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Limits of solutions to the semilinear wave equation
with small parameter

A. Perjan

Abstract. We study the existence of the limits of solution to singularly perturbed
initial boundary value problem of hyperbolic - parabolic type with boundary Dirichlet
condition for the semilinear wave equation. We prove the convergence of solutions and
also the convergence of gradients of solutions to perturbed problem to the correspond-
ing solutions to the unperturbed problem as the small parameter tends to zero. We
show that the derivatives of solution relative to time-variable possess the boundary
layer function of the exponential type in the neighborhood of t = 0.

Mathematics subject classification: 35B25, 35L70, 35L05.
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1 Introduction

Let Ω ∈ R
3 be an open and bounded set with the smooth boundary ∂Ω. Consider

the following initial boundary value problem for the wave equation, which in what
follows will be called (Pε):











εutt(x, t) + ut(x, t) − ∆u(x, t) + u3(x, t) = f(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t)
∣

∣

∣

x∈∂Ω
= 0, t ≥ 0,

where ε is a small positive parameter.

We will study the behaviour of the solutions to the problem (Pε) as ε→ 0. It is
natural to expect that the solutions to the problem (Pε) tend to the corresponding
solutions to the unperturbed problem (P0):











vt(x, t) − ∆v(x, t) + v3(x, t) = f(x, t), x ∈ Ω, t > 0,

v(x, 0) = u0(x), x ∈ Ω,

v(x, t)
∣

∣

∣

x∈∂Ω
= 0, t ≥ 0,

as ε→ 0. The main results are contained in Theorem 5. Under some conditions on
u0, u1 and f we will prove that

u→ v in C([0, T ];L2(Ω)), as ε→ 0, (1)
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u→ v in L∞(0, T ;H1
0 (Ω)), as ε→ 0, (2)

u′ − v′ − αe−t/ε → 0 in L∞(0, T ;L2(Ω)), as ε→ 0, (3)

where α = f(0)−u1+∆u0−u3
0. The relationship (3) shows that the derivative u′ has

the singular behaviour relative to the small values of the parameter ε in neighborhood
of the set {(x, t)|x ∈ Ω, t = 0}. It means that the set {(x, t)|x ∈ Ω, t = 0} is the
boundary layer for u′ and the function α is the boundary layer function for u′. The
proofs of the relations (1), (2) and (3) are based on two key points. The first one is
the relationship between the solutions to the problem (P0) and (Pε) in the linear case
(see Lemma 3 and Theorem 3). The second key point represents apriori estimates
of solutions to the problem (Pε), which are uniform relative to small parameter ε
(see Lemma 2).

The singularly perturbed nonlinear problems of hyperbolic-parabolic type were
studied by many authors. Without pretending to the complete list of the works in
this area, we mention here only the works [1] - [6] in which the larger references can
be found.

In that follows we need to use some notations. Let X be a Banach space. For
k ∈ N, p ∈ [1,∞) and (a, b) ⊂ (−∞,+∞) we denote by W k,p(a, b;X) the usual
Sobolev spaces of the vectorial distributions W k,p(a, b;X) = {f ∈ D′(a, b,X); f (l) ∈
Lp(a, b;X), l = 0, 1, . . . , k} equipped with the norm

||f ||W k,p(a,b;X) =
(

k
∑

l=0

||f (l)||pLp(a,b;X)

)1/p
.

For each k ∈ N,W k,∞(a, b;X) is the Banach space equipped with the norm

||f ||W k,∞(a,b;X) = max
0≤l≤k

||f (l)||L∞(a,b;X).

In the following for k ∈ N we denote by Hk(Ω) (L2(Ω) = H0(Ω)) the usual real
Hilbert spaces equipped with the following scalar products and norms:

(

u, v
)

Hk(Ω)
=

∫

Ω

∑

|α|≤k

∂αu(x)∂αv(x)dx, [u, v] = (u, v)H1
0 (Ω),

(u, v) =

∫

Ω
u(x)v(x)dx, |u| = ||u||L2(Ω), ||u|| = ||u||H1

0 (Ω).

By H−k(Ω) we denote the dual space to Hk(Ω), i.e. H−k(Ω) = (Hk
0 (Ω))′. We will

write 〈·, ·〉 to denote the pairing between H−1(Ω) and H1
0 (Ω).

2 Solvability of the problems (Pε) and (P0)

First of all we shall remind the definitions of solutions to the problems (Pε) and
(P0) and also the existence theorems for solutions to these problems.
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Definition 1. We say a function u ∈ L2(0, T ;H1
0 (Ω)) with u′ ∈ L2(0, T ;L2(Ω)),

u′′ ∈ L2(0, T : H−1(Ω)) is a solution to the problem (Pε) provided

ε〈u′′(t), η〉 + (u′(t), η) + [u(t), η] + (u3(t), η) = (f(t), η), ∀η ∈ H1
0 (Ω), (4)

a.e. t ∈ [0, T ] and
u(0) = u0, u′(0) = u1. (5)

Definition 2. We say a function v ∈ L2(0, T ;H1
0 (Ω)) with v′ ∈ L2(0, T ;H−1(Ω))

is a solution to the problem (P0) provided

〈v′(t), η〉 + [v(t), η] + (v3(t), η) = (f(t), η), ∀η ∈ H1
0 (Ω), (6)

a.e. t ∈ [0, T ] and
v(0) = u0. (7)

Remark 1. In view of the conditions u ∈ L2(0, T ;H1
0 (Ω)), u′ ∈ L2(0, T ;L2(Ω)),

and u′′ ∈ L2(0, T ;H−1(Ω)) we have u ∈ C([0, T ];L2(Ω)) and u′ ∈ C([0, T ];H−1(Ω)).
Consequently, we will understand the equalities (5) in the following sense:
|u(t)−u0| → 0, ||u′(t)−u1||H−1(Ω) → 0 as t→ 0. Similarly, in view of the conditions
v ∈ L2(0, T ;H1

0 (Ω)) with v′ ∈ L2(0, T : H−1(Ω)), we have v ∈ C([0, T ];L2(Ω)), con-
sequently, we will understand the equality (7) in the following sense: |v(t)−u0| → 0
as t→ 0.

Theorem 1 [7]. Let T > 0. If f ∈ W 1,1(0, T ;L2(Ω)), u0 ∈ H1
0 (Ω) ∩

H2(Ω), u1 ∈ H1
0 (Ω), then there exists a unique solution to the problem (Pε)

such that u ∈ W 1,∞(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;H2(Ω)), u′′ ∈ L∞(0, T ;L2(Ω)), u′′′ ∈

L∞(0, T ;H−1(Ω)).

