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Limits of solutions to the semilinear wave equation
with small parameter

A. Perjan

Abstract. We study the existence of the limits of solution to singularly perturbed
initial boundary value problem of hyperbolic - parabolic type with boundary Dirichlet
condition for the semilinear wave equation. We prove the convergence of solutions and
also the convergence of gradients of solutions to perturbed problem to the correspond-
ing solutions to the unperturbed problem as the small parameter tends to zero. We
show that the derivatives of solution relative to time-variable possess the boundary
layer function of the exponential type in the neighborhood of ¢ = 0.

Mathematics subject classification: 35B25, 35170, 35L05.
Keywords and phrases: Semiliniar wave equation, singular perturbation, boundary
layer function.

1 Introduction

Let Q € R? be an open and bounded set with the smooth boundary 9€2. Consider
the following initial boundary value problem for the wave equation, which in what
follows will be called (F:):

eug(z,t) + u(x,t) — Au(z, t) + u(x,t) = f(z,1), z€Q,t>0,

U(Z’7O) ZUO(‘T)7 ut(a:,()) :Ul(x), T € Q7

u(x,t) =0, t>0,

€082
where ¢ is a small positive parameter.
We will study the behaviour of the solutions to the problem (F;) as ¢ — 0. It is

natural to expect that the solutions to the problem (P.) tend to the corresponding
solutions to the unperturbed problem (FPp):

vi(x,t) — Av(z, t) + 03 (2, t) = f(z,t), =€ Qt>0,
U(ﬂj‘,O) = ’LL(](ZE), T € ﬁa

v(x,t) 0, t>0,

€0

as € — 0. The main results are contained in Theorem 5. Under some conditions on
ug, w1 and f we will prove that

u—v in C([0,T];L*()), as &— 0, (1)
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uw—v in L®(0,T;Hy(Q), as &—0, (2)
W —v —ae 50 in L®(0,T;L*R)), as £—0, (3)

where a = £(0)—uj +Aug—uj. The relationship (3) shows that the derivative u’ has
the singular behaviour relative to the small values of the parameter € in neighborhood
of the set {(z,t)|z € Q,t = 0}. It means that the set {(x,t)|x € Q,t = 0} is the
boundary layer for v/ and the function « is the boundary layer function for u’. The
proofs of the relations (1), (2) and (3) are based on two key points. The first one is
the relationship between the solutions to the problem (Fy) and (P:) in the linear case
(see Lemma 3 and Theorem 3). The second key point represents apriori estimates
of solutions to the problem (F.), which are uniform relative to small parameter ¢
(see Lemma 2).

The singularly perturbed nonlinear problems of hyperbolic-parabolic type were
studied by many authors. Without pretending to the complete list of the works in
this area, we mention here only the works [1] - [6] in which the larger references can
be found.

In that follows we need to use some notations. Let X be a Banach space. For
k€N, pelloo)and (a,b) C (—00,+00) we denote by W¥P(a,b; X) the usual
Sobolev spaces of the vectorial distributions W*P(a,b; X) = {f € D'(a,b, X); 0 e
LP(a,b; X),l =0,1,...,k} equipped with the norm

1 i) = (Zuflum,,x)

For each k € N, W¥*(a,b; X) is the Banach space equipped with the norm

= O]
HfHWk’OO(a,b;X) On<1[a<}§€Hf HL ®(a,b;X)"

In the following for k& € N we denote by H*(Q) (L*(Q) = H°(2)) the usual real
Hilbert spaces equipped with the following scalar products and norms:

/ > O u@)v(@)dz,  [u,v] = (u,0) 0,

|a| <k

(u,0) = /Q u(@p@)dz, ful = fullzy Il = llully 0

By H~*(Q2) we denote the dual space to H¥(Q), i.e. H7*(Q) = (HF(Q))". We will
write (-,-) to denote the pairing between H~1(Q) and HE ().

