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Numerical treatment of the Kendall equation

in the analysis of priority queueing systems

A.Iu. Bejan

Abstract. We investigate here how to treat numerically the Kendall functional equa-
tion occuring in the theory of branching processes and queueing theory. We discuss
this question in the context of priority queueing systems with switchover times. In
numerical analysis of such systems one deals with functional equations of the Kendall
type and efficient numerical treatment of these is necessary in order to estimate im-
portant system performance characteristics.
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Keywords and phrases: Kendall equation, priority queueing systems, switchover
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1 Introduction

1.1 Preliminary notes

It is well known that the Kendall equation is one of fundamental functional equa-
tions which appear in the queueing theory and the theory of branching processes.

Consider a system M |G|1 with Poisson(λt) input flow of requests and random
service time B with c.d.f. B(t). The busy periods in such system are independent
and identically distributed (i.i.d.) random variables (r.v.’s) with some cumulative
distribution function (c.d.f.) Π(t). How does Π(t) depend on B(t) and λ? Let β(s)
be the Laplace-Stieltjes transform of B(t) and π(s)—the Laplace-Stieltjes transforms
of Π(t). It is well-known result that π(s) satisfies the following functional equation:

π(s) = β(s+ λ(1 − π(s))). (1)

The equation (1) is known as Kendall equation due to Kendall (1951). It is not
easy generally to obtain the analytical solution to this equation. Even in simple
cases (choice of B(t)) the solution π(s) may be analytically intractable. This, with
the fact that π(s) should be inverted in order to obtain full information on busy
periods’ distribution, leads to the necessity in numerical method for obtaining the
solution of (1) and providing the absolute error of the evaluation. Such method is
known and it is based on the fact that the right side of Kendall equation, being
considered as a functional operator, has a fixed point, see Abate and Whitt (1992).

The Kendall equation makes part of many analytical results regarding distribu-
tion of busy periods in priority queueing systems Mr|Gr|1—queueing systems with
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Poisson input flows of requests distinguished by importance and one server. Often
such results are stated in the form of the systems of functional equations expressed
in terms of Laplace-Stieltjes transforms.

For example, the LST π(s) of the busy periods’ c.d.f. Π(t) in the priority queue-
ing system Mr|Gr|1 with switchover times under the scheme “with losses” (for the
description of such systems appeal to Mishkoy et al. (2006)) is determined by the
following system of functional equations (see Klimov and Mishkoy (1979)):





πk(s) =
σk−1

σk
{πk−1(s+ λk) + ∆k−1(s)νk(s+ λk[1 − πk(s)])} + λk

σk
πkk(s),

∆k−1(s) = πk−1(s+ λk[1 − πk(s)]) − πk−1(s+ λk),
πkk(s) = νk(s+ λk[1 − πk(s)])πk(s),
πk(s) = hk(s+ λk[1 − πk(s)]),
νk(s) = ck(s+ σk−1){1 −

σk−1

s+σk−1
[1 − ck(s+ σk−1)]πk−1(s)}

−1,

hk(s) = βk(s+ σk−1) +
σk−1

s+σk−1
[1 − βk(s+ σk−1)]πk−1(s)νk(s), k = 1, . . . , r,

π0(s) ≡ 0.

Here πr(s) ≡ π(s), λi is the parameter of the ith Poisson input flow, and σi stands

for
k∑

i=1
λi.

For the same model with zero switchover times as an immediate corollary the
following result follows:





σkπk(s) = σk−1πk−1(s+ λk[1 − πkk(s)]) + λkπkk(s),
πkk(s) = hk(s+ λk[1 − πkk(s)]),
hk(s) = βk(s+ σk−1) +

σk−1

s+σk−1
[1 − βk(s+ σk−1)]πk−1(s), k = 1, . . . , r,

π0(s) ≡ 0.

One can notice the presence of the Kendall equations in such systems.
In the light of these facts, is suggested an acceleration of the scheme of obtaining

a numerical solution to the Kendall equation which gives a gain in the number of
operations (iterations) needed to solve one-dimensional problem (the case of M |G|1
system) as well as multidimensional problem (the case of Mr|Gr|1 system).