Theorem 2 [8]. Let T > 0. If f ∈ W 1,1(0, T ;L2(Ω)), u0 ∈ H1
0 (Ω) ∩H2(Ω), then

there exists a unique solution v ∈ W 1,∞(0, T ;L2(Ω)) to the problem (P0) and the
estimates

|v(t)| +
(

∫ t

0
||v(τ)||2dτ

)1/2
+

(

∫ t

0
|v2(τ)|2dτ

)1/2
≤

≤ |u0| +
∫ t

0
|f(τ)|dτ, ∀t ∈ [0, T ], (8)

||v′||L∞(0,t;L2(Ω) +
(

∫ t

0
||v′(τ)||2dτ

)1/2
+

(

∫ t

0
(v′2(τ), v2(τ))dτ

)1/2
≤

≤ |∆u0 + f(0) − u3
0| +

∫ t

0
|f ′(τ)|dτ, ∀t ∈ [0, T ], (9)

are true.

Remark 2. If f ∈ W 1,1(0, T ;L2(Ω)), u0 ∈ H1
0 (Ω) ∩ H2(Ω), u1 ∈ H1

0 (Ω),
then according to the conclusion of Theorem 1 in fact u ∈ C1([0, T ];L2(Ω))∩
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C([0, T ];H1
0 (Ω)). Consequently, the term ε〈u′′(t), η〉 in (4) can be expressed in the

form ε(u′′(t), η) and we will understand the equalities (5) in the following sense:
||u(t) − u0|| → 0, |u′(t) − u1| → 0 as t → 0. Similarly, in view of the conclusion of
Theorem 2, v ∈ C([0, T ];L2(Ω)), v′ ∈ L∞(0, T ;L2(Ω)), the term 〈v′(t), η〉 in (6) can
be expressed in the form (v′(t), η).

3 Apriori estimates for solutions to the problem (Pε)

In this section we shall prove an apriori estimates for the solutions to the problem
(Pε) which are uniform relative to the small values of parameter ε. Before proving
the estimates for the solutions to problem (Pε) we recall the following well-known
lemma.

Lemma 1 (see for example [9]). Let ψ ∈ L1(a, b)(−∞ < a < b < ∞) with ψ ≥ 0 a.
e. on (a, b) and let c be a fixed real constant. If h ∈ C([a, b]) verifies

1

2
h2(t) ≤ 1

2
c2 +

∫ t

a
ψ(s)h(s)ds, ∀t ∈ [a, b],

then

|h(t)| ≤ |c| +
∫ t

a
ψ(s)ds, ∀t ∈ [a, b],

also holds.
Denote by u(t) = u(t, ·),

E0(u, t) = ε|u′(t)|2 + |u(t)|2 + ||u(t)||2 + 2(1 − ε)

∫ t

0
|u′(τ)|2dτ+

+2ε(u(t), u′(t)) + 2

∫ t

0
||u(τ)||2dτ + 2

∫ t

0
|u2(τ)|2dτ +

1

2
|u2(t)|2

and

E1(u, t) = ε2|u′(t)|2 +
1

2
|u(t)|2 + ε||u(t))||2 + ε

(

u′(t), u(t)
)

+

+ε

∫ t

0
|u′(τ)|2dτ +

∫ t

0
||u(τ)||2dτ.

Lemma 2. Let f ∈ W 1,1(0,∞;L2(Ω)), u0 ∈ H1
0 (Ω) ∩ H2(Ω), u1 ∈ H1

0 (Ω). Then
there exists the positive constant C = C(Ω) such that for any solution u to the
problem (Pε) the following estimates

E
1/2
0 (u, t) ≤ CM0, t ∈ [0,∞), 0 < ε < 1, (10)

E
1/2
1 (u′, t) ≤ CM1, a.e. t ∈ [0,∞), 0 < ε ≤ 1/2, (11)

hold, where

M0 = M0(||u0||, |u1|, ||f ||W 1,1(0,∞;L2(Ω))), M0(0, 0, 0) = 0,
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M1 = M1(||u0||H2(Ω), ||u1||, ||f ||W 1,1(0,∞;L2(Ω))), M1(0, 0, 0) = 0. (12)

If in addition f ∈ W 2,1(0,∞;L2(Ω)), u1, α ∈ H1
0 (Ω) ∩ H2(Ω), then there exists

ε0 = ε0(Ω,M0) ∈ (0, 1) such that the function

z(t) = u′(t) + αe−t/ε (13)

satisfies the estimate

||z||L∞(0,∞;H1
0 (Ω)) + ||z′||L∞(0,∞;L2(Ω)) + ||z||W 1,2(0,∞;H1

0 (Ω)) ≤ CM2, (14)

for 0 < ε ≤ ε0, where

α = f(0) − u1 + ∆u0 − u3
0, (15)

M2 = M2(||f ||W 2,1(0,∞;L2(Ω)), ||u1||H2(Ω), ||α||H2(Ω)), M2(0, 0, 0) = 0. (16)

Proof. In what follows let us agree to denote all constants depending only on Ω by
the same constant C. The direct computations show that for every solution to the
problem (Pε) the following equality

d

dt
E0(u, t) = 2

(

f(t), u(t) + u′(t)
)

, a.e. t ∈ [0,∞) (17)

is fulfilled. For ε ∈ (0, 1) we have that E0(u, t) ≥ 0 and |u(t)| ≤ (E0(t, u))
1/2. Then

integrating the equality (17) on (0, t) we get

E0(u, t) = E0(u, 0) + 2
(

f(t) − f(0), u(t)
)

+ 2
(

f(0), u(t) − u(0)
)

+

+2

∫ t

0

(

f(τ) − f ′(τ), u(τ)
)

dτ ≤ E0(u, 0) +
1

2
|u(t)|2 + 8

(

∫ t

0
|f ′(τ)|dτ

)2
+

+|u0|2 + 9|f(0)|2 + 2

∫ t

0

(

|f(τ)| + |f ′(τ)|
)

E
1/2
0 (u, τ)dτ, t ∈ [0,∞).

