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On the coproducts of cyclics in commutative modular

and semisimple group rings

Peter Danchev

Abstract. We study certain properties of the coproducts (= direct sums) of cyclic
groups in commutative modular and semisimple group rings. Our results strengthen
a statement due to T. Zh. Mollov (Pliska, Stud. Math. Bulgar., 1981) and also they
may be interpreted as a natural continuation of a recent investigation of ours (Serdica
Math. J., 2003).
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1 Introduction

Let G be an arbitrary multiplicative abelian group and let R be an arbitrary
commutative unitary ring of any characteristic. By using standard abbreviations,
we now formally introduce the basic concepts. For such a group G, Gp denotes
its p-primary component of torsion which can be represented as Gp = ∪n<ωG[pn]
where G[pn] = {g ∈ G : gpn

= 1} is the pn-socle of G, and G1 denotes the first Ulm
subgroup of G. For such a ring R, char(R) denotes its characteristic which is a non-
negative integer m with the property that either m.1R = 0 and m 6= 0 is minimal
with this property, whence we write char(R) = m 6= 0, or otherwise char(R) = 0
whenever m 6= n implies m.1R 6= n.1R.

We recall that the field F is of the first kind with respect to the prime p if the
degree (F (ǫ1, ǫ2, · · · , ǫn, · · · ) : F ) = ∞, where ǫi are the primitive pi-roots of unity
for i = 1, 2, · · · , n, · · · . In the remaining variant when (F (ǫ1, ǫ2, · · · , ǫn, · · · ) : F ) <
∞, the field F is called a field of the second kind with respect to p.

An example of a field of the first kind with respect to any prime number is the
field Q of all rationals, while the fields R and C of all real and complex numbers,
respectively, are examples of fields of the second kind with respect to all primes.

Our attention in the present exploration is concentrated on the Sylow p-group
S(RG) consisting of all normalized p-elements in the group ring RG. For A ≤ G,
we denote by I(RG;A) the relative augmentation ideal of RG with respect to the
subgroup A.

All other unexplained exclusively notions and notation are standard and are in
agreement with the cited in the bibliography research papers.
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The work is structured as follows: In the second paragraph, divided into two
sections, we study the behavior of coproducts of cyclic groups in a modular and a
semisimple aspect.

The first section treats the modular case by finding a criterion for S(RG)/S(RA)
to be a coproduct of cyclic groups provided that char(R) = p, p is a prime, under
some additional restrictions on G and A; for instance such as G is torsion and∐

q 6=p Gq ⊆ A. As a consequence, we obtain a necessary and sufficient condition for
S(RG) to be a Cω+1-group in the sense of Megibben (= a pillared group in other
terms due to P. D. Hill). These criteria expand the corresponding ones of T. Mollov
in [12]. We also point out that a counterexample due to Mollov in his reviewer’s
report [16], concerning our assertion in [4], is an absurdity.

The second section deals with the semisimple case, where we establish criteria
for S(RG) to belong to major classes of abelian groups provided R is either a field
of the first kind or of the second kind with respect to p, both with char(R) 6= p. To
this aim, we deduce a new extension of a group-theoretic attainment of Dieudonné
[11].

We also eliminate some minor misprints in [4].

We end the paper with concluding discussion and remarks where we list certain
unanswered questions and conjectures.

2 Main Results

1. Modular group rings

The next affirmation was proved by Mollov [12, Proposition 6 b)] in a slightly
modified form for the case when R is a field. In his proof such a limitation on R
to be a field is essential. We now generalize this claim to an arbitrary commutative
ring R with 1 and prime characteristic p by the usage of a different and more smooth
approach.

We are now in a position to restate in an equivalent form the cited above Mollov’s
result.

Theorem 1. Suppose G is an abelian group with a subgroup A, suppose M is a
p-divisible group with Mp = 1 and suppose char(R) = p is a prime. Then S(R(Gp ×
M))/S(R(Ap×M)) is a coproduct of cyclic groups if and only if Gp/Ap is a coproduct
of cyclic groups.

Proof. Evidently, Gp/Ap
∼= GpS(R(Ap × M))/S(R(Ap × M)) ⊆ S(R(Gp ×

M))/S(R(Ap × M)) since Gp ∩ S(R(Ap × M)) = Ap. Thus the necessity obviously
holds.