1.2 Notations and supporting results

1.2.1 Laplace and Laplace-Stieltjes transforms

Definition 1. Let f(t) be a complex-valued function of real argument satisfying the
following conditions: (i) f(t) = 0 ∀t < 0, (ii) it is a function of bounded variation
on any segment [0, T ], (iii) ∃s0, A ∈ R s.t. |f(t)| ≤ Aes0t. The Laplace transform of
a function f(t) is denoted by f̂(s) and is given by

f̂(s)
∂ef
=

∞∫

0

e−stf(t)dt, (2)

where s ∈ C : ℜs > s0.
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This is a general definition. Conditions (i)-(iii) are required for correctness and
existence of the transform. The Laplace transform is analytical in the right half-
plane ℜs > s0. The infimum of all such s for which the Laplace transform exists is
called the abscissa of convergence and is denoted by σ0. The Laplace transform for
a real-valued function is defined automatically by Definition 1.

The Laplace transform is unique, in the sense that, given two functions f1(t) and
f2(t) with the same transform, i.e. f̂1(t) ≡ f̂2(t), the integral

T∫

0

N(t)dt

of the null function N(t)
∂ef
= f1(t)− f2(t) vanishes for all T > 0 (Lerch’s theorem for

integral transforms). The Laplace transform is linear:

af̂(t) + bĝ(t) = af̂(t) + bĝ(t) (3)

The Laplace transform of a convolution h(t) = f(t)∗g(t) =
∞∫
0

f(t−τ)g(τ)dτ is given

by

ĥ(t) = f̂(t)ĝ(t) (4)

Definition 2. The Laplace-Stieltjes transform of a real-valued function F (t) of real
argument is denoted by F̌ (s) and is given by

F̌ (s)
∂ef
=

∞∫

0

e−stdF (t), (5)

where s ∈ C, whenever this integral exists. The integral here is the Lebesgue-Stieltjes
integral.

Often s is a real variable, and then the LST is a real-valued function. If F (t)
is differentiable, i.e. dF (t) = f(t)dt, then the Laplace-Stieltjes transform of F (t) is
just a Laplace transform of its derivative.

Theorem 1. (Uniqueness) Two different probability distributions have different
Laplace-Stieltjes transforms.

Theorem 2. (Continuity) Let Fn(t) be a cumulative distribution function with LST
ϕn(s), n = 1, 2, . . .. If Fn → F , where F is a possibly improper distribution with
LST ϕ(s), then ϕn(s) → ϕ(s) ∀s > 0. Conversely, if a sequence {ϕn(s)} converges
to ϕ(s) for any s > 0, then ϕ is an LST of a possibly improper distribution F , s.t.
Fn → F . The limiting distribution F will be proper (or a probability distribution
indeed) iff ϕ(s) → 1 when s ↓ 0.
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For the proofs of Theorem 1 and Theorem 2 see Feller (1971).
The nth moment of the non-negative random variable X with p.d.f. fX(t) may

be obtained via its Laplace transform in the following way:

E[Xn] = (−1)nf̂
(n)
X (s)|s=0 (6)

Abate and Whitt (1996) investigated functional operators that map one or more
probability distributions on the positive real line into another using their Laplace-
Stieltjes transforms.

1.2.2 Complete monotonicity and Bernstein theorem

We introduce now an important notion for our further considerations—a notion
of complete monotonicity.

Definition 3. A real valued function ϕ on [0,∞) is said to be completely monotone
(c.m.) if

(−1)nϕ(n)(s) ≥ 0 ∀n ∈ N ∪ {0} ∀s ∈ (0,∞). (7)

Example 1. Functions s−α, e−αs (α ≥ 0), 1
1+s

, 1
s

are completely monotone func-
tions. Function ϕ(a+bs) is completely monotone when ϕ(s) is completely monotone
(a ≥ 0, b > 0).

We will make use of the following important properties of complete monotone
functions in our further exposition. Functions ϕ and ψ are considered to be defined
on R

+.