From the last inequality we have that

E0(u, t) ≤ 2(c0 + 5)2M2
0 +

+4

∫ t

0

(

|f(τ)| + |f ′(τ)|
)

E
1/2
0 (u, τ)dτ

)

, t ∈ [0,∞), (18)

where c0 is the constant from the inequality |u|2 ≤ c0||u||2, u ∈ H1
0 (Ω). Since

E0(u, t) ∈ C([0,∞)) due to Lemma 1, from (18) the estimate (10) follows.
To prove the estimate (11) let us denote by uh(t) = h−1(u(t+ h)− u(t)), h > 0.

For any solution of the problem (Pε) the equality

d

dt
E1(uh, t) =

(

Fh(t), 2εu′h(t) + uh(t)
)

, a.e. t ∈ [0,∞),
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is true, where

Fh(t) = fh(t) − uh(t)
(

u2(t+ h) + u(t+ h)u(t) + u2(t)
)

.

Integrating the last equality on (0, t), we obtain

E1(uh, t) = E1(uh, 0) +

∫ t

0

(

Fh(τ), 2εu′h(τ) + uh(τ)
)

dτ, t ∈ [0,∞).

As |uh(τ) + 2εu′h(τ)| ≤ 2E
1/2
1 (uh, τ), then from the last equality we get

E1(uh, t) ≤ E1(uh, 0) + 2

∫ t

0
|Fh(τ)|E1/2

1 (uh, τ)dτ, t ∈ [0,∞).

Using Lemma 1, from the last inequality we obtain the estimate

E
1/2
1 (uh, t) ≤ E

1/2
1 (uh, 0) +

∫ t

0
|Fh(τ)|dτ, t ∈ [0,∞). (19)

Since for 1 ≤ p <∞, k ∈ N and u ∈W 1,p(0, T ;Hk(Ω)) the inequality

∫ t

0
||uh(τ)||p

Hk(Ω)
dτ ≤

∫ t

0
||u′(τ)||p

Hk(Ω)
dτ, t ∈ [0,∞), (20)

is true, then we obtain

∫ t

0
|Fh(τ)|dτ ≤

∫ t

0
|f ′(τ)|dτ + 2

(

∫ t

0
|u′(τ)|2dτ

)1/2[(
∫ t

0
|u2(τ + h)|2dτ

)1/2
+

+
(

∫ t

0
|u2(τ)|2dτ

)1/2]

≤M0 + (1 − ε)−1E0(u, t) ≤

≤ CM0

(

1 +M0

)

, t ∈ [0,∞), 0 < ε ≤ 1/2. (21)

As u′(0) = u1, εu
′′(0) = f(0) − u1 + ∆u0 − u3

0, and |u3
0| ≤ 4

√
3||u0||3, then

E
1/2
1 (u′, 0) ≤ C

(

M0 +M3
0 + ||u0||H2(Ω) + ||u1||

)

. (22)

Using the estimates (21), (22) and passing to the limit in the inequality (19) as
h→ 0 we obtain the estimate (11).

Now let us prove the estimate (14). Under the conditions on f, u0 and u1 we
have that z ∈ W 1,∞(0,∞;H1

0 (Ω)) ∩ L∞(0,∞;H2(Ω)), z′′ ∈ L∞(0,∞;L2(Ω)) and z
is the solution to the problem















ε
(

z′′(t), η
)

+
(

z′(t), η
)

+ [z(t), η] + 3
(

u2(t)z(t), η
)

=

=
(

f1(t, ε), η
)

, ∀η ∈ H1
0 (Ω), a.e. t ∈ (0,∞),

z(0) = z0, z′(0) = 0,

(23)
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where

f1(t, ε) = f ′(t) +
(

3u2(t)α− ∆α
)

e−t/ε, z0 = f(0) − u3
0 + ∆u0.

Denote by

E2(z, t) = ε2|z′(t)|2 +
1

2
|z(t)|2 + ε||z(t))||2 + ε

(

z′(t), z(t)
)

+

+ε

∫ t

0
|z′(τ)|2dτ +

∫ t

0
||z(τ)||2dτ + 3

∫ t

0

(

u2(τ)z(τ), z(τ)
)

dτ.

For the solution z to the problem (23) we have

d

dt
E2(z, t) =

(

f1(t, ε), z(t) + 2εz′(t)
)

− 6ε
(

z′(t), u2(t)z(t)
)

, a.e. t ∈ (0,∞).

Integrating the last equality on (0, t) we obtain

E2(z, t) = E2(z, 0) +

∫ t

0

(

f1(τ, ε), z(τ) + 2εz′(τ)
)

dτ−

−6ε

∫ t

0

(

z′(τ), u2(τ)z(τ)
)

dτ, t ∈ [0,∞). (24)

Using Holder’s inequality, the estimate (10) and the inequality

||z||L6(Ω) ≤ γ||z||, ∀z ∈ H1
0 (Ω), γ = (48)1/6, (25)

we get the estimate
∣

∣

∣

(

z′(τ), u2(τ)z(τ)
)∣

∣

∣
≤ |z′(τ)|||z(τ)||L6(Ω)||u(τ)||3L6(Ω) ≤ CM3

0 |z′(τ)|||z(τ)||,

from which it follows that

6ε
∣

∣

∣

∫ t

0

(

z′(τ), u2(τ)z(τ)
)

dτ
∣

∣

∣
≤ ε

2

∫ t

0
|z′(τ)|2dτ+

+CM6
0 ε

∫ t

0
||z(τ ||2dτ ≤ 1

2
E2(z, t), t ∈ [0,∞), 0 < ε ≤ ε0, (26)

where ε0 = min{1/2, (2C)−1M−6
0 }. As |z(τ) + 2εz′(τ)| ≤ 2E

1/2
2 (z, τ), then due to

Lemma 1 from (24) and (26) follows the estimate

E
1/2
2 (z, t) ≤ 2E

1/2
2 (z, 0) + 2

∫ t

0
|f1(τ, ε)|dτ, t ∈ [0,∞), 0 < ε ≤ ε0. (27)

The inequality |u2(τ)α| ≤ γ4||α||||u(τ)||2 permits to get the estimate

∫ t

0
|f1(τ, ε)|dτ ≤M0 + CM2

0 ||α|| + ||α||H2(Ω), t ∈ [0,∞), 0 < ε < 1. (28)



72 A. PERJAN

As
E

1/2
2 (z, 0) ≤ C||f(0) − u3

0 + ∆u0|| ≤ CM1, 0 < ε < 1,

then from (27) and (28) follows the estimate

E
1/2
2 (z, t) ≤ CM2, t ∈ [0,∞), 0 < ε ≤ ε0. (29)

Further, if z is a solution to the problem (23), then the function zh(t) = h−1(z(t +
h) − z(t)), h > 0 is the solution to the problem















ε
(

z′′h(t), η
)

+
(

z′h(t), η
)

+ [zh(t), η] + 3
(

u2(t)zh(t), η
)

=

=
(

Gh(t, ε), η
)

, ∀η ∈ H1
0 (Ω), a.e. t ∈ (0,∞),

zh(0) = z0h, z′h(0) = z1h,

(30)

where
Gh(t, ε) = f1h(t, ε) − 3uh(t)z(t+ h)

(

u(t+ h) + u(t)
)

,

z0h = h−1(z(h) − z0), z1h = h−1z′(h).

