The property of universality for some monoid algebras over non-commutative rings

Elena P. Cojuhari

Abstract. We define on an arbitrary ring A a family of mappings $(\sigma_{x,y})$ subscripted with elements of a multiplicative monoid G. The assigned properties allow to call these mappings derivations of the ring A. A monoid algebra of G over A is constructed explicitly, and the universality property of it is shown.

Mathematics subject classification: Primary 16S36; Secondary 13N15, 16S10.

Keywords and phrases: Derivations, monoid algebras, free algebras.

In this note we consider monoid algebras over non-commutative rings. First, we introduce axiomatically a family of mappings $\sigma_{x,y}$ defined on a ring A and subscripted with elements of a multiplicative monoid G. Due to their assigned properties these mappings can be called derivations of A. Next, we construct a monoid algebra $\langle G \rangle$ over A by means of the family $\sigma_{x,y}$, and the universality of it is shown.

1. Let A be a ring (in general non-commutative) and G a multiplicative monoid. Throughout the paper we consider $1 \neq 0$ (where 0 is the null element of A, and 1 is the unit element for multiplication), the unit element of G is denoted by e. We introduce a family of mappings of A into itself by the following assumption.

(A) For each $x \in G$ there exists a unique family $\sigma_x = (\sigma_{x,y})_{y \in G}$ of mappings $\sigma_{x,y} : A \to A$ such that $\sigma_{x,y} = 0$ for almost all $y \in G$ (here and thereafter, almost all will mean all but a finite number, that is, $\sigma_{x,y} \neq 0$ only for a finite set of $y \in G$) and for which the following properties are fulfilled:

(i) $\sigma_{x,y}(a + b) = \sigma_{x,y}(a) + \sigma_{x,y}(b)$ ($a, b \in A; x, y \in G$);
(ii) $\sigma_{x,y}(ab) = \sum_{z \in G} \sigma_{x,z}(a)\sigma_{z,y}(b)$ ($a, b \in A; x, y \in G$);
(iii) $\sigma_{x,y,z} = \sum_{uv=z} \sigma_{x,u} \circ \sigma_{y,v}$ ($x, y, z \in G$);
(iv$_1$) $\sigma_{x,y}(1) = 0$ ($x \neq y; x, y \in G$);
(iv$_2$) $\sigma_{x,x}(1) = 1$ ($x \in G$);
(iv$_3$) $\sigma_{e,x}(a) = 0$ ($x \neq e; x \in G$);
(iv$_4$) $\sigma_{e,e}(a) = a$ ($a \in A$).

In (ii) the elements are multiplied as in the ring A, but in (iii) the symbol \circ means the composition of maps.

Examples. 1. Let A be a ring and let G be a multiplicative monoid, and let σ be a monoid-homomorphism of G into $\text{End}(A)$, i.e. $\sigma(xy) = \sigma(x) \circ \sigma(y)$ ($x, y \in G$) and $\sigma(e) = 1_A$. We define $\sigma_{x,y} : A \to A$ such that $\sigma_{x,x} = \sigma(x)$ for $x \in G$ and $\sigma_{x,y} = 0$ for $y \neq x$. The properties (i) -- (iv$_4$) of (A) are verified at once.
2. Let \(A \) be a ring, and let \(\alpha \) be an endomorphism of \(A \) and \(\delta \) be an \(\alpha \)-differentiation of \(A \), i.e.

\[
\delta(a + b) = \delta(a) + \delta(b), \quad \delta(ab) = \delta(a)b + \alpha(a)\delta(b)
\]

for every \(a, b \in A \). Denote by \(G \) the monoid of elements \(x_n \) \((n = 0, 1, \ldots)\) endowed with the law of composition defined by \(x_n x_m = x_{n+m} \) \((n, m = 0, 1, \ldots; x_0 := e)\). We write \(\sigma_{nm} \) instead of \(\sigma_{x_n x_m} \) by defining \(\sigma_{nm} : A \to A \) as the following mappings \(\sigma_{00} = 1_A, \sigma_{10} = \delta, \sigma_{20} = \alpha, \sigma_{nm} = 0 \) for \(m > n \) and \(\sigma_{nm} = \sum_{j_1 + \ldots + j_n = m} \sigma_{1j_1} \circ \ldots \circ \sigma_{1j_n} \) \((m = 0, 1, \ldots, n; n = 1, 2, \ldots)\), where \(j_k = 0, 1 \) \((k = 1, \ldots, n)\). The family \(\sigma = (\sigma_{nm}) \) satisfies the axioms \((i)-(iv_4)\) of \(A \).