In order to prove the sufficiency, we assume that Gp/Ap is a coproduct of cyclic
groups. Appealing to the classical Kulikov’s criterion, Gp/Ap = ∪n<ω(Gn/Ap), Ap ⊆

Gn ⊆ Gn+1 ≤ Gp and Gn ∩ Gpn

p ⊆ Ap that is equivalent to Gn ∩ Gpn

⊆ Ap.
Therefore, Gp = ∪n<ωGn and Gp × M = ∪n<ω(Gn × M), whence S(R(Gp ×
M)) = ∪n<ωS(R(Gn × M)) and S(R(Gp × M))/S(R(Ap × M)) = ∪n<ω[S(R(Gn ×
M))/S(R(Ap × M))]. Finally, by exploiting the modular law, we compute that
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S(R(Gn×M))∩Spn

(R(Gp×M)) = S(R(Gn×M))∩S(Rpn

(Gpn

p ×M)) = S(Rpn

[(Gn×

M) ∩ (Gpn

p × M)]) ⊆ S(R(M × Ap)), where the last inclusion holds because of the

relationships M ⊆ Gpn

and (Gn × M) ∩ (Gpn

p × M) = M((Gn × M) ∩ Gpn

p ) =
M((Gn×M)∩Gpn

) = M(Gn∩Gpn

) ⊆ M ×Ap which are fulfilled over every natural
n ∈ N. This substantiates the claim that the quotient S(R(Gp×M))/S(R(Ap×M))
is a coproduct of cyclic groups. Hence the theorem.

Corollary 1. Suppose G is an abelian group such that G = Gp × M , where M is
p-divisible, suppose A ≤ G such that M ⊆ A and suppose char(R) = p is a prime.
Then S(RG)/S(RA) is a coproduct of cyclic groups ⇐⇒ G/A is a coproduct of cyclic
groups ⇐⇒ Gp/Ap is a coproduct of cyclic groups.

Proof. It easily follows that A = Ap × M . Therefore Theorem 1 applies to show
that S(RG)/S(RA) is a coproduct of cycles only when so is G/A ∼= Gp/Ap.

Corollary 2. Suppose that G is a torsion abelian group with
∐

q 6=p Gq ⊆ A ≤ G, and
suppose that char(R) = p is a rational prime. Then S(RG)/S(RA) is a coproduct
of cyclic groups ⇐⇒ G/A ∼= Gp/Ap is a coproduct of cyclic groups.

Proof. It follows immediately from Theorem 1 because G = Gp ×
∐

q 6=p Gq, where
the latter direct component is p-divisible.

We come now to the original formulation of the Mollov’s statement from [12].

Corollary 3 (Mollov, 1981). Assume that G is an abelian group, p a prime,
G = Gp × M,A ≤ Gp, and that R is a field of char(R) = p. If M is a p-divisible
group, then S(RG)/S(R(A × M)) is a coproduct of cyclic groups ⇐⇒ Gp/A is a
coproduct of cyclic groups.

Proof. The assertion follows at the substitutions G = Gp × M and A = Ap.

Remark. Proposition 6 a) in [12] was firstly extended in [2] to arbitrary abelian
groups and commutative rings with identity of prime characteristic p without nilpo-
tent elements. When G is a p-group, similar expansions of Propositon 6 b) were
given by us in [3]. The real advantage here is that we have considered a more
general coefficient ring.

For any ordinal number λ an abelian p-group H is termed by C. Megibben a
Cλ-group if H/Hpα

is totally projective for all α < λ. Apparently, every abelian
p-group is a Cω-group.

Our next statement concerns the finding of a criterion when S(RG) is a Cω+1-
group, that is, the first Ulm factor S(RG)/S1(RG) is a coproduct of cyclic groups
(these groups are called also pillared by P.D. Hill).

Proposition 1. Let G be a torsion abelian group and R a perfect commutative ring
with 1 of prime char(R) = p. Then S(RG) is a Cω+1-group ⇐⇒ Gp is a Cω+1-group.

Proof. Follows directly from Theorem 1 by putting Ap = G1
p.

We close the modular case with some special critical commentaries (for a conve-
nience, the symbols are as in [4]): The purported in [16] counterexample of Mollov
on the Proof 2 of Proposition 1 from [4] is demonstrably false. In fact, Mollov
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constructed an abelian p-group A so that A = H × L where H is an infinite co-
product of cycles and L is finite cyclic of order p. Henceforth, Ap = Hp ⊆ H.
Besides, the Mollov’s choice Hk = H is tendentious since in our proof in [4]
H = ∪∞

k=1
Hk,Hk ⊆ Hk+1 and Hk ∩ Hps

k = 1, for each k < ω and some sk ∈ N,
where Hk are proper subgroups of H (see, for instance, the well-known criterion of
Kulikov for coproducts of torsion cyclic groups).

