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The numerical analysis of the

tense condition of a solid body with

the asymmetrical tensor of strains

Vasile Ceban, Ion Naval

Abstract. In this paper an approach permitting to make calculation of non-steady
fields of elastic bodies with an asymmetrical stress tensor is proposed. On the basis of
integral equations the explicit difference network, founded on S.K. Godunov method
named ”disintegrations of a gap” is constructed. The versions are considered, when the
difference network approximates an initial set of equations with the first and second
order of accuracy.
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The classical theory of elasticity is based on the model of a solid body in which
interaction between particles is realized only by central forces.

However, it is impossible to explain satisfactorily the regularities of some phe-
nomena, for instance, the spreading of the short acoustic waves in a crystalline solid
body, polycrystalline metal and high polymer.

The theoretical results do not give satisfactory concordance with experimental
data for a body with obviously expressed polycrystalline structure, in the complex
tense condition with high gradient of the tension.

The model elaborated for the explanation of these phenomena differers from
classical one by the fact that tense condition on elementary platform is characterized
alongside with the vector of the power tension by the vector of moment tension,
referred to the same unit platform as the vector of the usual tension.

The model of elastic moments medium was created in which infinitely small
volume possesses six degrees of freedom, and the interaction between elements of
the medium is realized by power and moments tensions [1–4].

Here we are concentrated on the consideration of the variant in which the motion
of the medium point is completely described by the vector of the onward displace-
ment , but the vector of the angular tumbling is equal to the local rotation of the
medium in the sense of the usual theory of elasticity, i.e.

−→ω =
1

2
rot−→u .

Such model is known under the name of continuum Kossera with straight rota-
tion [5–7]. Each point of the medium has 3 degrees of freedom, and its motion is
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completely defined by the vector −→u . In this variant of the moment theory of elas-
ticity four independent elasticity constants: λ, µ, l, k are considered ; λ, µ are the
Lame parameters, l is the constant with dimension of the length, k is a dimensionless
constant of the type of Poison coefficient.

The waves of the expansion in the Kossera medium with straight rotation do
not differ from the expansion waves in the classical theory of elasticity, however,
the tension moments influence essentially on the distortion waves consideration. We
shall present basic system of the equations for the case of the asymmetrical theory
of elasticity we are interested in.

The equations of the motion for the plane case in a rectangular coordinate system
will be of the form:

∂σxx

∂x
+

∂σxy

∂y
= ρ

∂2u

∂t2
,

∂σyx

∂x
+

∂σyy

∂y
= ρ

∂2v

∂t2
, (1)

where u, v are components of the displacement vector −→u , and σxx, σyy, σxy, σyx are
components of the tension tensor.

In this case σxy 6= σyx, and the relations between components of the tension and
deformation taking in account inertness of the medium’s particles rotation are of
the form [8]

σxx = λ(εxx + εyy) + 2µεxx, σyy = λ(εxx + εyy) + 2µεyy,

σxy = µ

[

εxy − l2
(

∂2ω

∂x2
+

∂2ω

∂y2
−

k2ρ

µ

∂2ω

∂t2

)]

(2)

σxy = µ

[

εxy + l2
(

∂2ω

∂x2
+

∂2ω

∂y2
−

k2ρ

µ

∂2ω

∂t2

)]

,

where ρ is the density, ω = ∂u/∂y − ∂v/∂x.
As a consequence of the relations (2) the equation of the medium particles rota-

tion is examined in the following form:

2k2ρl2
∂2ω

∂t2
=

∂Mzx

∂x
+

∂Mzy

∂y
+ (σxy − σyx) ,

where σxy + σyx = 2µεxy.
The internal moments Mzx and Mzy are expressed by ω as follows

Mzx = 2µl2
∂ω

∂x
, Mzy = 2µl2

∂ω

∂y
. (3)

The numerical integration of the hyperbolic system (4) is realized in the presence
of the initial and border conditions by the method, founded on approximations of
the equations by finite differences taking into account relations along characteristic
directions.
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For the numerical solution of the moment theory of elasticity equations, S. K.
Godunov [9] explicit difference scheme will be considered. It requires to pass to the
system of equations in first-order partial derivatives. Taking in consideration the
velocity of the displacement, and differentiating (2) by time, after uncomplicated
transformations (4) will be obtained.