2 Solvability of the problems (P.) and (Py)

First of all we shall remind the definitions of solutions to the problems (P:) and
(FPy) and also the existence theorems for solutions to these problems.
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Definition 1. We say a function u € L?(0,T; H}()) with v’ € L*(0,T; L*(2)),
u" € L2(0,T : H-Y(Q)) is a solution to the problem (P.) provided

e(u(t),n) + (u'(t),n) + [u(t),n] + (u®(t),n) = (f(t),n), VYne€Hy(Q), (4)

a.e. t €[0,T] and
u(0) = ug, u'(0) = u1. (5)

Definition 2. We say a function v € L*(0,T; H}(Q)) with v' € L*(0,T; H~1(Q))
is a solution to the problem (Py) provided

W' (), ) + [(t),n] + (W*(),n) = (f(t),n), Vne Hy (), (6)

a.e. t €[0,T] and
’U(O) = Uup. (7)

Remark 1. In view of the conditions u € L*(0,T; H}(2)), v’ € L?*(0,T; L*(2)),
and u" € L*(0,T; H-Y(Q)) we have u € C([0,T]; L*()) and v’ € C([0,T]; H1()).
Consequently, we will understand the equalities (5) in the following sense:
[u(t) —uo| — 0, |[u/(t) —u1||g-1() — 0 ast — 0. Similarly, in view of the conditions
v e L2(0,T; HY(Q)) with v' € L*(0,T : H-Y(Q)), we have v € C([0,T]; L*(2)), con-
sequently, we will understand the equality (7) in the following sense: |v(t) —ug| — 0
ast — 0.

Theorem 1 [7]. Let T > 0. If f € WhY0,T;L*(Q)), uo € HE(Q) N
H2(Q), w1 € H}(S), then there ewists a unique solution to the problem (P:)
such that u € WhH*(0,T; HY(Q)) N L>=(0,T; H2(Q)), v € L>*(0,T; L*(Q)), u" €
L>(0,T; HY(Q)).

Theorem 2 [8]. Let T > 0. If f € WHL(0,T; L3(Q)), ug € H(Q) N H?(Y), then
there exists a unique solution v € WH°(0,T; L*(Q)) to the problem (Py) and the

estimates
1/2
)] + /||v )P’ /|v ar) <
< Juo| + / F(@)dr, Vi [0,T), (8)
0
t 1/2 t 1/2
ol oz + (| I0@IPar)" + ([ o). war) " <
0 0

t
< | Auo + £(0) — ud| + /0 F(ldr, Yt e 0,7, (9)
are true.

Remark 2. If f € WhY0,T;L%(Q),uo € HI(Q) N H3(Q), w1 € HH(Q),
then according to the conclusion of Theorem 1 in fact u € CY([0,T]; L*(Q))N
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C([0,T); HY(Q)). Consequently, the term e(u”(t),n) in (4) can be expressed in the
form e(u”(t),n) and we will understand the equalities (5) in the following sense:
[lu(t) — ugl| — 0, |u/'(t) — ui| — 0 as t — 0. Similarly, in view of the conclusion of
Theorem 2, v € C([0,T]; L*(2)),v" € L>=(0,T; L*(2)), the term (v'(t),n) in (6) can
be expressed in the form (V'(t),n).

3 Apriori estimates for solutions to the problem (P.)

In this section we shall prove an apriori estimates for the solutions to the problem
(P:) which are uniform relative to the small values of parameter €. Before proving
the estimates for the solutions to problem (P:) we recall the following well-known
lemma.