2. Semi-simple group rings

We start here with the specification that in [4] (e.g. the Abstract of [4]) the
letter K denotes the first kind field with respect to p of char(K) 6= p with the extra
restriction that its spectrum sp(K) about p contains all naturals that is valid only
in the situations when we consider the purity or the direct factor properties of G in
S(KG) (i.e. in Lemma on purity on p.38, Theorem 7, Corollary 8, Claim 13, and
the comments after Problem 17).

Moreover, as it was truly noted in [16], the criteria (4) and (5), respectively (4’)
and (5’), of [4] are true only in the infinite case. The word ”infinite” was omitted
involuntarily. Also in (5) and (5’) the condition that the abelian p-group A is a
”direct sum of cyclics” follows at once by the relation Api

= 1, which means that A
is bounded, so it is out of use and can be dropped.

As usual, (pt) designates a cyclic group of order pt.

Now, we shall prepare the finite case.

Claim 1. Let G be an abelian p-group and let R be a field of the first kind with
respect to p of char(R) 6= p. Then S(RG) cannot be non-trivial finite elementary or
finite reduced homogeneous no elementary.

Proof. If G is a finite abelian p-group with exponent exp(G) = pj , j ≥ 1 and
R is a field of the first kind with respect to p of char(R) 6= p, consulting with
([13], [15]), we write S(RG) ∼=

∐
δi0

−1
(pi0) ×

∐
δi1

(pi1) × · · · ×
∐

δir

(pir), where

i0, i1, · · · , ir ∈ sp(R) = {i0, i1, i2, · · · |i0 < i1 < i2 < · · · }, ir is the minimal number
so that ir ≥ j, i′ ∈ sp(R) plus the condition that i′ < i is the minimal number with
this property if it generally exists and where the numbers δi are described in the
following manner: δi = (|G[pi]| − |G[pi′ ]|)/(R(εi) : R), i 6= i0; δi = |G[pi0 ]|, i = i0.
Moreover, δi = 0 whenever i > ir and i ∈ sp(R), since for any t ∈ N : G[pt] =

G[pt+1] ⇐⇒ Gpt

= 1 ⇐⇒ G = G[pt] as well as δi0 = 1 ⇐⇒ G[pi0 ] = 1 ⇐⇒ G = 1
because i0 ≥ 1. This shows that our claim really holds true.

Claim 2. Let G be a finite abelian p-group and R a field of the second kind with
respect to p of char(R) 6= p. Then S(RG) is elementary ⇐⇒ p = 2, R 6= R(ε2) and
Gp = 1.

Proof. Referring to [13,14] it follows that S(RG) ∼=
∐

|G|−1
(p), where p = 2, R 6=

R(ε2) and |G| = |G[p]|. Since G is finite and G[p] ⊆ G, we have G = G[p], so Gp = 1.

Remark. In the criteria (5) and (5’) from [4] we observe that i = exp(G) /∈ sp(K),
otherwise S(KA) is not, never, reduced homogeneous no elementary. Hence we
conclude that sp(K) does not contain all naturals in that situation.
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We strongly emphasize that in assertions (7) and (7’) of [4] there is a typos.
Below we give the correct formulating.

In fact, ”S(KA), respectively Up(KA), is pα-projective for some α ≥ ω ⇐⇒
A is a direct sum of cyclics” should be written and read as ”S(KA), respectively
Up(KA), is pα-projective for some α ≤ ω ⇐⇒ A is (a bounded or an unbounded)
direct sum of cyclics”.

For the case when α ≥ ω + 1, the problem seems to be very difficult. In the
next lines, we obtain some partial advantage in this way. In order to do this, we
foremost note the classical fact that in [11] it was firstly constructed by Dieudonné
the existence of a separable pω+1-projective abelian p-group which is not a coproduct
of cycles.

We formulate the following conjecture, namely:

Conjecture 1. Assume that G is an abelian p-group and that R is the first kind
field with respect to p of char(R) 6= p. Then S(RG) is pα-projective for α ≥ ω + 1
⇐⇒ S(RG) is separable pα-projective ⇐⇒ G is separable pα-projective.