In exactly the same way as the inequality (27) was obtained we get the inequality

E
1/2
2 (zh, t) ≤ 2E

1/2
2 (zh, 0) + 2

∫ t

0
|Gh(τ, ε)|dτ, t ∈ [0,∞), 0 < ε ≤ ε0. (31)

As u′(t) = z(t) − αe−t/ε, then using Holder’s inequality, the inequalities (25), (20)
and the estimates (10), (29) we obtain

∫ t

0
|uh(τ)z(τ + h)

(

u(τ + h) + u(τ)
)

|dτ ≤

≤
∫ t

0
||uh(τ)||L6(Ω)||z(τ + h)||L6(Ω)

(

||u(τ + h)||L6(Ω) + ||u(τ)||L6(Ω)

)

dτ ≤

≤ CM0

∫ t

0
||uh(τ)||||z(τ + h)||dτ ≤

≤ CM0E
1/2
1 (u′, t)E

1/2
2 (z, t+ h) ≤ CM2, t ∈ [0,∞), 0 < ε ≤ ε0. (32)

Using Holder’s inequality, the inequalitis (20), (25) and the estimates (10), (11) we
will estimate f1h as follows

∫ t

0
|f1h(τ)|dτ ≤

∫ t

0
|f ′1(τ, ε)dτ ≤

∫ t

0
|f ′′(τ)|dτ+

+
1

ε

∫ t

0
e−τ/ε(|∆α| + 3|αu2(τ)|)dτ + 6

∫ t

0
e−τ/ε|αu(τ)u′(τ)|dτ ≤

≤M2 + C||α||L6(Ω)

∫ t

0
e−τ/ε||u(τ)||L6(Ω)

(1

ε
||u(τ)||L6(Ω)+
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+||u′(τ)||L6(Ω)

)

dτ ≤ CM2, t ∈ [0,∞), 0 < ε ≤ 1/2. (33)

The estimates (32) and (33) imply the following estimate for Gh

∫ t

0
|Gh(τ)|dτ ≤ CM2, t ∈ [0,∞), 0 < ε ≤ ε0. (34)

As
E

1/2
2 (z′, 0) = |f ′(0) + ∆u1 − 3u2

0u1| ≤ CM2, (35)

then, using the estimates (34), (35) and passing to the limit in the inequality (31)
as h→ 0, we obtain the estimate

E
1/2
2 (z′, t) ≤ CM2, t ∈ (0,∞), 0 < ε ≤ ε0. (36)

From (29) and (36) follows the estimate

||z||W 1,∞(0,∞;L2(Ω)) + ||z||W 1,2(0,∞;H1
0 (Ω)) ≤ CM2, 0 < ε ≤ ε0. (37)

Finally, let us estimate ||z||L∞(0,∞;H1
0 (Ω)). To this end we denote by

E3(z, t) = ε|z′(t)|2 + |z(t)|2 + ||z(t)||2 + 2(1 − ε)

∫ t

0
|z′(τ)|2dτ+

+2ε(z(t), z′(t)) + 2

∫ t

0
||z(τ)||2dτ + 6

∫ t

0

(

u2(τ), z2(τ)
)

dτ + 3
(

u2(t), z2(t)
)

.

If z is a solution to the problem (23), then

d

dt
E3(z, t) = 2

(

f1(t, ε), z(t) + z′(t)
)

+ 6
(

u(t)u′(t), z2(t)
)

, a.e. t ∈ (0,∞).

Integrating the last equality on (0, t), similarly as the inequality (18) was obtained,
we get

E3(z, t) ≤ C
(

E3(z, 0) + ||f ′1||2L1(0,∞;L2(Ω)) +

∫ t

0

∣

∣

∣

(

u(τ)u′(τ), z2(τ)
)
∣

∣

∣
dτ+

+

∫ t

0

(

|f1(τ, ε)| + |f ′1(τ, ε)|
)

E
1/2
3 (z, τ)dτ

)

, t ∈ [0,∞), 0 < ε < 1. (38)

In the obvious way we obtain the estimate

E3(z, 0) + ||f ′1||2L1(0,∞;L2(Ω)) ≤ CM2. (39)

Using Holder’s inequality, the inequality (25) and estimates (10), (11), (29), we get
the estimate

∫ t

0

∣

∣

∣

(

u(τ)u′(τ), z2(τ)
)
∣

∣

∣
dτ ≤

∫ t

0
|u′(τ)|||z(τ)||2L6(Ω)||u(τ)||L6(Ω)dτ ≤
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≤ γ3

∫ t

0
|u′(τ)|||z(τ)||2||u(τ)||dτ ≤

≤ CM1M0E2(z, t) ≤ CM2, t ∈ [0,∞), 0 < ε ≤ ε0. (40)

Due to Lemma 1 from (38), (39) and (40) follows the estimate

||z||L∞(0,t;H1
0 (Ω)) ≤ E

1/2
3 (z, t) ≤ C

(

M2 +

∫ t

0
(|f1(τ, ε)| + |f ′1(τ, ε)|)dτ

)

≤

≤ CM2, t ∈ [0,∞), 0 < ε ≤ ε0. (41)

The estimates (37), (41) imply (14). Lemma 2 is proved.

Corollary 1. If f ∈W 2,1(0,∞;L2(Ω)), u1, f(0)−u3
0 +∆u0 ∈ H1

0 (Ω)∩H2(Ω), then,
in fact, the function u(t) satisfies the estimates

||u||W 1,p(0,∞;H1
0 (Ω)) ≤ CM2, 0 < ε ≤ ε0, p ∈ [2,∞], (42)

ε||u′′||L∞(0,∞;L2(Ω)) + ||∆u||L∞(0,∞;L2(Ω)) ≤ CM2, 0 < ε ≤ ε0. (43)

4 Relationship between solutions to the problems (Pε) and (P0)
in the linear case

In this section we shall give the relationship between solutions to the problem
(Pε) and (P0) in the linear case, i. e. in the case when the term u3 in the problems
(Pε) and (P0) is missing. This relation was inspired by the work [10]. At first we
shall give some properties of the kernel K(t, τ, ε) of transformation which realizes
this connection.