Lemma 1 (see for example [9]). Let ¢ € L(a,b)(—00 < a < b < 00) with ) >0 a.
e. on (a,b) and let ¢ be a fized real constant. If h € C([a,b]) verifies

t
%h%) < %3 +/ Y(s)h(s)ds, VYt € [a,b],
then .
wmsw+/w@w,Wem@
also holds.
Denote by u(t) = u(t,-),

Eo(u,t) = elu/ (6)* + [u()]® + [[u@®)|* +2(1 — E)/O [/ (7)[Pdr+

+2E(u(t),u’(t))+2/0 Hu(T)H?dTH/O ()T + 50
and

Bu(u, 1) = 2l (O + ) + el a1 + (1 (1) u() +

t t
—I—s/ |u’(7)|2d7+/ ()| 2dr.
0 0

Lemma 2. Let f € Wh1(0,00; L%(2)), up € HL(Q) N H2(Q), uwy € HY(Q). Then
there exists the positive constant C = C(2) such that for any solution wu to the
problem (P.) the following estimates

EY?(u,t) <CMy, te0,00), 0<e<l, (10)

B t) < CMy, ae. tel0,00), 0<e<1/2 (11)
hold, where

My = MO(HUOH7 ’ul,v Hf”Wl’l(O,oo;Lz(Q)))v MO(0707 0) =0,
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My = Ma(|luoll g2 (@), [ualls [ flwi10,00:22(0)))s  M1(0,0,0) = 0. (12)

If in addition f € W1(0,00; L?(2)), ui,a € HL(Q) N H%(Q), then there exists
g0 = €0(2, Mp) € (0,1) such that the function

2(t) = u'(t) + ae™° (13)

satisfies the estimate
1211 Loe (0,003 () T 112|220 0,00:22(02)) + 2l w2 0 00sm2(02)) £ C M2, (14)

for 0 < e < ey, where
a = f(0) —u + Aug — uj, (15)

My = Ma(||fllw21(0,00:020)) Nt m2(0), el g2(0));,  M2(0,0,0) = 0. (16)

Proof. In what follows let us agree to denote all constants depending only on ) by
the same constant C. The direct computations show that for every solution to the
problem (P:) the following equality

%%Wﬁ:z@@m@+w@» ae. tel0,00) (17)

is fulfilled. For € € (0,1) we have that Eg(u,t) > 0 and |u(t)| < (Eo(t,u))"/2. Then
integrating the equality (17) on (0,t) we get

Bo(u,t) = Eo(u,0) +2(£() = £(0), u(t) ) +2(£(0), u(t) = u(0) )+
v2 [ (#0) = 0 u(r) )i < Bt 0) + glato? + 5( [ 15 lar) '+

¢
ol + 0 OF +2 [ (1) + 17/ By .. 1€ [0.00).
From the last inequality we have that

Eo(u,t) < 2(co + 5)2 Mg+

#4 [ (1170 mar), e 0.00), (19

where cg is the constant from the inequality |u|? < col|u|[?,u € H}(2). Since
Ep(u,t) € C([0,00)) due to Lemma 1, from (18) the estimate (10) follows.

To prove the estimate (11) let us denote by uy(t) = h= (u(t + h) — u(t)), h > 0.
For any solution of the problem (FP:) the equality

%&mmﬂ:@ﬂm%%@+wﬁo,wat€MwL
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is true, where

Fi(t) = fu(t) — un(t) <u2(t + 1)+ ult + R)u(t) + u2(t)).

Integrating the last equality on (0,t), we obtain

Eq(up,t) = E1(up,0) + /Ot (Fh(T), 2euy, (1) + Uh(T))dT, t €0, 00).

As |up (1) + 2eu) (1)] < 2E1/2(uh, 7), then from the last equality we get
Er(un,t) < B (up,0) +2/0t |EW ()| B (un, 7)dr, ¢ € [0,00).
Using Lemma 1, from the last inequality we obtain the estimate
E (up, t) < B (uy, 0) +/Otth(T)\dT, t € [0,00).
Since for 1 < p < oo,k € N and u € WHP(0,T; H*(Q)) the inequality

t t
L oy < [ I Ol . € [0.00),

is true, then we obtain

(19)

/Otth(T)ldT < /Ot|f'(7)|d7+2</0t|u’(r)|2d7)1/2[</0t |u2(7+h)|2d7>1/2+

t 1/2
+(/ ‘U2(7')‘2d7') ] < Mo+ (1 —¢e) tEy(u,t) <
0
§0M0<1+M0>, te0,00), 0<e<1/2.
As W/ (0) = ug,eu(0) = £(0) — ug + Aug — ud, and |ud| < 4v/3||ug|3, then

B2 (W,0) < (Mo + M + [[uoll sy + [ ])

(21)

(22)

Using the estimates (21), (22) and passing to the limit in the inequality (19) as

h — 0 we obtain the estimate (11).