The first implication follows easily, because by [14] we have that S1(RG) = 1
since S(RG) reduced. The second one is difficult. This difficulty ensues via the
following reason, thus contrasting with the modular case (see [2]). Utilizing the
Nunke’s criterion for pω+n-projectivity where n ∈ N0 = N ∪ {0} (see, for instance,
[17]), if G is pω+n-projective then there is P ≤ G[pn] so that G/P is a coproduct of
cyclic groups. On the other hand, S(RG)/[(1 + I(RG;P )) ∩ S(RG)] ∼= S(R(G/P ))
is a coproduct of cyclic groups according to [14], whereas (1+ I(RG;P ))∩S(RG) is
not always bounded at pn (i.e. equivalently is not always a subgroup of S(RG)[pn]).

Now, we shall verify the second implication of the foregoing stated conjecture
under the truthfulness of another conjecture (see [4, Problem 17]). Indeed, we
assume that the Generalized Direct Factor Conjecture ([4, Problem 17]), which says
that S(RG)/G is a coproduct of cyclic groups whenever G1 = 1 under the same
circumstances on R and G as in Conjecture 1, holds in the affirmative and also
additionally assume that the spectrum sp(R) of R about p, defined as in ([13-15]),
contains all natural numbers, that is N ⊆ sp(R). Invoking [7] or the Lemma from
[4], G is pure in S(RG). When there are gaps in the sp(R), we know that G is not
always pure in S(RG).

Furthermore, we distinguish two different approaches.

First Approach. Bearing in mind a classical theorem of L.Ya. Kulikov, G must be
a direct factor of S(RG), thus writing S(RG) ∼= G × S(RG)/G. Thereby S(RG) is
completely characterized by making use of [8].

Consequently, S(RG) is separable pα-projective for any ordinal α ⇐⇒ G is sep-
arable pα-projective for that α.

Second Approach. We shall apply successfully the following new version of the
Generalized Dieudonné Criterion (for a strengthening in other ways see also [9] and
[10]).

Criterion. Suppose A ≤ G so that G/A is a coproduct of cyclic groups. Then, for
some m ≥ 0, G is pω+m-projective ⇐⇒ ∃ C ≤ A[pm] : A = ∪n<ωAn, C ⊆ An ⊆ An+1
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and for every n ∈ N: An ∩Gpn

⊆ C ⇐⇒ ∃ C ≤ A[pm] : A[p] = ∪n<ωBn, Bn ⊆ Bn+1

and for each n ∈ N: Bn ∩ Gpn

⊆ C.

Proof. ”⇒”. With the aid of the Nunke’s criterion [17], there is a p-group T such
that T ≤ G[pm], G = ∪n<ωGn, T ⊆ Gn ⊆ Gn+1 and Gn ∩ Gpn

⊆ T . Therefore
A = ∪n<ωAn, where An = Gn ∩A, and we subsequently compute An ∩Gpn

= Gn ∩
Gpn

∩A ⊆ A∩T . So, by the setting A∩T = C, we are done. For the second equivalent
form of the criterion, we observe that A[p]C/C ⊆ (A/C)[p] = ∪n<ω(En/C) where
En ⊆ En+1 ⊆ A and En ∩ Gpn

⊆ C, hence A[p] = ∪n<ωEn[p] where Bn = En[p].

”⇐”. Under the assumptions, there is C ≤ A[pm] ≤ G[pm] so that A/C is a
countable union of an ascending chain of subgroups with bounded in G/C heights.
After this, because of the isomorphism G/C/A/C ∼= G/A, the latter factor-group
is a coproduct of cycles. Consequently, with the Dieudonné criterion [11] in hand
(see [9] and [10] as well), we derive that G/C must be a coproduct of cyclic groups.
Finally, Nunke’s criterion in [17] is applicable to obtain the claim.

This terminates the proof of the criterion.

And so, since by hypotheses S(RG)/G is a coproduct of cycles whenever G1 = 1
and G is pure in S(RG), the preceding criterion applies to show that S(RG) is
separable pω+m-projective if and only if so does G; m ∈ N.

Remark. If G/A is a coproduct of cycles and A is pω+m-projective, it does not
follow in general that G is pω+m-projective as well.

Major consequences arise for various choices of the subgroup A, specifically when
A = Gp; or A = G[p] so G/G[p] ∼= Gp; or A = L, a large subgroup of G (see [6]) -
we notice that G/L is a coproduct of cyclic groups.

Finally, we remark that when R is a field of the second kind with respect to p
of char(R) 6= p, S(RG) is pα-projective for some arbitrary ordinal α ⇐⇒ S(RG)
is pω-projective (= a coproduct of cycles). This is so since, by consulting with
[14], S(RG) is ever a coproduct of cyclic and quasi-cyclic groups (= a coproduct of
cocyclic groups). But, on the other hand, it is reduced as being pα-projective too.