For ε > 0 denote

K(t, τ, ε) =
1

2
√
πε

(

K1(t, τ, ε) + 3K2(t, τ, ε) − 2K3(t, τ, ε)
)

,

where

K1(t, τ, ε) = exp
{3t− 2τ

4ε

}

λ
(2t− τ

2
√
εt

)

,

K2(t, τ, ε) = exp
{3t+ 6τ

4ε

}

λ
(2t+ τ

2
√
εt

)

,

K3(t, τ, ε) = exp
{τ

ε

}

λ
( t+ τ

2
√
εt

)

, λ(s) =

∫ ∞

s
e−η2

dη.

Lemma 3 [11]. The function K(t, τ, ε) possesses the following properties:

(i) For any fixed ε > 0 K ∈ C({t ≥ 0} × {τ ≥ 0}) ∩ C∞(R+ ×R+);

(ii) Kt(t, τ, ε) = εKττ (t, τ, ε) −Kτ (t, τ, ε), t > 0, τ > 0;
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(iii) εKτ (t, 0, ε) −K(t, 0, ε) = 0, t ≥ 0;

(iv) K(0, τ, ε) =
1

2ε
exp

{

− τ

2ε

}

, τ ≥ 0;

(v) For each fixed t > 0, s, q ∈ N there exist constants C1(s, q, t, ε) > 0 and
C2(s, q, t) > 0 such that

|∂s
t ∂

q
τK(t, τ, ε)| ≤ C1(s, q, t, ε) exp{−C2(s, q, t)τ/ε}, τ > 0;

(vi) K(t, τ, ε) > 0, t ≥ 0, τ ≥ 0;

(vii) Let ε be fixed, 0 < ε ≪ 1 and H be a Hilbert space. For any ϕ : [0,∞) → H
continuous on [0,∞) such that |ϕ(t)| ≤M exp{Ct}, t ≥ 0, the relationship

lim
t→0

∫ ∞

0
K(t, τ, ε)ϕ(τ)dτ =

∫ ∞

0
e−τϕ(2ετ)dτ,

is valid in H;

(viii)
∫ ∞
0 K(t, τ, ε)dτ = 1, t ≥ 0;

(ix)
∫ ∞

0
K(t, τ, ε)|t− τ |qdτ ≤ Cεq/2

(

1 + tq/2
)

, q ∈ [0, 1].

(x) Let f ∈W 1,∞(0,∞;H). Then there exists positive constant C such that

∣

∣

∣

∣

∣

∣
f(t) −

∫ ∞

0
K(t, τ, ε)f(τ)dτ

∣

∣

∣

∣

∣

∣

H
≤ C

√
ε(1 +

√
t)‖f ′‖L∞(0,∞;H), t ≥ 0.

(xi) There exists C > 0 such that

∫ t

0

∫ ∞

0
K(τ, θ, ε) exp

{

− θ

ε

}

dθdτ ≤ Cε, t ≥ 0, ε > 0.

Theorem 3. Suppose that f ∈ L∞(0,∞;L2(Ω)) and u ∈ W 2,∞(0,∞;L2(Ω)) ∩
L∞(0,∞;H1

0 (Ω)) is the solution to the problem:

ε(u′′(t), η) + (u′(t), η) + [u(t), η] = (f(t), η), ∀η ∈ H1
0 (Ω), (44)

a.e. t ∈ [0,∞),

u(0) = u0, u′(0) = u1. (45)

Then the function v0 which is defined by

v0(t) =

∫ ∞

0
K(t, τ, ε)u(τ)dτ (46)
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is the solution to the problem

(v′0(t), η) + [v0(t), η] = (f0(t, ε), η), ∀η ∈ H1
0 (Ω), ∀t > 0, (47)

v0 = ϕε, (48)

where

f0(t, ε) = F0(t, ε) +

∫ ∞

0
K(t, τ, ε)f(τ)dτ,

F0(t, ε) =
1√
π

[

2 exp
{ 3t

4ε

}

λ
(

√

t

ε

)

− λ
(1

2

√

t

ε

)]

u1, ϕε =

∫ ∞

0
e−τu(2ετ)dτ.

Moreover, v0 ∈W 2,∞(0,∞;L2(Ω)) ∩ L∞(0,∞;H1
0 (Ω)).

Proof. As u is the solution to the problem (44), (45) and u, u′, u′′ ∈ L∞(0,∞;L2(Ω)),
then v0 ∈ W 2,∞(0,∞;L2(Ω)) ∩ L∞(0,∞;H1

0 (Ω)), u ∈ C1([0,∞);L2(Ω)) and
|u(t) − u0| → 0, |u′(t) − u1| → 0 as t → 0. Therefore, integrating by parts and
using the properties (i) - (iii) and (v) of Lemma 3, we get

(v′0(t), η) =
(

∫ ∞

0
Kt(t, τ, ε)u(τ)dτ, η

)

=

(

∫ ∞

0

(

εKττ (t, τ, ε) −Kτ (t, τ, ε)
)

u(τ)dτ, η
)

=

=
(

∫ ∞

0
K(t, τ, ε)

(

εu′′(τ) + u′(τ)
)

dτ + εK(t, 0, ε)u1, η
)

=

=
(

f0(t, ε)u1, η
)

− [v(t), η], ∀η ∈ H1
0 (Ω), ∀t > 0.

Thus v0(t), which is defined by (46) satisfies the equation (47). From property (vii)
of Lemma 3 the validity of the initial condition (48) follows. Thus Theorem 3 is
proved.

5 Limits of solutions to the problem (Pε) as ε → 0

In this section we shall study the behavior of solutions to the problem (Pε)
as ε→ 0.