Here with the bar the corresponding functions differentiated by time are marked.
From now on for convenience, the bar will be omitted. It is known that the method
requires the determination of the characteristic equations and relations for them. In
accordance with S.K. Godunov method for the determination of the characteristics
in x direction free terms and derivatives by y are excluded from the system (4).

It is easy to note that in the obtained system of equations we have:

a) Two equations form up closed group giving the unknown functions σxx, u;

b) Two equations form up closed group giving the unknown functions σxy, v;

c) Two equations form up closed group giving the unknown functions Mzx, ω

∂σxx

∂x
+

∂σxy

∂y
= ρ

∂u

∂t
,

∂σyx

∂x
+

∂σyy

∂y
= ρ

∂v

∂t
,

∂σxx

∂t
= λ

(

∂u

∂x
+

∂v

∂y

)

+ 2µ
∂u

∂x
,

∂σyy

∂t
= λ

(

∂u

∂x
+

∂v

∂y

)

+ 2µ
∂v

∂y
, (4)

∂σxy

∂t
+

∂σyx

∂t
= 2µ

(

∂u

∂y
+

∂v

∂x

)

,

2k2l2ρ
∂ω

∂t
=

∂Mzx

∂x
+

∂Mzy

∂y
+ σxy − σyx,

∂Mzx

∂t
= 2µl2

∂ω

∂x
,

∂Mzy

∂t
= 2µl2

∂ω

∂y
.

Father, following the known procedure, we shall multiply the first (the second)
equation of the obtained first group of ”one-dimensional” system on the α1 (α2) and
add both equations.

As a result we get

∂

∂ t
{α1ρ u + α2σxx} =

∂

∂ x
{α2(λ + 2µ)u + α1σxx}. (5)

Our purpose consists in obtaining the characteristic equation for the Reman
invariant F in the following form:

∂F

∂ t
= η

∂F

∂ x
.
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The linear combination of the velocity and tension (5) will be an invariant F if
the following conditions are fulfilled

α1ρ = α2(λ + 2µ)/η; α1/η = α2.

In this homogeneous system one needs to determine such a value η for which its
nonzero solution exists. Consequently,

(ρ − (λ + 2µ)/η2)α1 = 0; (ρ − (λ + 2µ)/η2)α2 = 0. (6)

Since for the existence of a nonzero solution either α1, or α2 must be different
from zero, we find eigenvalues ηi:

η1,2 = ±
√

(λ + 2µ)/ρ = ±c1,

where c1 is the velocity of the longitudinal wave spreading.
Proceeding similarly, for the second group of equations we shall get

η3,4 = ±
√

µ/ρ = ±c2,

where c2 is the velocity of the transversal wave spreading.
The third group of equations gives

∂

∂ t

{

α1Mzx + 2α2k
2ρl2ω

}

=
∂

∂ x

{

α2 Mzx + 2α1µl2ω
}

. (7)

The linear combination (7) will be an invariant F if the following conditions are
fulfilled:

α1 = α2/η, α1µ/η = α2k
2ρ. (8)

In homogeneous system (8) it is necessary to determine such value of η, for which
a nonzero solution for this system exists. Consequently,

(k2ρ − µ/η2)α1 = 0, (k2ρ − µ/η2)α2 = 0. (9)

Since the existence of a nonzero solution necessitates that either α1, or α2 must
be different from zero, we find eigenvalues ηi:

η5,6 = ±
√

µ/k2/ρ = ±c3.

Because in the medium only one transversal wave must be, we require k = 1 and
c3 = c2. Really, if the volume deformation δ = ∂u/∂x + ∂v/∂y will be introduced,
then it is possible to reduce the system of equations (4) to the following form:

∆δ −
1

c2
1

δtt = 0; ∆ω −
1

c2
2

ωtt − l2
(

∆ω −
k2

c2
2

ωtt

)

= 0. (10)

As can be seen from (10), this equation is a wave one relative to σ, as well as in
the classical linear theory of elasticity while shift deformation ω satisfies the fourth
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order equation. By the study of the flat waves spreading in the elastic medium three-
dimensional and shift deformation are expressed through four arbitrary functions
depending on the flat waves [10]