Property 1. If ϕ and ψ are two complete monotone functions, then their linear
combination αϕ+ βψ is a complete monotone function (α2 + β2 > 0).

Proof. The affirmation follows directly from the definition of complete monotone
function. �

Property 2. If ϕ and ψ are two complete monotone functions, then their product
ϕψ is a complete monotone function.

Proof. We use the method of mathematical induction to show that

(−1)n(ϕψ)(n) ≥ 0 ∀n = 0, 1, 2, ... (8)

Assume that first n derivatives of ϕψ alternate in sign. We first not that ϕψ is
nonnegative and −ϕ′ and −ψ′ are complete monotone functions. Therefore, (i)
−(ϕψ)′ = −ϕ′ψ − ϕψ′ ≥ 0 and this corresponds to the case n = 1 (the basis of
induction), and (ii) we can apply the induction hypothesis for the products −ϕ′ψ

and −ϕψ′. But this immediately means that ϕψ alternates in sign n+ 1 times. By
the principle of mathematical induction the property is proven. �

Property 3. If ϕ is complete monotone and ψ is a non-negative function, s.t. ψ′

is a complete monotone function, then ϕ(ψ) is complete monotone.
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Proof. First, note that ϕ(ψ) is a nonnegative function on R
+. Then, notice that

−ϕ′(ψ) and ψ′ are complete monotone functions. This makes −ϕ′(ψ(s)) = −ϕ′(ψ)ψ′

to be complete monotone (Property 2). We have proven that − [ϕ(ψ)]′ is a complete
monotone function, i.e. ϕ(ψ) is necessarily complete monotone. The property is
proven. �

Laplace transforms of positive Borel measures on R
+ are completely character-

ized by the Bernstein theorem in terms of complete monotonicity.

Theorem 6. (Bernstein (1928)) Function ϕ is complete monotone iff there exists
a unique nonnegative Borel measure µ on [0,∞], s.t. µ([0,∞]) = ϕ(0+) and ∀s > 0

ϕ(s) =
∞∫
0

e−sxµ(dt). Here [0,∞] is a one-point compactification of [0,∞).

Remark 1. The theorem says that the class of complete monotone functions ϕ(s)
on half-line R

+, such that ϕ(0+) ≤ 1 coincides with Laplace-Stieltjes transforms of
cumulative distribution functions.

Example 2. It was mentioned above that the LST of the busy period in the system
M |G|1 satisfies the Kendall equation. It can be shown (Feller (1971), Gnedenko
et al (1971)), that Kendall equation determines a unique function π(s) which is
analytic in the right-half complex plane ℜs > 0. More of this, if the system workload
ρ = −β(0)

λ
< 1, then π(0) = 1, and the c.d.f. Π(t) is a proper cumulative distribution

function. The moments of the busy period Π in the system M |G|1 can be easily
calculated using (6). For example, evaluating the first and second derivatives of π(s)
at zero in (1), one gets:

E[Π] = −π′(0) = −
β′(0)

1 − ρ
=

E[B]

1 − ρ
,

E[Π2] = π′′(0) =
E[B2]

(1 − ρ)3
,

so that

var[Π] = E[Π2] − E[Π]2 =
E[B2] − E[B]2 + ρE[B]2

(1 − ρ)3
.

However, in order to obtain full information on the busy period Π one needs to
invert π(s). This should be found either analytically or evaluated numerically first.

In the case when ρ > 1, the following takes place: π(0) < 1, and Π(t) is an
improper c.d.f., i.e. lim

t→∞

Π(t) < 1, that means that a busy period is of indefinite

length with a positive probability. The case ρ = 1 is very special one.

A thorough discussion on Kendall equation treatment follows next.

2 Kendall equation: numerical treatment

2.1 Kendall fixed point operator

We discuss here in more detail the treatment of the Kendall equation

ϕ̂(s) = ĝ(s+ ρ− ρϕ̂(s)), (9)
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where ρ > 0 and ĝ(s) is a Laplace transform of some p.d.f. g(s) associated with
some proper c.d.f. G(s). In other words, in virtue of Bernstein theorem (Theorem
6 and Remark 1), we suppose ĝ(s) to be a complete monotone function, such that
ĝ(0+) ≤ 1. The coefficient ρ is some non-negative real number.