Theorem 4. Suppose that f ∈W 2,1(0,∞;L2(Ω)), u0, u1, f(0)−u3
0+∆u0 ∈ H1

0 (Ω)∩
H2(Ω), then there exist constants C = C(Ω) and ε0 = ε0(Ω,M0) such that the
following estimates

||u− v||C([0,t];L2(Ω)) ≤ CM2

(

t3/2 + 1
)√
ε, t ≥ 0, 0 < ε ≤ ε0, (49)

||u− v||L∞(0,t;H1
0 (Ω)) ≤ CM2

(

1 + t3/2
)

ε1/4, t ≥ 0, 0 < ε ≤ ε0, (50)

are fulfilled. If in addition f ∈W 2,∞(0,∞;L2(Ω)), then

||u′ − v′ − αhe−t/ε||L∞(0,t;L2(Ω)) ≤ CM3ε
1/4(1 + t5/2), t ≥ 0, 0 < ε ≤ ε0, (51)
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is fulfilled, where u is a solution to the problem (Pε), v is the solution to the problem
(P0) and M3 = M2 + ||f ′′||L∞(0,∞;L2(Ω)).

Proof. Proof of estimate (49). If u is the solution to the problem (Pε), then
according to Theorem 3 the function

w(t) =

∫ ∞

0
K(t, τ, ε)u(τ)dτ

is the solution to the problem

{ (

w′(t), η
)

+ [w(t), η] =
(

F (t, ε), η
)

, ∀η ∈ H1
0 (Ω), t > 0,

w(0) = ϕε,
(52)

where

F (t, ε) = F0(t, ε) +

∫ ∞

0
K(t, τ, ε)f(τ)dτ −

∫ ∞

0
K(t, τ, ε)u3(τ)dτ.

Using the estimates (11), (41) and properties (viii) and (x) from Lemma 3 we obtain
the following estimates

|u(t) − w(t)| ≤ C
√
ε(1 +

√
t)||u′||L∞(0,∞;L2(Ω)) ≤

≤ CM1

√
ε(1 +

√
t), t ≥ 0, 0 < ε ≤ 1/2, (53)

and

||u(t) − w(t)|| ≤ CM2ε
1/2(1 +

√
t), t ≥ 0, 0 < ε ≤ ε0. (54)

Therefore, as ||w(t)|| ≤M0, then

|u3(t) − w3(t)| ≤ C||u(t) − w(t)||L6(Ω)

(

||u(t)||2L6(Ω) + ||w(t)||2L6(Ω)

)

≤

≤ Cγ3||u(t) − w(t)||||u(t)||2 ≤ CM2

√
ε(1 +

√
t), t ≥ 0, 0 < ε ≤ ε0. (55)

Denote by y(t) = v(t) − w(t), where v is the solution to the problem (P0) and w is
the solution to the problem (52). Then the function y is the solution to the following
problem:















(

y′(t), η
)

+ [y(t), η] +
(

(v2(t) + v(t)w(t) + w2(t))y(t), η
)

=

=
(

F1(t, ε), η
)

, ∀η ∈ H1
0 (Ω), t > 0,

y(0) = u0 − ϕε,

(56)

where

F1(t, ε) = f(t) − F0(t, ε) −
∫ ∞

0
K(t, τ, ε)f(τ)dτ +

∫ ∞

0
K(t, τ, ε)u3(τ)dτ − w3(t),
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Due to the estimate (8) (in the linear case) for the function y we get the estimate

|y(t)| ≤ |y(0)| +
∫ t

0
|F1(τ, ε)|dτ, t ≥ 0. (57)

From the estimate (11) it follows that

|y(0)| ≤
∫ ∞

0
e−τ |u0 − u(2ετ)|dτ ≤

≤
∫ ∞

0
e−τ

∫ 2ετ

0
|u′(s)|dsdτ ≤ Cε||u′||L∞(0,∞;L2(Ω)) ≤ CεM1. (58)

As q(s) = es
2
λ(s) ≤ C, for s ∈ [0,∞] then

∫ t

0
|F0(τ, ε)|dτ ≤ C|u1|

∫ t

0

[

exp
{3τ

4ε

}

λ
(

√

τ

ε

)

+ λ
(1

2

√

τ

ε

)]

dτ =

= C|u1|
∫ t

0
exp

{

− τ

4ε

}[

q
(

√

τ

ε

)

+ q
(1

2

√

τ

ε

)]

dτ ≤ Cε|u1|, t ≥ 0. (59)

Using the properties (viii) and (x) from Lemma 3, we have

∫ t

0

∣

∣

∣
f(τ) −

∫ ∞

0
K(τ, s, ε)f(s)ds

∣

∣

∣
dτ ≤

≤ C
√
ε||f ′||L∞(0,∞:L2(Ω))(1 + t3/2) ≤ C

√
εM2(1 + t3/2), t ≥ 0. (60)

Let us evaluate the difference

I(t) = w3(t) −
∫ ∞

0
K(t, τ, ε)u3(τ)dτ.

Due to inequality (25) and the estimates (10), (41), we get

|(u3(s))′| = 3|u′(s)u2(s)| ≤ 3||u′(s)||L6(Ω)||u(s)||2L6(Ω) ≤

≤ 3γ3||u′(s)||||u(s)||2 ≤ CM2, s ∈ [0,∞), 0 < ε ≤ ε0,

and, consequently,

∣

∣

∣
u3(t) −

∫ ∞

0
K(t, τ, ε)u3(τ)dτ

∣

∣

∣
≤ CM2

√
ε(1 +

√
t), t ≥ 0, 0 < ε ≤ ε0.

Hence, from the last estimate and (55), we get

|I(t)| ≤ |w3(t) − u3(t)| +
∣

∣

∣
u3(t) −

∫ ∞

0
K(t, τ, ε)u3(τ)dτ

∣

∣

∣
≤

≤ CM2

√
ε
(

1 +
√
t
)

, t ≥ 0, 0 < ε ≤ ε0.
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Therefore
∫ t

0
|I(τ)|dτ ≤ CM2

√
ε
(

1 + t3/2
)

, t ≥ 0, 0 < ε ≤ ε0. (61)

Gathering the estimates (59), (60) and (61), we have

∫ t

0
|F1(τ, ε)|dτ ≤ CM2

√
ε(1 + t3/2), t ≥ 0, 0 < ε ≤ ε0.

Using the last estimate and (58), from (57) follows the estimate

|y(t)| ≤ CM2

√
ε(1 + t3/2), t ≥ 0, 0 < ε ≤ ε0. (62)

Finally, the estimates (53) and (62) involve (49).

