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Junior spatial groups of (22′1)-symmetry

A.A. Shenesheutskaia

Abstract. All junior space groups of (22′1)-symmetry are obtained with the help of
junior space groups of the three-fold antisymmetry.
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I. The problem of generalization of 230 spatial Fedorov symmetry groups G3 with
32 crystallographic P -symmetries (P ∼= G30) includes junior and middle groups. All
the junior groups have already been obtained [1]. Only 2- and 3-middle groups of
(421)- and (621)-symmetries, respectively, are not known.

Consider the generalization of k symmetry groups of any category Gr... with 32
crystallographic P -symmetries in geometric classification. Groups GP

r... are divided
in senior ones, among which for 1-symmetry k groups are symmetry groups of the
category Gr... (generating groups), junior and Q-middle groups. The derivation of
senior groups is trivial, as G = S × P , where S is a classical (generating) group,
P is the permutation group of indices that characterizes the P -symmetry under
consideration, and × is the symbol of the direct product of groups. The derivation
of junior groups of P -symmetry in the case when S has a normal divisor H such that
the factor group P/H ∼= P must be realized in detail. The calculation of Q-middle
groups can be done using the relation between the number of Q-middle groups of
some P -symmetries and the number of junior groups of others P -symmetries. To
make this relation more precise A. M. Zamorzaev [1] introduced the concept of the
strong isomorphism of groups.

Two transformations of a symmetry group S are called undistinguishable if they
are of the same geometric type and generate groups of the same order. So, in the
symmetry group of a rectangular 2 · m = (1, 2,m1,m2) the elements m1 and m2

are undistinguishable and distinct from the element 2. In the symmetry group of a
right parallelepiped 2 : m = (1, 2,m, 2̃) all elements are distinct. In the permutation
group of indices or indices with signs two elements are called undistinguishable if
one of them can go over into the other by means of reindexing. For example, in
the group P1 = {(1, 2)(3, 4), (1, 3)(2, 4)} = (I, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)),
which defines (22)-symmetry, all three non-identical permutations, going over
into each other cyclically by a cyclic change of the indices 2, 3, 4 (or other
three of indices) undistinguishable are, and in the permutation group P2 =
{(1+, 2+)(1−, 2−), (1+, 1−)(2+, 2−)} = (I, (1+, 2+)(1−, 2−), (1+, 1−)(2+, 2−),
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(1+, 2−)(1−, 2+)), which defines (21)-symmetry, there are no undistinguishable el-
ements, as from one of non-identical permutations changes only indices, the other
one – only signs, and the third one – both indices and signs. In the factor group S/H
or P/Q cosets are undistinguishable (as factor group elements) if they contain undis-
tinguishable elements, respectively. So, in the rotation group of a regular quadran-
gular prism S = 4 : 2 = (1, 4, 2(= 42), 4−1, 21, 22, 23, 24) the subgroup H = 2 = (1, 2)
is the normal divisor; in the factor group S/H = (H, 4 ·H, 21 · H1, 22 ·H) (which is
isomorphic to 2 : 2) the cosets 21 · H = (21, 23) and 22 · H = (22, 24) are undistin-
guishable and distinct from the coset 4 · H = (4, 4−1).

Two elements of a group are called equally included in this group if there exists
an automorphism of the group that maps one element into the other. So, in the
group 4 : 2 though the elements 2(= 42) and 21 are undistinguishable, they are not
equally included in this group, and the elements 21, 22, 23, 24 are undistinguishable
and are equally included in 4 : 2. Equally included elements not necessarily are
undistinguishable; so, the elements 2,m and 2̃ are equally included in the group
2 : m, but all these elements are distinct.

An isomorphism of the group G1 onto G2 is called strong if under this iso-
morphism to any undistinguishable and equally included in G1 elements undistin-
guishable elements correspond, and to distinct and equally included in G1 elements
distinct elements correspond. In this case the groups G1 and G2 are called strong
isomorphic (the designation: G1

∼= G2).
P1-symmetry and P2-symmetry are called isomorphic if the permutation groups

P1 and P2, defining these P -symmetries, are strong isomorphic (the designation:
P1

∼= P2).
Among 32 crystallographic P -symmetries in geometric classification only 22 are

not isomorphic. Let enumerate permutation groups that define these P -symmetries,
grouping them by strong isomorphism: 1)1; 2)2 ∼= 1 ∼= 2; 3)3; 4)4 ∼= 4;
5)6 ∼= 31 ∼= 6; 6)22; 7)21; 8)22; 9)32 ∼= 32; 10)42 ∼= 42; 11)42; 12)62 ∼= 62;
13)321 ∼= 62; 14)41; 15)61; 16)221; 17)421; 18)621; 19)23; 20)43 ∼= 43;
21)231; 22)431.

In [1] the following affirmations are proved: 1) The number of different Q-
middle groups of P -symmetry in the family is equal to the number of different
junior groups of P ′-symmetry with the same generating group if P/Q ∼= P ′; 2)
If P1

∼= P2, then the numbers of different junior groups of P1-symmetry and P2-
symmetry with the same generating group are equal. Hence, to calculate the num-
ber of junior and Q-middle groups of all 32 crystallographic P -symmetries by the
generalization of any category of classical groups it is enough to study the groups of
2−, 3−, 4−, 6−, (22)−, (21)−, (22)−, (32)−, (42)−, (42)−, (62)−, (62)−, (41)−, (61)−,
(221)−, (421)−, (621)−, (23)−, (43), (231)- and (431)-symmetry.