We continue with two minor specifications of technical character.

Firstly, after ”Lemma [9]” in [4], the sentence ”... is a direct factor of S(KA),
hence of V (KA) by [10]” should be more precise by ”... is a direct factor of S(KA),
hence of V (KA) by [10] and [17]”. Moreover, in Proposition 9 of [4] the subgroup H
should be pure in the separable p-group A, which condition on ”purity” was omitted
involuntarily.

Secondly, in [16], Mollov has criticized that we have not showed in Lemma 6 of
[4] that I = (1 + I(RG;C)) ∩ S(RG) is a group whenever C ≤ G. Of course, that
this intersection I is a group follows plainly either owing to the mentioned after
Conjecture 1 fact that I is the kernel of the homomorphism S(RG) → S(R(G/C))
or in the following manner: Given u1 ∈ I and u2 ∈ I. Hence u1 = 1 + v1 and
u2 = 1 + v2, where v1, v2 ∈ I(RG;C). Furthermore, u1u2 = 1 + v1 + v2 + v1v2 ∈ I
since it is a p-element and I(RG;C) is a ring being an ideal. On the other hand,

since u1 ∈ S(RG), there exists k ∈ N such that upk

1
= 1, whence u−1

1
= upk−1

1
∈ I

employing inductively the previous step. So, the claim is true.
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Finally, we answer two problems posed by us in [4] asked when S(RG) is quasi-
pure projective (q. p. p.) and quasi-pure injective (q. p. i.), provided R is the first
kind field with respect to p of char(R) 6= p.

To this goal, we quote the following necessary and sufficient conditions argued
in [1].

Criteria (Berlinghoff–Reid, 1977)

(1) The p-group G is q. p. i. ⇐⇒ G is a coproduct of a divisible p-group and a
torsion complete p-group.

(2) A non-reduced p-group G is q. p. p. ⇐⇒ G is an algebraically compact
p-group. A reduced p-group G is q. p. p. ⇐⇒ G is a coproduct of cyclic p-groups.

And so, we proceed by proving the following.

Theorem 2. Suppose G is an abelian p-group and R is a field of the first kind with
respect to p of characteristic not equal to p. Then

(1’) S(RG) is q. p. i. ⇐⇒ G is algebraically compact, provided N ⊆ sp(R).

(2’) The non-reduced S(RG) is q. p. p. ⇐⇒ G is non-reduced algebraically
compact. The reduced S(RG) is q. p. p. ⇐⇒ G is a coproduct of cyclic groups.

Proof. Point (1’) follows directly from (1) and [5] (see [7] as well). The first part
half of (2’) holds in virtue of (2) combined with ([4], dependence 12) (see also [5]).
The second one follows again by (2) along with [14].

The proof is completed.

3 Concluding Discussion

We conclude with certain questions and conjectures of interest. We mainly dis-
cuss here a problem related to [4] and pertaining to finding the explicit form of basic
subgroups in semisimple group rings. The isomorphism classification of such basic
subgroups was firstly established in ([4], Proposition 11). Nevertheless, the explicit
type of these subgroups will definitely be of some importance.

We state the following:

Conjecture 2. Suppose that G is a separable abelian p-group with an arbitrary
but fixed basic subgroup B and that R is the first kind field with respect to p of
char(R) 6= p so that N ⊆ sp(R). Then B′ = [1 + I(RG;B)] ∩ S(RG) is a basic
subgroup of S(RG).

We attack our claim like this: That B′ is pure in S(RG) and that S(RG)/B′ ∼=
S(R(G/B)) is divisible follow not so hard from [4] and more especially subsequently
referring to Lemma 6 and relation (8) of [4].

More complicated is the question how to derive that B′ is a coproduct of cyclic
groups. We show now that such a construction naturally depends on the foregoing
used Generalized Direct Factor Conjecture (Problem 17 of [4]). Indeed, if we have
a priori that S(RG)/G is a coproduct of cyclic groups, we observe that B′/B ∼=
B′G/G ⊆ S(RG)/G possesses this property as well. Moreover, appealing to [7], B
being pure in G is pure even in S(RG) whence in B′. Finally, the application of a
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classical theorem of L. Kulikov, used also above, ensures that B′ ∼= B × B′/B is a
coproduct of cyclic groups, in fact, as wanted.

However, the complete proof is a theme of another research investigation, where
a new simpler approach might work.

Acknowledgment: The author would like to thank the referee for the expert sug-
gestions made.
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