2. Next, we consider an algebra \(A\langle G \rangle \) connected with the structure of differentiation \(\sigma = (\sigma_{x,y}) \). Let \(A\langle G \rangle \) be the set of all mappings \(\alpha : G \to A \) such that \(\alpha(x) = 0 \) for almost all \(x \in G \). We define the addition in \(A\langle G \rangle \) to be the ordinary addition of mappings into the additive group of \(A \) and define the operation of \(A \) on \(A\langle G \rangle \) by the map \((a, \alpha) \to a\alpha \) \((a \in A)\), where \((a\alpha)(x) = a\alpha(x) \) \((x \in G)\). Note that, in respect to these operations, \(A\langle G \rangle \) forms a left module over \(A \). Following notations made in [1] we write an element \(\alpha \in A\langle G \rangle \) as a sum \(\alpha = \sum_{x \in G} a_x \cdot x \), where by \(a \cdot x \) \((a \in A, x \in G)\) is denoted the mapping whose value at \(x \) is \(a \) and \(0 \) at elements different from \(x \). Certainly, the above sum is taken over almost all \(x \in G \). \(A\langle G \rangle \) becomes a ring if for elements of the form \(a \cdot x \) \((a \in A; x \in G)\) we define their product by the rule

\[
(a \cdot x)(b \cdot y) = \sum_{z \in G} a_x \sigma_{x,z}(b) \cdot zy \quad (a, b \in A; x, y \in G)
\]

and then extend for \(\alpha, \beta \in A\langle G \rangle \) by the property of distributivity. We let

\[
\alpha \alpha = \sum_{x \in G} \left(\sum_{y \in G} a_y \sigma_{y,x}(a) \right) \cdot x, \quad (a \in A, \alpha \in A\langle G \rangle)
\]

for \(a \in A \) and \(\alpha \in A\langle G \rangle \), and thus we obtain an operation of \(A \) on \(A\langle G \rangle \) and in such a way we make \(A\langle G \rangle \) into a right \(A \)-module. Thus, we may view \(A\langle G \rangle \) as an algebra over \(A \).

Remark. Let us consider the situation described in Example 1. Then the law of multiplication in \(A\langle G \rangle \) is given as follows

\[
\left(\sum_{x \in G} a_x \cdot x \right) \left(\sum_{x \in G} b_x \cdot x \right) = \sum_{x \in G} \sum_{y \in G} a_x \sigma_{x,y}(b_y) \cdot xy.
\]

In this case, the monoid algebra \(A\langle G \rangle \) represents a crossed product \([2, 3]\) of the multiplicative monoid \(G \) over the ring \(A \) with respect to the factors \(\rho_{x,y} = 1 \) \((x, y \in G)\). If \(G \) is a group, and \(\sigma : G \to End(A) \) is such that \(\sigma(x) = 1_A \) for all \(x \in G \), we evidently obtain an ordinary group ring \([4]\) (the commutative case see also \([5]\)).
3. In this subsection we show that $\langle A; f \rangle$ is a free G-algebra over A. Let B be another ring. Given a ring-homomorphism $f : A \rightarrow B$ it can be defined on the ring B a structure of A-module, defining the operation of A on B by the map $(a, b) \rightarrow f(a)b$ for all $a \in A$ and $b \in B$. We denote this operation by $a \ast b$. The axioms for a module are trivially verified. Let now $\varphi : G \rightarrow B$ be a multiplicative monoid-homomorphism. Denote by $\langle B; f, \varphi \rangle$ the module formed by all linear combinations of elements $\varphi(x)$ $(x \in G)$ over A in respect to the operation \ast. The axioms for a left A-module are trivially verified.

We assume that the homomorphisms f and φ satisfy the following assumption.

(B) $\varphi(G)f(A) \subseteq \langle B; f, \varphi \rangle$.