Proof of estimate (50). To prove the estimate (50) we have to evaluate
||y||L∞(0,∞;H1

0 (Ω)). To this end we observe that due to (9) for y′ is true the esti-
mate

|y′(t)| ≤ |Y0| +
∫ t

0
|F ′

1(τ, ε) − a′(τ)y(τ)|dτ, t ∈ [0,∞), (63)

where a(t) = v2(t) + v(t)w(t) + w2(t), Y0 = ∆y(0) + F1(0, ε) − a(0)y(0). Using the
estimate (43), we get

|∆y(0)| ≤ CM2. (64)

Due to the inequalities (11) and (25) we obtain that

|F1(0, ε)| ≤ C
(

||f ||W 1,1(0,∞;L2(Ω)) + |u1| + ||u0||3
)

≤ CM2 (65)

and

|a(0)y(0)| = |u3
0 − ϕ3

ε| ≤ CM2. (66)

The estimates (64), (65) and (66) imply

|Y0| ≤ CM2. (67)

As

εKτ (t, τ, ε) −K(t, τ, ε) = − 3

4ε
√
π

(

K1(t, τ, ε) −K2(t, τ, ε)
)

and
∫ ∞

0

(

K1(t, τ, ε) +K2(t, τ, ε)
)

dτ ≤ Cε
(

λ
(

− 1

2

√

t/ε
)

+ e3t/4ελ
(
√

t/ε
)

)

≤ Cε,

then for f ∈W 1,∞(0,∞;L2(Ω)), due to the properties (ii), (iii) and (v) from Lemma
3, we obtain the estimate

∣

∣

∣

∫ ∞

0
Kt(t, τ, ε)f(τ)dτ

∣

∣

∣
=

∣

∣

∣

∫ ∞

0

(

εKτ (t, τ, ε) −K(t, τ, ε)
)

f ′(τ)dτ
∣

∣

∣
≤
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≤ Cε−1

∫ ∞

0

(

K(t, τ, ε) +K2(t, τ, ε)
)

|f ′(τ)|dτ ≤

≤ C||f ||W 1,∞(0,∞;L2(Ω)) ≤ CM2. (68)

Similarly, using the inequalities (25), (42) and the properties (ii), (iii), (v) and (viii)
from Lemma 3, we obtain the estimates

∣

∣

∣

∫ ∞

0
Kt(t, τ, ε)u

3(τ)dτ
∣

∣

∣
≤ C||u||W 1,∞(0,∞;H1

0 (Ω)) ≤ CM2, 0 < ε ≤ ε0, (69)

|(w3)′(t)| ≤ C||w′(t)||||w(t)||2 ≤

≤ CM0

∣

∣

∣

∣

∣

∣

∫ ∞

0
Kt(t, τ, ε)u(τ)dτ

∣

∣

∣

∣

∣

∣
≤ CM2 0 < ε ≤ ε0, t ∈ [0,∞). (70)

By direct computation we can show that

∫ ∞

0
|F ′

0(τ, ε)|dτ ≤ C|u1| ≤ CM2, t ∈ [0,∞). (71)

The estimates (68), (69), (70) and (71) involve the estimate

∫ t

0
|F ′

1(τ, ε)|dτ ≤ CM2, 0 < ε ≤ ε0, t ∈ [0,∞). (72)

Thanks to the inequality (25) and Holder’s inequality we have

|a′(t)y(t)| ≤ C
(

||v(t)||||v′(t)|| + ||v′(t)||||w(t)||+

+||v(t)||||w′(t)|| + ||w(t)||||w′(t)||
)

||y(t)||, t ∈ [0,∞).

Therefore, the estimates (8), (9), (62) and (33) imply

∫ t

0
|a′(τ)y(τ)|dτ ≤ CM2(1 + t3/2), 0 < ε ≤ ε0, t ∈ [0,∞). (73)

Using the estimates (67), (72) and (73), from (63) we obtain

|y′(t)| ≤ CM2(1 + t3/2), 0 < ε ≤ ε0, t ∈ [0,∞). (74)

As
(y′(t), y(t)) + ||y(t)||2 + (a(t), y(t)) = (F1(t, ε), y(t))

|F1(t, ε)| ≤ CM2, 0 < ε ≤ ε0, t ∈ [0,∞),

then due to (74) we get

||y(t)||2 ≤ |y(t)|
(

|F1(t)| + |y′(t)|
)

≤ CM2

√
ε(1 + t3/2)2, 0 < ε ≤ ε0, t ∈ [0,∞).

From the last estimates and (54) the estimate (50) follows.
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Proof of estimate (51). Denote by z(t) = u′(t) + αe−t/ε, where α is defined in
(13). Then z(t) is a solution to the problem (23). According to Theorem 3 the
function w1(t), which is defined as

w1(t) =

∫ ∞

0
K(t, τ, ε)z(τ)dτ

is a solution to the problem

{

(w′
1(t), η) + [w1(t), η] = (F(t, ε), η), ∀η ∈ H1

0 (Ω), t > 0,
w1(0) = w1ε,

where

F(t, ε) =

∫ ∞

0
K(t, τ, ε)f1(τ, ε)dτ − 3

∫ ∞

0
K(t, τ, ε)u2(τ)z(τ)dτ.

w1ε =

∫ ∞

0
e−τz(2ετ)dτ.

Using the estimates (11), (14) and properties (viii), (ix) and (x) from Lemma 3,
similarly as the estimates (53) and (54) were obtained, we obtain the following
estimates

|z(t) − w1(t)| ≤ C
√
ε(1 +

√
t)||z′||L∞(0,∞;L2(Ω)) ≤

≤ CM2

√
ε(1 +

√
t), t ≥ 0, 0 < ε ≤ ε0, (75)

and

||z(t) − w1(t)|| ≤
∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∫ t

τ
||z′(s)||ds

∣

∣

∣
dτ ≤

≤ ||z′(t)||L2(0,∞;H1
0 (Ω))

∫ ∞

0
K(t, τ, ε)|t − τ |1/2dτ ≤

≤ CM2ε
1/4(1 + t1/4), t ≥ 0, 0 < ε ≤ ε0. (76)

Under the conditions on f, u0 and u1, if v is a solution to the problem (P0), then
the function v1(t) = v′(t) is a solution to the problem















(

v′1(t), η
)

+ [v1(t), η] + 3
(

v2(t)v1(t), η
)

=

=
(

f ′(t), η
)

, ∀η ∈ H1
0 (Ω), a.e. t ∈ (0,∞),

v1(0) = z0.