Z1,2 = t − θx ∓
√

c2
1
− θ2y, Z3,4 = t − θx ∓

√

c2
2
− θ2y,

where θ is an arbitrary parameter.
The equation (10) relative to δ allows arbitrary solutions for flat waves through

Z1,2.
We research the equation (10) for ω. Let ω = f (γt − αy − βx). Substituting in

equation (10), we shall get

(

α2 + β2 − γ2/c2
2

)

f
′′

− l2
(

α2 + β2
) (

α2 + β2 − k2γ2/c2
2

)

f IV = 0 (11)

From the given equation it follows that flat waves of the type ω = f (γt − αy − βx)
for arbitrary type of the functions f are possible only by the condition k = 1,
α2 + β2 − γ2/c2

2 = 0.
So, further we shall everywhere consider k = 1.
We shall consider further the case of η1,2 = ±c1. Then from (6) it follows that α1

is an arbitrary constant value, which we take equal to ±1, and the factor α2 = ±1/c1.
Then the invariant F1 = ρu ± σxx/c1.
Similarly it is possible to obtain F2 = ρv ± σxy/c2; F3 = Mzx ± 2α2ρl2/c2ω.
This means that along the characteristics ∂ x

∂ t = ±ηk the relations Fk = const
are fulfilled, because

dFk =
∂Fk

∂ t
d t +

∂Fk

∂ x
dx =

(

∂Fk

∂ t
± ηk

∂Fk

∂ x

)

dt = 0.

By analogy with ”one-dimensional” system relative to the variable x, ”one-
dimensional” system relative to the variable y can be considered, obtained from
system (4) when excluding derivatives by y.

The direct comparison of these systems shows that they become completely
identical after establishing the correspondence:

x ↔ y, u ↔ v, σxx ↔ σyy, σxy ↔ σyx, Mzx ↔ Mzy, Fk ↔ Φk.

The characteristics and relations for them are automatically obtained with ac-
count of this correspondence.

The invariants Fk and Φk(k = 1, 2, 3) possess important features that along
straight line ±ckt + x = const they keep constant values.

These features are put in the base of the finite difference scheme construction.
In the domain of the arguments x and y variation we shall introduce uniform

differences schemes as follows. The area will be limited by the contour, given by the
restrictions 0 ≤ x ≤ a, 0 ≤ y ≤ b. We shall cover this square-wave area with the net
as follows: for x

hx = a/I, xi = i · hx, i = 1, 2, · · · , I,
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and for y

hy = a/J, yj = j · hy, j = 1, 2, · · · , J.

The nodes of the deference net, in which we shall define the unknown functions,
choose in the cell center, formed by orthogonal net. All unknown functions are
related to the center of accounting cell and are considered constant within a separate
cell. Since the problem is dynamic then in the difference scheme the function values
are present on two temporary stratums tn and tn+1, with step on time τn = tn+1−tn.

We shall mark the functions defined on upper temporary layer tn+1, by
ϕi−1/2,j−1/2 or ϕ, and on the under-stratums by ϕi−1/2,j−1/2 or ϕ. The approxima-
tion of the system of equations (4) is built on the base of integral identity, equivalent
to the system (4).

The solution will be defined in the three-dimensional space with coordinate x, y, t.

We shall consider the elementary volume V , formed by the coordinate planes
x = xi, x = xi−1, y = yj, y = yj−1, t = tn, t = tn−1. Let us take integral from the
first equation of the system (4) on volume V :

ρ

∫

V

∂u

∂t
dV =

∫

V

[

∂σxx

∂x
+

∂σxy

∂y

]

dV

Considering that dV = dxdydt and applying integrations formulas by parts, we
get

ρ

∫

S1

u|
tn+1

tn dxdy =

∫

S2

σxx|
xi+1
xi

dtdy+

∫

S3

σxy|
yj+1
yj

dxdt.

Here through S1, S2, S3 we shall mark the areas sides of the elementary volume.
Approximating the obtained integrals on the areas S1, S2, S3 by square formula of
the central rectangle, get the following difference equation

ρ (u − u)hxhy =
(

Σxxi,j−1/2 − Σxxi−1,j−1/2

)

hyτ+

+
(

Σxyi−1/2,j − Σxyi−1/2,j−1

)

hxτ.