Thus, it is postulated that an element $\varphi(x)f(a)$ $(a \in A, x \in G)$ can be written as a linear combination of the form $\sum_{b \in B, y \in G} b \varphi(y)$. The coefficients b depend on $\varphi(x), \varphi(y)$ and $f(a)$. To designate this fact we denote the corresponding coefficients by $\sigma_{\varphi(x), \varphi(y)}(f(a))$. Therefore, it can be considered that there are defined a family of mappings $\sigma_{\varphi(x), \varphi(y)} : B \rightarrow B$ such that

$$\varphi(x)f(a) = \sum_{y \in G} \sigma_{\varphi(x), \varphi(y)}(f(a))\varphi(y) \ (a \in A, x \in G).$$

By these considerations, we may view $\langle B; f, \varphi \rangle$ as a right A-module. In order to make the module $\langle B; f, \varphi \rangle$ to be a ring we require the following additional assumption.

(C) The homomorphisms f and φ are such that the following diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\sigma_{x,y} & & \sigma_{\varphi(x), \varphi(y)} \\
\downarrow & & \downarrow \\
A & \xrightarrow{f} & B
\end{array}$$

is commutative for every $x, y \in G$, i.e. $\sigma_{\varphi(x), \varphi(y)} \circ f = f \circ \sigma_{x,y}$ $(x, y \in G)$.

We define multiplication in $\langle B; f, \varphi \rangle$ by the rules

$$(\sum_{x \in G} a_x \ast \varphi(x)) (\sum_{x \in G} b_x \ast \varphi(x)) = \sum_{x \in G, y \in G} (a_x \ast \varphi(x))(b_y \ast \varphi(y)),$$

$$(a_x \ast \varphi(x))(b_y \ast \varphi(y)) = f(a_x) \sum_{z \in G} \sigma_{\varphi(x), \varphi(z)}(f(b_y))\varphi(zy).$$

The verification that $\langle B; f, \varphi \rangle$ is a ring under the above laws of composition is direct. Thus, we have made $\langle B; f, \varphi \rangle$ into an algebra over A (in general, non-commutative).

Next, we define a category \mathcal{C} whose objects are algebras $\langle B; f, \varphi \rangle$ constructed as above, and whose morphisms between two objects $\langle B; f, \varphi \rangle$ and $\langle B'; f', \varphi' \rangle$ are ring-homomorphisms $h : B \rightarrow B'$ making the diagrams commutative:

$$\begin{array}{ccc}
G & \xrightarrow{=} & G \\
\varphi & & \varphi' \\
B & \xrightarrow{h} & B' \\
f & \xrightarrow{=} & f' \\
A & \xrightarrow{=} & A
\end{array}$$
The axioms for a category are trivially satisfied. We call a universal object in the category C a free G-algebra over A, or a free (A, G)-algebra. It turns out that the monoid algebra $A\langle G \rangle$ represents a free (A, G)-algebra. To this end, we observe that the mapping $\varphi_0 : G \to A\langle G \rangle$ given by $\varphi_0(x) = 1 \cdot x$ ($x \in G$) is a monoid-homomorphism. The mapping φ_0 is embedding of G into $A\langle G \rangle$. In addition, we have a ring-homomorphism $f_0 : A \to A\langle G \rangle$ given by $f_0(a) = a \cdot e$ ($a \in A$). Obviously, f_0 is also an embedding. We identify $A\langle G \rangle$ with the triple $\langle A\langle G \rangle; f_0, \varphi_0 \rangle$ and in this sense we treat $A\langle G \rangle$ as an object of the category C. The property of the universality of $A\langle G \rangle$ is formulated by the following assertion.

Theorem 1. Let A be a ring, and G a multiplicative monoid for which the assumptions $(A), (B)$ and (C) are satisfied. Then for every object $\langle B; f, \varphi \rangle$ of the category C there exists a unique ring-homomorphism $h : A\langle G \rangle \to B$ making the following diagram commutative

$$
\begin{array}{ccc}
G & \longrightarrow & G \\
\varphi_0 \downarrow & & \downarrow \varphi \\
A\langle G \rangle & \stackrel{h}{\longrightarrow} & B \\
f_0 \uparrow & & \uparrow f \\
A & \longrightarrow & A
\end{array}
$$

The relation with the theory of skew polynomial rings [6–8] and with those obtained by Yu. M. Ryabukhin [9] (see also [10]), and further properties of the general derivation mappings $\sigma_{x,y}$ ($x, y \in G$) will be given in a subsequent publication.

References