Denote by R(t) = w1(t) − v1(t). Then the function R is a solution to the problem















(

R′(t), η
)

+ [R(t), η] + 3
(

v2(t)R(t), η
)

=

=
(

F1(t, ε), η
)

, ∀η ∈ H1
0 (Ω), a.e. t ∈ (0,∞),

R(0) = w1ε − z0,
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where
F1(t, ε) = F(t, ε) + 3v2(t)w1(t) − f ′(t).

For the function R the estimate

|R(t)| ≤ |R(0)| +
∫ t

0
|F1(τ, ε)|dτ, t ≥ 0, (77)

holds. Using the estimate (14) we get

|R(0)| ≤
∫ ∞

0
e−τ |z0 − z(2ετ)|dτ ≤ Cε||z′||L∞(0,∞;L2(Ω)) ≤ CεM2. (78)

To estimate the second term of the right-hand side of (77) we will present F1(t, ε)
in the following form:

F1(t, ε) = I1(t, ε) + I2(t, ε) + 3I3(t, ε),

where

I1(t, ε) =

∫ ∞

0
K(t, τ, ε)f ′(τ)dτ − f ′(t),

I2(t, ε) =

∫ ∞

0
K(t, τ, ε)

(

3u2(τ)α − ∆α
)

e−τ/εdτ,

I3(t, ε) = v2(t)w1(t) −
∫ ∞

0
K(t, τ, ε)u2(τ)z(τ)dτ.

Using the properties (viii) and (x) from Lemma 3, we obtain the estimate

|I1(t, ε)| ≤ C||f ′′||L∞(0,∞;L2(Ω))

√
ε(1 +

√
t), t ≥ 0, ε > 0

and, consequently,

∫ t

0
|I1(τ, ε)|dτ ≤ C||f ′′||L∞(0,∞;L2(Ω))

√
ε(1 + t3/2), t ≥ 0, ε > 0. (79)

In view of the inequality (25) and the estimate (10) we have

|u2(t)α| ≤ ||u(t)||2L6(Ω)||α||L6(Ω) ≤ γ3||u(t)||2||α|| ≤ CM2, t ≥ 0.

Therefore the property (xi) from Lemma 3 permits to estimate I2(t, ε)

∫ t

0
|I2(τ, ε)|dτ ≤ CM2

∫ t

0

∫ ∞

0
K(τ, s, ε)e−s/εdsdτ ≤

≤ CM2ε, t ≥ 0, 0 < ε ≤ ε0. (80)

Further, using the inequalities (25), (50) and (76), we get

|v2(t)w1(t) − u2(t)z(t)| ≤ C
(

||w1(t)||||u(t) − v(t)||(||u(t)|| + ||v(t)||)+
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+||w1(t) − z(t)||||u(t)||2
)

≤ CM2

(

||u(t) − v(t)|| + ||w1(t) − z(t)||
)

≤

≤ CM2ε
1/4(1 + t3/2), t ≥ 0, 0 < ε ≤ ε0. (81)

Using the estimates (10), (14), (42) and property (ix) from Lemma 3, we obtain the
following estimate

∫ ∞

0
K(t, τ, ε)

∣

∣u2(τ)z(τ) − u2(t)z(t)
∣

∣dτ ≤

≤
∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∫ t

τ
|2u(s)u′(s)z(s) + u2(s)z′(s)|ds

∣

∣

∣
dτ ≤

≤ CM2

∫ ∞

0
K(t, τ, ε)

∣

∣

∣

∫ t

τ
(1 + |z′(s)|)ds

∣

∣

∣
dτ ≤

≤ CM2ε
1/4(1 + t1/4), t ≥ 0, 0 < ε ≤ ε0. (82)

The estimates (81), (82) imply

∫ t

0
|I3(τ)|dτ ≤ CM2ε

1/4(1 + t5/2), t ≥ 0, 0 < ε ≤ ε0.

From the last estimate and (79), (80) it follows that

∫ t

0
|F1(τ, ε)|dτ ≤ CM2ε

1/4(1 + t5/2), t ≥ 0, 0 < ε ≤ ε0. (83)

From (77), due to (78) and (83) it follows that

|R(t)| ≤ CM2ε
1/4(1 + t5/2), t ≥ 0, 0 < ε ≤ ε0.

The last estimate and (75) imply the estimate (51). Theorem 4 is proved.

Theorem 5. Let T > 0. Suppose that f ∈ W 2,1(0, T ;L2(Ω)), u0, u1, f(0) − u3
0 +

∆u0 ∈ H1
0 (Ω) ∩H2(Ω), then there exist constants C = C(Ω, T ) and ε0 = ε0(Ω,M0)

such that the following estimates

||u− v||C([0,T ];L2(Ω)) ≤ CM2

√
ε, 0 < ε ≤ ε0, (84)

||u− v||L∞(0,T ;H1
0 (Ω)) ≤ CM2ε

1/4, 0 < ε ≤ ε0, (85)

are fulfilled. If in addition f ∈W 2,∞(0, T ;L2(Ω)), then

||u′ − v′ − αhe−t/ε||L∞(0,T ;L2(Ω)) ≤ CM3ε
1/4, 0 < ε ≤ ε0, (86)

is fulfilled, where u is the solution to the problem (Pε), v is the solution to the
problem (P0). The constants Mi, i = 1, 2, 3, depend on the same values as Mi, the
difference being that the norms ||f ||W k,l(0,∞;L2(Ω)) in Mi are replaced with the norms
||f ||W k,l(0,T ;L2(Ω)).
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Proof. For any function f ∈ W 2,l(0, T ;L2(Ω)), l ∈ [1,∞], there exits the extension
f̃ ∈W 2,l(0,∞;L2(Ω)) such that

||f̃ ||W 2,l(0,∞;L2(Ω)) ≤ C(T )||f̃ ||W 2,l(0,T ;L2(Ω)) (87)

(see, for instance, [12]). If ũ is the solution to the problem (4), (5) with the same
initial conditions u0, u1 and the right-hand side f̃ , then according to Theorem 1 we
have that u(t) = ũ(t) for t ∈ [0, T ]. Similarly, if ṽ is a solution to the problem (6),
(7) with the same initial condition u0 and the right-hand side f̃ , then according to
Theorem 2 we have that v(t) = ṽ(t) for t ∈ [0, T ].

Consequently, using the estimates (49), (50), (51) and (87) we obtain the esti-
mates (84), (85) and (86). Theorem 5 is proved.
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