Now let us prove the estimate (14). Under the conditions on f,ug and u; we
have that z € W1H°(0, 00; HE (Q)) N L(0, 00; H2(R2)), 2" € L>®(0,00; L2(Q)) and 2

is the solution to the problem

(2" (0)n) + (#(0).n) + [2(0),1] + 3(w2()=(t),m) =
( (te 77)’ Vn € H(Q), ae. te(0,00),
2(0) =z, 2/(0) =0,

(23)
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where
filt,e) = f'(t) + <3U2(t)04 - Aa) e 5 2 = f(0) — uf + Aug.

Denote by

1
Ea(z,t) = &2/ (D)2 + 5 2O + el lz@)? +(#(0), (1) )+
t t t
+a/ | () Pdr + / |2(r)|Pdr + 3/ (w3(r)2(7), 2(7) ) ar.
0 0 0
For the solution z to the problem (23) we have

d

—Ba(z.1) = (fl(t,s),z(t)+25z'(t)> —65(z’(t),u2(t)z(t)), ae. te(0,00).

Integrating the last equality on (0,t) we obtain

Ey(z,t) = F2(2,0) + /Ot (fl(T,E),Z(T) + 252'(7’)>d7—

—6e /0 t (z'(T),UQ(T)z(T))dT, te0,00). (24)

Using Holder’s inequality, the estimate (10) and the inequality
zlls@) <All2ll, ¥z € Hy(Q), ~=(48)", (25)

we get the estimate

(), w2()2(0) | < 12 OOl @l sy < CMEE Ol

from which it follows that

65‘/; (z'(T),uQ(T)z(T))dT( < %/Ot\z'(f)y%m

t
1
+CM065/ la(rliPdr < 5Bx(z,), te[0,00), 0<e<eo, (26)
0

where g9 = min{1/2, (20)"* My %}. As |2(7) + 2¢2/(1)] < 2E21/2(z,7'), then due to
Lemma 1 from (24) and (26) follows the estimate

t
E;/Q(z,t)gw;”(z,mm/ \fi(r,e)dr, te0,00), 0<e<e.  (27)
0

The inequality |u?(7)a| < ¥*||a||||u(7)||?> permits to get the estimate

t
/ |f1(7,€)|dT < Mo+ CME||f| + llal| 20, t € [0,00), 0 <e < 1. (28)
0
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As
Ey*(2,0) < C|[£(0) — uf + Aug|| < CM;, 0<e<1,

then from (27) and (28) follows the estimate
EY2(2,t) < CMy, te0,00), 0<e<ep. (29)

Further, if z is a solution to the problem (23), then the function zj,(t) = h=!(2(¢t +
h) — z(t)),h > 0 is the solution to the problem

€<Z;{(t)777> + (Z;L(t),n) + [zn(t), 7] +3<U2(t)zh(t),17> _
- (Gh(t’g)’n)’ vn € Hi(Q), a.e. te(0,00), (30)

2,(0) = zon, 2,(0) = 21,

where
Gh(t,e) = fin(t,e) — Bup(t)z(t + h) (u(t + h) + u(t)),

zon = h7H(2(R) — 20), zn = b2 (R).