Denote by CM the set of all complete monotone functions, by CM1 the set
{ϕ(s) ∈ CM|ϕ(0+) ≤ 1}, i.e., CM1 is the subset of complete monotone functions
which correspond to proper or improper c.d.f.’s on R

+.
To analyze (9) we introduce the following operator, which we will call the Kendall

operator :

Kĝ[ϕ](s) : CM1 7→ CMĝ := Im(Kĝ) ⊆ CM1, (10)

Kĝ[ϕ](s)
∂ef
= ĝ(s+ ρ− ρϕ̂(s))), for some ĝ ∈ CM1, and ρ > 0. (11)

First, we show that indeed Im(Kĝ) ⊆ CM1. To see this, note that

ψϕ(s) = s+ ρ(1 − ϕ̂(s))

is a positive function with complete monotone derivative:

ψ′

ϕ(s) = 1 − ρ ˆϕ′(s) > 1 > 0,

ψ′′

ϕ(s) = −ρϕ̂′′(s) ≤ 0,

. . . .

We can apply Property 3 for ĝ(ψϕ(s)) to see that Kĝ[ϕ](s) is complete monotone.
Furthermore, this function is continuous as composition of continuous functions,
therefore

Kĝ[ϕ](0+) = ĝ(ρ(1 − ϕ̂(0+))) ≤ ĝ(0+) ≤ 1.

We conclude that Im(Kĝ) ⊆ CM1 for any given ĝ ∈ CM1.
The following theorem is well-known. Its proof is constructive and it is important

for us.

Theorem 7. The Kendall equation (9) has unique solution ϕ̂(s) ≤ 1, s.t. ϕ̂(s) is a
Laplace-Stieltjes transform of some (probability) distribution Φ which is proper (and
then it is a probability distribution) when −ρĝ′(0) ≤ 1, and improper otherwise.

Proof. Consider the following equation

Qs(x) = ĝ(s+ ρ− ρx) − x = 0 (12)

for a fixed s > 0 and for some x ∈ [0, 1]. The function Qs(x) is a convex function in
respect to x (for any given s > 0), since its second derivative ρ2ĝ′′(s+ ρ(1−x)) > 0.
Moreover, Qs(0) > 0 and Qs(1) < 0, therefore Qs(x) has a unique root x∗ in [0, 1].
Allowing s to take any value from R

+ one obtains the existence and uniqueness of
the solution to the Kendall equation.

We want to show now that this solution is a c.m. function. Denote by 0(s) and
1(s) functions identical to zero and one on R

+, corresp.
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Consider two functional sequences: U = {Kn
ĝ [0](s)}∞n=0 with K0

ĝ [0](s) ≡ 0 and

D = {Kn
ĝ [1](s)}∞n=0 with K0

ĝ [1](s) ≡ 1 ∀s > 0. We show that these sequences
converge in a point-wise sense to the solution ϕ̂(s) to the Kendall equation (9).

It is obvious that K0
ĝ [0](s) ≤ K1

ĝ [0](s) ∀s > 0, since ĝ is a c.m. function. Suppose

that Kn−1
ĝ [0](s) ≤ Kn

ĝ [0](s) ∀s > 0. Then,

Kn+1
ĝ [0](s) = ĝ(s+ ρ− ρKn

ĝ [0](s)) ≥ ĝ(s + ρ− ρKn−1
ĝ [0](s)) = Kn

ĝ [0](s) ∀s > 0.

By induction

Kn
ĝ [0](s) ≤ Kn+1

ĝ [0](s) ≤ ĝ(0) ≤ 1(s) ∀s > 0.