To finish this task it is necessary to study different junior groups of hypercrystal-
lographic (22′1)-symmetry (P ∼= G430), as by means of these groups we can calculate
2-middle groups of (421)-symmetry and 3-middle groups of (621)-symmetry, because
421/2 ∼= 621/3 ∼= 22′1.
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II. The symbol 22′1 is a symbol of three-dimensional point group of the CM
kind generated by rotations around two two-fold antirotational and one two-fold
rotational axes which are pairwise orthogonal and by antiidentical transformation
1. One of the hypercrystallographic P -symmetries that models junior symmetry
and antisymmetry group mm′m′ (22′1 ≈ 22′2′1 ≈ mm′ m′), generated by reflec-
tions in three pairwise orthogonal planes (one reflection plane and two antireflection
planes), is denoted by this symbol (1 is interpreted as reflection in a point, i.e. as
an inversion).

The groups mm′m′ and E3 = {1} × {1′} × {∗1} are isomorphic, where the
group E3 is the direct product of three groups of order 2, generated by antiidentical
transformations of kind 1, kind 2 and kind 3, respectively. The existence of such
isomorphism makes it possible to reduce the problem of searching junior space groups
of (22′1)-symmetry to the problem of searching junior space groups of three-fold
antisymmetry.

However, to different received junior space groups of the type M3 from one
family correspond the same groups of (22′1)-symmetry, as the group E3 =
(e, 1, 1′, ∗1, 1′, ∗1, ∗1′, ∗1′) contains 7 different kinds of antisymmetry transforma-
tions, and in the group mm′m′ = m1m
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play the same geometric role, respectively.
Consequently, for example, to the group {a, b, c}(2′ ·∗ m : 2) and to five groups,

received from this group by all permutations of signs –, /, * (which mean the trans-
formations of antisymmetry of kind 1, kind 2 and kind 3, respectively),

{a, b, c}(∗2 · m′ : 2) {a′, b, c}(2 · ∗m : 2)

{a′, b, c}(∗2 · m : 2) {∗a, b, c}(2 · m′ : 2) {∗a, b, c}(2′ · m : 2),

i.e. to six different junior groups of three-fold antisymmetry from family 18s corre-
spond three different groups of (22′1)-symmetry:

{a1, b, c}(23 · m2 : 2) {a3, b, c}(21 · m2 : 2) {a3, b, c}(22 · m1 : 2).

To the group {a, b, c}(∗2 · m : ∗2′) and to two groups, received from this group
by all even permutations of signs –, /, * (which mean the transformations of anti-
symmetry of kind 1, kind 2 and kind 3, respectively),

{a′, b, c}(2 · m : ∗2) {∗a, b, c}(2′ · m : 2′),

i.e. to three different junior groups of three-fold antisymmetry from family 18s
correspond two different groups of (22′1)-symmetry:

{a1, b, c}(23 · m : 223) {a2, b, c}(21 · m : 213).

To the groups {
a, b,

a + b + c

2

} (
c
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and {
a, b,

a + b + c

2

}(
c

2
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b

2
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a

2
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4

)
,

i.e. to two different junior groups of three-fold antisymmetry from family 21a there
corresponds one group of (22′1)-symmetry:

{
a, b,

a + b + c

2

}(
c

2
213 ·

b

2
m1 :

a

2
212

b

4

)
.

Consequently, to receive all different junior groups of (22′1)-symmetry it is nec-
essary to receive all different junior groups of three-fold antisymmetry, to collect
them in nests and to replace 6 by 3, 3 by 2, 2 by 1 and 1 by 1.

Hence, as the number of different junior groups of three-fold antisymmetry is
equal to 16937∗6+2490∗3+5∗2+37∗1 = 109139, then the number of different junior
space groups of (22′1)-symmetry is equal to 16937∗3+2490∗2+5∗1+37∗1 = 55833.

To be sure of this result it is enough to use the numeric table from the work [1]
in which in the second column the quantity of groups in the corresponding equiv-
alence class (including a group-representative) is given, and in the third column –
the numeric distribution of groups of type M3 (obtained from the given group-
representative) in 6, 3, 2 and 1 group.

As the number of different junior space groups of (22′1)-symmetry gives us the
number of 2- and 3-middle groups of (421)- and (621)-symmetries respectively, then
we obtain 55833 2-middle groups of (421)-symmetry and 55833 3-middle groups of
(621)-symmetry.

Thus, for (421)-symmetry 55833+52761=108594 groups, and for (621)-symmetry
55833+55637=111470 groups are derived.

So, the number of all possible space groups GP

3
of complete 32 crystallographic

P -symmetries in geometric classification is equal to 436011.
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Ştiinţe a Republicii Moldova. Matematica, 2006, N 1(50), p. 105-108.

[2] Zamorzaev A.M. On strong isomorphism of groups and isomorphism of P -symmetries. Izves-
tia AN RM. Matematika, 1994, N 1, p. 75-84 (in Russian).

State University of Moldova
A. Mateevici str. 60
Chisinau MD-2009
Moldova

Received October 28, 2005