In exactly the same way as the inequality (27) was obtained we get the inequality
1/2 1/2 !
EY2 (e ) < 222 (2, 0) + 2/ Gu(r,)ldr, t € [0,00), 0< e <o (31)
0

As u/(t) = z(t) — ae~'/%, then using Holder’s inequality, the inequalities (25), (20)
and the estimates (10), (29) we obtain

/0 lup, (7)2(7 4+ h) (u(T + h) + u(r))|dr <

t
< /0 [ (7)o 1207 + W) sy (11 + Wl oy + ()] oy ) dr <

t
SOMO/ un (D) [} + )l |dr <
0

< CMyE?(/ ) Ey*(z,t + h) < CM,, te[0,00), 0<e<e.  (32)

Using Holder’s inequality, the inequalitis (20), (25) and the estimates (10), (11) we
will estimate f7j, as follows

t t t
/0 [ Fun(r)ldr < /0 Fl(re)dr < /0 () ldr+
t

t
%/ e_T/E(\Aal+3]au2(7)])d7+6/ e/ |au(r)u ()]dr <
0 0

t
. 1
< Mo +Clollzsgay [ el (Zullzsior+
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+Hu’(7)HL6(Q))dT <OMs, te0,00), 0<e<1/2. (33)
The estimates (32) and (33) imply the following estimate for Gy,
t
/ Gu(P)ldr < CMs, 1 €[0,00), 0<z<zp. (34)
0
As
By*(2',0) = |£/(0) + Awy — 3udui| < O, (35)

then, using the estimates (34), (35) and passing to the limit in the inequality (31)
as h — 0, we obtain the estimate

B (2 4) <CM,y, te(0,00), 0<e< e (36)
From (29) and (36) follows the estimate
[|2[lw1e 0,00:22(2)) + [12llw12(0,00sm3 () < C M2, 0 <& < eo. (37)

Finally, let us estimate |[2| o (0 00;17 ())- To this end we denote by

Es(z,t) = el (8)1* + |2()]* + |l2@)I* +2(1 ~ 6)/0 [ (r)[Pdr+

+2:(=(1), 2/ (1)) + 2 /Ot ||2(7)| 2 dr + 6 /Ot (w(r),22(r) ) dr +3(u2(1), 22(1)).

If z is a solution to the problem (23), then

%Eg(z,t) - 2( Filt,e), 2(t) + z’(t)) n 6<u(t)u’(t), z2(t)), ae. te(0,00).

Integrating the last equality on (0,¢), similarly as the inequality (18) was obtained,
we get

Fs(z,t) < C<E3(Z= 0) + Hfi”le(o,oo;m(Q)) + /Ot ‘ <U(T)UI(T)’ 22(7)) ‘dﬂ_

¢
+ [ (Aol + o) B erdr), telom), v<e<t (39)
0
In the obvious way we obtain the estimate
E3(Z7 O) + Hfi”%l(o,oo;lzz(ﬂ)) < CM2 (39)

Using Holder’s inequality, the inequality (25) and estimates (10), (11), (29), we get
the estimate

KKWW%M%ﬂWgAM%www%WMﬁm@MS
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t
<7 [ WOl <
< CMlMoEQ(Z,t) < CM,y, te [0,00), 0<e<e. (40)
Due to Lemma 1 from (38), (39) and (40) follows the estimate

t
12l (o < Ba*(2,8) < C(Ma + /O (fa(re)] + £ (r,2))dr) <

<CM,, te [0, OO), 0<e<Leg. (41)
The estimates (37), (41) imply (14). Lemma 2 is proved.

Corollary 1. If f € W21(0,00; L2(2)), u1, £(0) —ud + Aug € HL(Q)NH?(Q), then,
in fact, the function u(t) satisfies the estimates

ullwino00;mi () < CM2, 0 <e<e, pE[2,00] (42)

ellu"]| Lo 0,002 () + [AU|[ Lo (0,00522()) £ CMa, 0 < e < &o. (43)

4 Relationship between solutions to the problems (P.) and (Py)
in the linear case

In this section we shall give the relationship between solutions to the problem
(P.) and (P,) in the linear case, i. e. in the case when the term u® in the problems
(P:) and (Pp) is missing. This relation was inspired by the work [10]. At first we
shall give some properties of the kernel K (t,7,¢) of transformation which realizes
this connection.

