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Unsteady flow of an Oldroyd-B fluid induced

by a constantly accelerating plate

Corina Fetecău, Constantin Fetecău

Abstract. We study the start-up flow of an Oldroyd-B fluid between two infinite
parallel plates, one of them at rest and the other one being subject, after time zero, to
a constant acceleration A. The solutions that are obtained satisfy both the associate
partial differential equations and all imposed initial and boundary conditions. They
reduce to those for a Maxwell, Second grade or Navier-Stokes fluid as a limiting case.
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1 Introduction

In a recent paper [1], we established exact solutions for the motion of a second
grade fluid and of a Maxwell one between two infinite parallel plates, one of them
being subject to a constant acceleration A. It is the goal of this work to extend
these results to a larger class of non-Newtonian fluids, namely Oldroyd-B fluids. The
constitutive equations of an incompressible Oldroyd-B fluid, as they were presented
by Rajagopal [2], are

T = - pI + S, S + λ(Ṡ− LS− SL
T) = µ[A + λr(Ȧ − LA− AL

T)], (1.1)

where T is the Cauchy stress tensor, S the extra-stress tensor, L the velocity
gradient, A = L+L

T is the first Rivlin-Ericksen tensor, -pI denotes the indetermi-
nate spherical stress, µ is the dynamic viscosity, λ and λr(< λ) are relaxation and
retardation times and the superposed dot indicates the material time derivative.

This model includes as special cases the Maxwell model and linearly viscous fluid
model. Consequently, their solutions will appear as special cases of our solutions.
Furthermore, the solutions for a second grade fluid can be also obtained. Recently,
the Oldroyd-B fluids have received a lot of attention from both the theoreticians and
the experimentalists in rheology. They can describe many of the non-Newtonian
characteristics exhibited by polymeric materials such as stress-relaxation, normal
stress differences in simple shear flows and non-linear creep.
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86 CORINA FETECĂU, CONSTANTIN FETECĂU

2 Governing equations

In the following we shall consider unidirectional motions of the form [1, 3, 4]

v = v(y, t) = v(y, t) i, (2.1)

where i is the unit vector along the x−coordinate direction of the system of Cartesian
coordinates x, y and z. For this velocity field, the constraint of incompressibility is
automatically satisfied. We shall also suppose that the extra-stress tensor S depends
on y and t only, i.e., S = S(y, t). If the fluid has been at rest till the moment t = 0,
then the initial condition

S(y, 0) = 0, (2.2)

together with (1.1)2 lead to Sxz = Syz = Syy = Szz = 0 [5] and

(1 + λ∂t)τ = µ(1 + λr∂t)∂yv, (1 + λ∂t)σ − 2λτ∂yv = −2µλr(∂yv)2, (2.3)

where τ = Sxy and σ = Sxx.

The balance of linear momentum, in the absence of body forces and of a pressure
gradient in the x-direction, reduce to

∂yτ = ρ∂tv, ∂yp = ∂zp = 0. (2.4)

Eliminating τ between Eqs. (2.3)1 and (2.4)1, we attain to the linear partial
differential equation

λ∂2

t v(y, t) + ∂tv(y, t) = ν(1 + λr∂t)∂
2

yv(y, t), (2.5)

where ν = µ/ρ is the kinematic viscosity of the fluid and ρ its constant density.

3 Couette flow induced by a constantly accelerating plate

Consider an incompressible Oldroyd-B fluid at rest between two infinite parallel
plates at a distance h apart. Suppose that the lower plate is subject, after time
zero, to a constant acceleration A in a direction parallel to the upper one, which is
stationary. The governing equation is (2.5) while the initial and boundary conditions
are [5]

v(y, 0) = ∂tv(y, 0) = 0; y ∈ [0, h) , (3.1)

respectively,

v(0, t) = At, v(h, t) = 0; t > 0 . (3.2)

Multiplying both sides of Eq. (2.5) by sin(λny), integrating between the limits
y = 0 and y = h and having (3.1) and (3.2) in mind, we find that [6]

λv̈sn(t) + (1 + αλ2

n)v̇sn(t) + νλ2

nvsn(t) = λnA(νt + α); t > 0, (3.3)



UNSTEADY FLOW OF AN OLDROYD-B FLUID INDUCED . . . 87

where α = νλr, λn = nπ/h and the finite Fourier sine transforms vsn(t),
(n = 1, 2, 3, . . . ), of v(y, t) have to satisfy the conditions

vsn(0) = ∂tvsn(0) = 0; n = 1, 2, 3, . . . (3.4)

The solutions of the ordinary differential equations (3.3) with the initial condi-
tions (3.4) are

vsn(t) =
A

λn
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]
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]
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(3.5)

where

r1n, r2n =
−(1 + αλ2

n) ±
√

(1 + αλ2
n)2 − 4νλλ2

n

2λ
,

r3n, r4n =
1 − αλ2
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√
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n

2λ
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1
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.