Thus, the sequence U is a monotone sequence of c.m. functions and is bounded
from above—it has a limit which is a c.m. function (by Theorem 2) and which
satisfies the Kendall equation, i.e. lim

n→∞

Kn
ĝ [0](s) = ϕ̂(s). This limit ϕ̂(s) is an LST

of some probability distribution Φ with a total mass Φ([0,∞]) = ϕ(0) ≤ 1.

One can show in a full analogy that D is a non-increasing sequence bounded
from below by 0(s) and its limit is the unique solution to the Kendall equation:

lim
n→∞

Kn
ĝ [1](s) = ϕ̂(s).

It remains to show that the probability distribution corresponding to the solution
of the Kendall equation is proper iff −ρĝ′(0) ≤ 1. To show this, consider

Q0(x) = ĝ(ρ(1 − x)) − x = 0, (13)

as in (12), for x = ϕ(0) = lim
n→∞

Kn
ĝ [0](s), and, thus, x = ϕ(0) is the smallest root of

(13) on [0, 1]. Moreover, since ĝ is an LST of a probability distribution, Q0(0) > 0
and Q0(1) = 0. So, the only possibility for (13) to have 2 roots on [0, 1] can be
realized when Q′

0(1) > 0 (note that Q′′

0(x) > 0 ∀x ∈ (0, 1)), see Figure 1. The
inequality Q′

0(1) > 0 is equivalent to the condition −ρĝ′(0) > 1. If −ρĝ′(0) ≤ 1 then
ϕ(0) = 1 and Φ is a proper probability distribution. �

We might also wish to consider operator Kĝ[ϕ](s) as well as the Kendall equation
for complex argument s, s.t. ℜs ≥ 0. Once obtained a c.m. function of real
argument we can consider it as a function of complex arguments—this is justified
by the principle of analytic continuation.

Theorem 8.The sequence {Kn
ĝ [f̂ ](s)}∞n=0, where f̂ is an LST of some possibly im-

proper c.d.f. F , converges to the unique solution ϕ(s) of the corresponding Kendall
equation. The claim holds for complex s, s.t. ℜs > 0.

Proof. Let first s be a real argument. It was proven in Theorem 7 that the
Kendall equation has a unique solution. Moreover, the evidence of convergence of
{ϕ̂n(s) := Kn

ĝ [f̂ ](s)}∞n=0 to the solution ϕ(s) for any real s > 0 can be obtained in

a constructive way exactly as it was made for the functions f̂(s) ≡ 0(s) and f̂(s) ≡
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Q0(0)

x=phi(0) 1 x

pik (a)

(b)

0

Q'0(1)>0

Q'0(1)<=0(a):

(b):

Figure 1. Alternative for x = ϕ(0).

1(s). Restricting attention to real s suffices to imply the point-wise convergence of
corresponding c.d.f.’s Φn to Φ—the c.d.f. of the solution ϕ (Theorem 2):

ϕ̂n(s) → ϕ̂(s) ⇒ Φn(t) → Φ(t).

However, the point-wise convergence for c.d.f.’s implies the transform convergence
for all complex s = x+ iy, s.t. ℜs = x > 0, since

ℜφ̂n(s) =

∞∫

0

ℜe−stdΦn(t) =

∞∫

0

e−st cos yt dΦn(t) →

∞∫

0

e−st cos yt dΦ(t), (14)

and

ℑφ̂n(s) =

∞∫

0

ℑe−stdΦn(t) =

∞∫

0

e−st sin yt dΦn(t) →

∞∫

0

e−st sin yt dΦ(t), (15)

so that

ℜφ̂n(s) → ℜφ̂(s),

ℑφ̂n(s) → ℑφ̂(s). (16)

We have the following result: φ̂n(s) → φ̂(s) for all complex s with ℜs > 0.
The existence and uniqueness of the solution to the Kendall equation for complex

s follows from the existence and uniqueness of the solution for non-negative real s
and the principle of analytic continuity. �

The result and construction similar to that given in Theorem 7 was well-known
for decades now. The fact that the iterations in the Kendall equation also work for
complex values of the argument s was empirically found by a few authors (e.g. Doshi
(1983)). The first proof of this result can be found in Abate and Whitt (1992). Our
proof is similar, although some of its parts are different. It is heavily based on the
notion of complete monotone function and the Bernstein theorem.
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2.2 Adjustments in iterations of the Kendall operator