For € > 0 denote

K(t,r,¢) = 2—\/1% (Ki(t,72) + 8Kt m,2) — 2Ks(t,7.2) )
where 3t — 27 2t — 71
Kl(t,T,s):exp{ = }A( 2@),
Ks(t,1,e) = exp{gt LGT} <22t\7€—;—)’

Ks(t,7,e) = exp{%}A(Z\—;;t), A(s) = /:O e_”2d77.

Lemma 3 [11]. The function K(t,T,e) possesses the following properties:

(1) For any fizede >0 K € C({t > 0} x {7 > 0}) NC°(Ry x R);

(ii) K (t,7,e) =K r(t,1,6) — K (t,1,¢), t>0,7>0;
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(iii) eK-(t,0,e) — K(t,0,e) =0, t > 0;

1
(IV) K(077—75):2_66Xp{_27-_€}7 7—20;

(v) For each fized t > 0, s,q € N there exist constants C1(s,q,t,e) > 0 and
Cy(s,q,t) > 0 such that

|0;0IK (t,7,e)| < Cy(s,q,t,e)exp{—Ca(s,q,t)T/c}, T >0;

(vi) K(t,7,e) >0, t>0, 7 >0;

(vii) Let e be fized, 0 < ¢ < 1 and H be a Hilbert space. For any ¢ : [0,00) — H
continuous on [0,00) such that |p(t)] < M exp{Ct}, t > 0, the relationship

oo

lim K(t,T,E)(,D(T)dT:/ e Tp(2eT)dr,

1s valid in H;
(viii) [(CK(t,7,e)dr =1, t>0;
(ix)
/ K(t,7,)|t — 7lidr < C=92(1+192), qe[o,1].
0
x) Let f € WH>(0,00; H). Then there exists positive constant C such that
(x)
IO /0 K(t,7,0)f()dr|| < OVEQ+VDIF li=ooestnys 2 0.

(xi) There exists C > 0 such that

t 00 9
// K(Tﬁ’ff)exp{——}deTSC’e, t>0, e>0.
0 0 g

Theorem 3. Suppose that f € L°°(0,00; L*(Q)) and u € W?2°(0,00; L?(2)) N
L>=(0,00; HY(Q)) is the solution to the problem:

e(u(t),m) + (W' (t),n) + [u(t),n) = (f(t),n), Vne Hy(Q), (44)

a.e. t €0,00),
uw(0) = ug, ¥ (0) = uq. (45)

Then the function vy which is defined by

vo(t) = /000 K(t,r,e)u(t)dr (46)
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is the solution to the problem
(vo(t),m) + [vo(t),n] = (folt,€),m), Vo€ Hy(Q), Vt>0, (47)

Vo = Pe, (48)
where

fo(tye) = Fy(t,e) + /000 K(t,r,e)f(r)dr,

1 3t ( 1 [t ©
Fy(t,e) = NG {2exp{4—€})\< E) — )\<§ g)}ul, Pe = /0 e "u(2eT)dr.
Moreover, vy € W2>(0,00; L2(£2)) N L*°(0, 0o0; HE ().

Proof. Asw is the solution to the problem (44), (45) and u, u’, v’ € L>(0, 00; L?(f2)),
then vg € W2%(0,00; L*(Q)) N L>(0,00; HY(Q)), u € C([0,00); L3()) and
lu(t) — uog| — 0,]u/(t) — u1| — 0 as ¢ — 0. Therefore, integrating by parts and
using the properties (i) - (iii) and (v) of Lemma 3, we get

(vo(t),m) = </0°° Ki(t, 7, e)u(r)dr, 77) =

(/000 (EKrr(t,T,E) — K. (t,T, zs))u(T)dT7 77) -
— (/OOO K(t,7,¢) (&?u”(T) + u'(7)>d7 +eK(t, O,E)ul,n) —

= (fo(t,a)ul,n) — [v(t),n], ¥ne HQ), Vt>D0.