The functions u, σxx, σxy are determined on the lower temporary layer tn, and
u, σxx, σxy are determined on the temporary layer tn+1. In the center of the lateral
sides S1, S2 ”greater” values are defined, their expressions through ”small” values
are given below.

The obtained equation will be divided by hx · hy · τ

ρ
u − u

τ
=

Σxxi,j−1/2 − Σxxi−1,j−1/2

hx
+

Σxyi−1/2,j − Σxyi−1/2,j−1

hy
.

The rest of the equations are approximated similarly, and that gives

ρ
v − v

τ
=

Σyxi,j−1/2 − Σyxi−1,j−1/2

hx
+

Σyyi−1/2,j − Σyyi−1/2,j−1

hy
,
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σxx − σxx

τ
= (λ + 2µ)

Ui,j−1/2 − Ui−1,j−1/2

hx
+ λ

Vi−1/2,j − Vi−1/2,j−1

hy
,

σyy − σyy

τ
= λ

Ui,j−1/2 − Ui−1,j−1/2

hx
+ (λ + 2µ)

Vi−1/2,j − Vi−1/2,j−1

hy
,

σxy − σxy

τ
+

σyx − σyx

τ
= 2µ

(

Ui−1/2,j − Ui−1/2,j−1

hy
+

Vi,j−1/2 − Vi−1,j−1/2

hx

)

, (12)

2ρl2
ω − ω

τ
=

Mzxi,j−1/2 − Mzxi−1,j−1/2

hx
+

Mzyi−1/2,j − Mzyi−1/2,j−1

hy
+ σxy − σyx,

M zx − Mzx

τ
= 2µl2

Ωi,j−1/2 − Ωi−1,j−1/2

hx
,

Mzy − Mzy

τ
= 2µl2

Ωi−1/2,j − Ωi−1/2,j−1

hy
.

The built system of equations in finite differences (12) approximates the system
of the differential equations (4). For finishing of the equations in finite differences
building is required to indicate the way of the ”greater” values calculation through
”small”. ”Greater” values are defined in the center of the lateral sides of the volume
V . Their expression through ”small” values ϕ in internal nodes of the net are found
from characteristic correlations, considered above.

”Greater” values Φ in the x direction are calculated as follows . We shall con-
sider two nearby cells on temporary layer tn, the centers of which are marked by
i−1/2, j−1/2 and i+1/2, j−1/2. We shall conduct from these point characteristics
with slopping ±c1 , but from point of their intersection we shall lower characteristics
with slopping ±c2. Since along these straight linear combinations of the unknown
function maintain constant values, it is possible to write following correlations

ρUi,j−1/2 + Σxxi,j−1/2
/c1 = ρui+1/2,j−1/2 + σxxi+1/2,j−1/2

/c1,

ρUi,j−1/2 − Σxxi,j−1/2
/c1 = ρui−1/2,j−1/2 − σxxi−1/2,j−1/2

/c1. (13)

Solving system (13) relative to ”greater” values, we get

Ui,j−1/2 = (ui+1/2,j−1/2 + ui−1/2,j−1/2)/2+

+(σxxi+1/2,j−1/2
− σxxi−1/2,j−1/2

)/2/ρ/c1,

Σxxi,j−1/2 = ρc1(ui+1/2,j−1/2 − ui−1/2,j−1/2)/2+
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+(σxxi+1/2,j−1/2
+ σxxi−1/2,j−1/2

)/2.

Doing similar discourses and transformations, we shall define the rest ”greater”
values, in direction y similarly as in direction x.

”Greater” values, on the border of the area are defined from three relations for
the characteristics and three border conditions.

The initial conditions for the examined scheme are written by change continuous
function by ”small” values, determined on the net.

By decompositions of the discrete function, entering into difference scheme, in
Taylor row in the neighborhood of the point (xi, yj , tn) it is possible to show that
built accounting scheme has a first approximation order. Stability condition can
be received in the base of the Churant-Fridrix-Levi criterion, which confirms that
velocity in differences of the wave spreading on each directions, must not be less,
than velocity of the wave for differential approach.

Then we get

τ ≤

(

1

τ1

+
1

τ2

)−1

,

where τ1 ≤ hx

c1
, τ1 ≤

hy

c1
.