We know that if β(s) is a complete monotone function and π(s) satisfies the
Kendall equation

π(s) = β(s+ ρ(1 − π(s))),

then π(s) is also a complete monotone function and can be numerically estimated
at the point s = s∗ ≥ 0 using the following iteration procedure:

π(s∗) = lim
n→∞

π(n)(s∗), where

π(n)(s∗) = β(s∗ + ρ(1 − π(n−1)(s∗))), with π(0)(s∗) ∈ [0, 1]. (17)

Here, the sequence {π(n)(s∗)}∞n=0 is non-increasing if π(0)(s∗) > π(s∗), and non-
decreasing if π(0)(s∗) < π(s∗).

Remark 2. Note that the convergence of {π(n)(s)}∞n=0 to the solution π(s) for
complex s is assured by Theorem 8. However, there is no general result on the
monotonicity of such convergence unless s is real. Abate and Whitt (1992) provided
an example with no monotonicity (in any sense) of iterations in the complex case.

Using the property of complete monotonicity of the solution to the Kendall
equation one can decrease the number of iterations to obtain the solution with a
given precision. The idea is to set initial guess π(0)(s∗) of π(s∗) closer to this value
(s∗ is a real non-negative number).

Suppose we are evaluating the solution to the Kendall equation on a regular grid
{0, h, 2h, . . . , (k− 2)h, (k − 1)h, kh, . . .}. Suppose that πk−2 and πk−1 are the values
which approximate π(s) at the points s = (k − 2)h and s = (k − 1)h. Then, let

π(0)(s∗ = kh) :=
πk−1 + max(0, 2πk−1 − πk−2)

2
(18)

be the initial value for the process of iterations to the Kendall equation to evaluate
π(s) at s = s∗. The simple rationale behind this setting can easily be seen from
Figure 2.

Alternatively, setting

π̃(0)(s∗) := πk−1 ≈ π(s∗ − h),

and

π
˜

(0)(s∗) := max(0, 2πk−1 − πk−2) ≈ max(0, 2π(s∗ − h) − π(s∗ − 2h)),

one may produce two sequences {π̃(n)(s∗)}∞n=0 ց π(s∗) and {π
˜

(n)(s∗)}∞n=0 ր π(s∗)
by iterating the Kendall equation:

π̃(n)(s∗) = β(s∗ + ρ(1 − π̃(n−1)(s∗))),

π
˜

(n)(s∗) = β(s∗ + ρ(1 − π
˜

(n−1)(s∗))), (19)
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(s*-2h,pik-1)

(s*-h,pik-1)

(l)

1

s*-2h s*-h s* s

pik

CB

A

new interval

for estimating pik

Figure 2. Improvement for iterations in Kendall equation

until

ǫn =
π̃(n)(s∗) − π

˜
(n)(s∗)

2
< ǫ,

where ǫ is a given precision. Finally, evaluate π(s∗) ≈
π̃(n)(s∗)+π

˜
(n)(s∗)

2 . The depen-
dence of the number of iterations on the order of accuracy in iterations of the Kendall
equation (for a particular value of s) is shown in Figure 3. The comparison between
improved and not improved iteration process for solving the Kendall equation (for
different types of service distribution) is shown in Figure 4.

3 Concluding remarks

It might seem the adjustments in iterations of the Kendall equation give non-
essential gain in the number of operations needed to perform the iterations in order
to achieve a solution with a certain level of precision in the case of M |G|1. However,
in the context of the study of priority queueing systems with switchover times one
needs to perform the iteration process quite many times. In the light of this, the
adjustment process can be efficiently used for the acceleration of the numerical
scheme’s performance. Using this acceleration procedure the algorithms of busy
period determination for priority queueing systems (e.g., the algorithm BPLST in
Bejan (2004)) can be reviewed and improved.

Acknowledgement. This work was done under support of the SCOPES grant
IB7320-110720.
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