Thus vy(t), which is defined by (46) satisfies the equation (47). From property (vii)
of Lemma 3 the validity of the initial condition (48) follows. Thus Theorem 3 is
proved.

5 Limits of solutions to the problem (P.) as ¢ — 0

In this section we shall study the behavior of solutions to the problem (F:)
as € — 0.

Theorem 4. Suppose that f € W1(0,00; L?(2)), uo, u1, f(0) —ud +Aug € HE(Q)N
H?(Q), then there exist constants C = C(Q) and g9 = £o(S2, My) such that the
following estimates

lu —vlloqogrz) < CM2(t¥? +1)Ve, t2>0, 0<e<e, (49)
e =0l [ Lo ma ) < CMa(1+1¥2)e/*, £20, 0<e<e, (50)
are fulfilled. If in addition f € W2°°(0, 00; L*(12)), then

|/ — v — ahe ™% | poo (o 112 ()) < OMse/ (1 +%2), t>0,0<e<ey, (51)
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is fulfilled, where u is a solution to the problem (P:), v is the solution to the problem
(Po) and Mz = Ma + || f"[| Lo (0,00;2(02)) -

Proof. Proof of estimate (49). If w is the solution to the problem (P:), then
according to Theorem 3 the function

w@y:AmKuﬁﬁmumT
is the solution to the problem
{ ng%n)+¢w@yny:(F@¢%n), Vne HY(Q), t>0, (52)
w = Pe,

where
F(t,e) = Fy(t,e) + /000 K(t,r,e)f(r)dr — /000 K(t,r,e)u(r)dr.

Using the estimates (11), (41) and properties (viii) and (x) from Lemma 3 we obtain
the following estimates

[u(t) — w(t)] < CVEQ + VUl L0 (0,0002(0)) <

<CMve(1+Vt), t>0, 0<e<1/2 (53)

and
lu(t) —w(t)]] < CMae 21+ V1), t>0, 0<e<e. (54)

Therefore, as ||w(t)|| < My, then
[a?(8) = w*(2)] < Cllu®) = wb) sy (1125 @y + 0O Bogey) <

< O |[ult) = w®)[[[Ju(®)|[* < CM2ve(L+ V1), t2>0,0<¢ < ep. (55)

Denote by y(t) = v(t) — w(t), where v is the solution to the problem (Fy) and w is
the solution to the problem (52). Then the function y is the solution to the following
problem:

y(1)n) + (@), ) + ((02(0) + v(@w(t) + w(H)y(),n) =
= (Fl(t,a),n>, Vn € HE(Q), t>0, (56)
y(0) = uo — e,

where

Fi(t,e) = f(t) — Fo(t,e) — /000 K(t,r,e)f(r)dr + /000 K(t,7,e)ud(r)dr — w?(t),
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Due to the estimate (8) (in the linear case) for the function y we get the estimate

(D)) < 1y(0)] + /0 Fi(r.e)ldr, >0,

From the estimate (11) it follows that

1y(0)] < /0 e lug — u(2e7)|dr <

e 2eT
< / e_T/ |/ (s)|dsdT < Ce|[u|| oo (0,00,02(02)) < CeMi.
0 0

As q(s) = e A(s) < C, for s € [0, 00] then

/Ot \Fo(r, 2)|dr < Clui /Ot [exp{i—;—})\<\/§) +A(%\E)}df _
= ctul [ ew{ - ZHa(y/2) + a(3y/D)]ir < Celurl. 120