When execution of this condition is ensured, the solution of the built difference
problem will be converging with the first order accuracy to exact solution. In order
to study possibilities of the using at calculation of the second order accuracy schemes
we shall consider certain modification of the scheme built above. Increasing of the
scheme accuracy can be reached by account of centering differences function on
temporary interval and taking into account of the change tangent to the verge of
the sought function [11].

In obtained above grid-characteristic scheme, auxiliary ”greater” values on the
cell border were calculated at condition of constancy values of the vector solution
components within each elementary cell. In this case, for determination of the values
in cross point of the characteristics with lower time plane, in essence, is used zero
order interpolation that provides the first order accuracy and monotonicity of the
difference schemes. Increasing approximation till the second oder can be reached by
considering more exact interpolation formulas.

For calculation of intermediate values of the sought function on previous tempo-
rary layer nτ we use modified formula for square interpolations.

u± = uk±1/2 + g∗
(

uk∓1/2 − uk±1/2

)

+

+Ag∗ (1 − g∗)
(

uk∓1/2 − 2uk±1/2 + uk±3/2

)

/2.

For the bounded nodes formula with unilateral finite differences is truthful

u± = uk±1/2 + g∗
(

uk∓1/2 − uk±3/2

)

+

+Ag∗ (1 − g∗)
(

uk±1/2 − 2uk±3/2 + uk±5/2

)

/2.
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Here signs ”+”, ”–” correspond to positive and negative slopping of the char-
acteristics g∗ = (1 − τ c1/h) /2; A is the parameter, which value is defined from
condition ‖un − [u]h‖ → min, where un is obtained discrete solution; [u]h is projec-
tion of the sample problem exact solution on the grid; ‖·‖ is the norm in the space
of grid function; h is the spatial step.

It is known that schemes of the raised accuracy order to do not possess mono-
tonicity feature, but choice of the best value of the parameter A allows to minimize
the dispersion of the finite differences solutions comparatively exact and vastly re-
duce drid viscosity, which show the first-order accuracy scheme.

So, the second order accuracy difference scheme differs from first-order accuracy
scheme by way of expressing of the ”greater” values through ”small”.

For nodes of the grid, located in internal area, we write following caracteristics
correlations in x direction

ρUi,j−1/2 + Σxxi,j−1/2
/c1 = sk+1/2 + g∗

(

sk−1/2 − sk+1/2

)

+

+Ag∗ (1 − g∗)
(

sk−1/2 − 2sk+1/2 + sk+3/2

)

/2,

ρUi,j−1/2 − Σxxi,j−1/2
/c1 = sk−1/2 + g∗

(

sk+1/2 − sk−1/2

)

+

+Ag∗ (1 − g∗)
(

sk+1/2 − 2sk−1/2 + sk−3/2

)

/2,

were s± = ρui±1/2,j−1/2 + σxxi±1/2,j−1/2
/c1.

We shall mark the right parts of the last correlations through Si+1/2 and Si−1/2.
Then ”greater” values are expressed through ”small” by formula

Ui,j−1/2 = 0.5
(

Si+1/2 + Si+1/2

)

/ρ,

Σxxi,j−1/2 = 0.5c1

(

Si+1/2 − Si+1/2

)

.

Similarly all rest ”greater” values are got.
Study of the stability by Furie method gives condition

τ ≤ (a+/b−)τ+τ−/
√

τ2
− + (a+/b−)2τ2

+,

were τ+ = max(τx, τy), τ− = min(τx, τy), a+ = max(λi, µi), b− = min(λi, µi),
(i = 1, 2), τx = hx/a+, τy = hy/a+ are the limiting steps, defined from condition of
stability corresponding to one dimentional scheme.

For square greed τ+ = τ− = τ0 = h/a+ and τ ≤ (a+/b−)τ0[1 + (a+/b−)2]−1/2.
A more severe condition have in the case of the first-order accuracy scheme

τ ≤ (a+/b−)τ+τ−[τ− + (a+/b−)τ+],

from which for square grid follows τ ≤ (a+/b−)τ0/[1 + (a+/b−)].
In order to obtain more high accuracy order results brings to expediency of the

hybrid difference schemes using with flows correction, taking as support, described
above scheme variants.
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