) nilpotent subgroup
of class n is finitely generated;

9) if M contains a non-invariant (respect. invariant) solvable subgroup of class
s, then at least one maximal non-invariant (respect. invariant) solvable subgroup of
class s is finitely generated;

10) if M contains a non-invariant (respect. invariant) nilpotent subgroup of class
n, then it satisfies the maximum condition for non-invariant (respect. invariant)
nilpotent subgroups of class n;

11) if M contains a non-invariant (respect. invariant) solvable subgroup of class
s, then it satisfies the maximum condition for non-invariant (respect. invariant)
solvable subgroups of class s;

12) the center Z(M) of group M is finitely generated.

Proof. The implications 1) → 2), 1) → 3), 1) → 4), 1) → 5), 1) → 6) are obvious. If
H is a non-invariant (respect. invariant) centrally nilpotent of class n (or centrally
solvable of class s) subloop of the CML Q, then the subloop < N,Z(Q) > will
be of this type too. Therefore by Lemma 1 the implications 2) → 6), 3) → 6),
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4) → 6), 5) → 6) hold. Let us now suppose that the condition 6) holds in the CML Q
and let R be an invariant subloop, defined in Lemma 9. By 4) of Lemma 9 the center
Z(Q/R) is finitely generated and periodic. If follows from Lemma 5 that Z(Q/R)
is finite, and it follows from Lemma 8 that the CML Q/R satisfies the minimum
condition for subloops. As the center Z(Q/R) is finite, then by 2) of Lemma 6,
the CML Q/R is finite. By its construction, the subloop L is finitely generated,
therefore the CML Q is also finitely generated and the justice of condition 1) follows
from Lemma 1. Consequently, the conditions 1), 2), 3), 4), 5), 6) are equivalent.

The equivalence of conditions 7), 8), 9), 10), 11), 12) is proved by analogy, using
1), 2) of theorem 2. Finally, the equivalence of conditions 6), 12) follows from (3).
Therefore the theorem is fully proved.
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