Now, using the Fourier’s sine formula [6], we find that

v(y, t) =
(

1 − y

h

)

At − 2A

νh

∞
∑

n=1

sin(λny)

λ3
n

+

+
2A

νh
exp

(
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)
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λ3
n

, (3.6)
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where

Φn(t) = exp

(
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where
βn =

√

(1 + αλ2
n)2 − 4νλλ2

n

and
γn =

√

4νλλ2
n − (1 + αλ2

n)2.

From (2.3)1 and (2.2) it easily results that

τ(y, t) =
µ

λ
exp

(

− t

λ

)
∫ t

0

exp
(τ

λ

)

(1 + λr∂τ )∂yv(y, τ)dτ. (3.7)

By substituting (3.6) into (3.7) we find that

τ(y, t) = −µA

h

{

t + (λr − λ)

[

1 − exp
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)]}
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n

, (3.8)

where

Ψn(t) = exp
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As soon as the velocity field v(y, t) and the tangential tension τ(y, t) have been
determined, we can find the normal tension σ(y, t) using (2.3)2 and (2.2). The
hydrostatic pressure as it results from (2.4), is an arbitrary function of t.
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4 Limiting cases

1. Taking the limit of Eqs. (3.6) and (3.8) as λr → 0, we attain to the similar
solutions for a Maxwell fluid (see [1], Eq. (4.8), for the velocity field)

v(y, t) =
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and

τ(y, t) = −µA

h

{

t + λ

[

exp

(

− t

λ

)

− 1

]}

− 2ρA

h

∞
∑

n=1

cos(λny)

λ2
n

+

+
2ρA

h
exp

(

− t

2λ

)

∞
∑

n=1

Tn(t)
cos(λny)

λ2
n

, (4.2)

where
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2. In the special case when both λr and λ → 0 into Eqs. (3.6) and (3.8), or
λ → 0 in Eqs. (4.1) and (4.2), we get the simple solutions (see [1], Eq. (3.10) for
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the velocity field)

v(y, t) =
(
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h

)
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respectively,
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] cos(λny)

λn
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for a Navier-Stokes fluid.

3. Finally, by formally letting λr → 0 into (3.6) and (3.8) (but using only the
first lines of Φn(·) and Ψn(·)), we also attain to the solutions (see [1], Eq. (3.9) for
the velocity field)
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corresponding to a second grade fluid.

5 Conclusions

In the present paper we have established the velocity filed and the associated
tangential tension, corresponding to an unsteady lineal flow of an incompressible
Oldroyd-B fluid between two infinite parallel plates. One of plates is held fixed
and other one is subject, after time zero, to a constant acceleration A. Direct com-
putations show that v(y, t) and τ(y, t), given by (3.6) and (3.8), satisfy both the
associate partial differential equations (2.5) and (2.3)1 and all imposed initial and
boundary conditions, the differentiation term by term in sums being clearly permis-
sible. These solutions reduce to those for Maxwell, Navier-Stokes and Second grade
fluids as limiting cases.

The solutions (3.6) and (3.8) as well as those for a Maxwell fluid (4.1) and (4.2),
contain sine and cosine terms. This indicates that in contrast with the Navier-Stokes
and second grade fluids, whose solutions (4.3)-(4.6) do not contain such terms, os-
cillations are set up in the fluid. The amplitudes of these oscillations decay expo-
nentially in time, the damping being proportional to exp(−t/2λ).

Finally, it is important to underline that the Oldroyd-B model does not contain
as a special case the second grade fluid model. However, for some special classes of
motions, as that considered here, the governing equations also include the equations
of motion for the second grade fluid. Consequently, in all these cases, the similar
solutions corresponding to second grade fluids can be also obtained as limiting cases
of those for Oldroyd-B fluids.
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