Using the properties (viii) and (x) from Lemma 3, we have

/ot 70~ /OOO K (7, 5,2)  (s)ds|dr <

< OVE|F Il oo (0,00:22(0) (1 + 132) < CVEM(1 +£3/2), ¢ > 0.
Let us evaluate the difference
I(t) = w(t) — /000 K(t,1,e)u(T)dr.
Due to inequality (25) and the estimates (10), (41), we get
|(w?(9))'| = 3[u (s)u?(s)| < 3|’ ()| Loy | [uls)[ o0y <

< 3P|l (s)ll[|u(s)|[* < OMa, s €[0,00), 0<e<ep,

and, consequently,

‘u?’(t) —/oo K(t,T,g)u3(T)dT( <OMyVE(l+VE), t>0, 0<e<ep.
0

Hence, from the last estimate and (55), we get
101 < ()~ (0] + [6) ~ [ Kt el (r)ar] <
0

< CMav/eE(1+VE), t>0, 0<e<ep.

(57)

(58)

(59)

(60)
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Therefore .
/II(T)IdTSOMNE(Ht?’/Q), t>0, 0<e<e. (61)
0

Gathering the estimates (59), (60) and (61), we have
t
/1wua@u7gcmb¢a1+ﬁﬁ% £>0, 0<e<ep
0

Using the last estimate and (58), from (57) follows the estimate
()| < CMav/e(14+132), >0, 0<e<e. (62)

Finally, the estimates (53) and (62) involve (49).

Proof of estimate (50). To prove the estimate (50) we have to evaluate
Y[l Lo (0,00; 12 (2))-  To this end we observe that due to (9) for y' is true the esti-
mate

ly' ()] < Yol +/0 |[Fy(7,€) —d(r)y(r)ldr, t€[0,00), (63)

where a(t) = v2(t) + v(t)w(t) + wi(t), Yo = Ay(0) + F1(0,¢) — a(0)y(0). Using the
estimate (43), we get
|Ay(0)] < CMs,. (64)

Due to the inequalities (11) and (25) we obtain that
IF1(0,2)] < C(Ifllwraooesza@y + hul + [uoll*) < CMy (65)

and
|a(0)y(0)] = |uf — 2| < CMs. (66)

The estimates (64), (65) and (66) imply

|Yo| < CM,. (67)
As
K. (t,7,) — K(t,7,¢) = — 3(m@7@—m@7@)
b ) ) b 46\/’7_'[' bl ) ) bl
and

/OOO (Kl(t,T, €) +K2(t,7',5))d7- < Cs()\( — %\/t/_s) + e?’t/‘le)\(\/t/_&?)) < Ce,

then for f € W1°°(0, 00; L?(12)), due to the properties (ii), (iii) and (v) from Lemma
3, we obtain the estimate

‘/000 Kt(t,T,E)f(T)dT‘ = ‘ /OOO (EKT(t,T,E) — K(t,T, E))f/(T)dT‘ <
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< e /OOO (K(t,7,2) + Ka(t, 7, 2)) | f/(7)|dr <

< Cllfllwrse(0,00;2(02)) < CMs.

(68)

Similarly, using the inequalities (25), (42) and the properties (ii), (iii), (v) and (viii)

from Lemma 3, we obtain the estimates
o0
‘ / Kt(t,T, E)Ug(T)dT‘ < CHUHWLOO(O,OO;H(%(Q)) < CMQ, O<e <
0

(w®) (&) < Cllw' Ollllw @) <

€0, (69)

§0M0H/ Kot eyu(r)dr]| < CMy 0<e<e, telnoo).  (70)
0

By direct computation we can show that

/ (7, 2)|dr < Clus| < CMy, € [0, 00).

0

The estimates (68), (69), (70) and (71) involve the estimate

t

/ |F{(T,e)|dr < CM,, 0<e<egy, tel0,00).

0
Thanks to the inequality (25) and Holder’s inequality we have

' (t)y(t)] < C(IIU(t)Illlv'(t)ll + [ @)[w(®)]]+

HlvOw' @) + IIw(t)IIIIw’(t)II)IIy(t)||7 t € [0,00).

Therefore, the estimates (8), (9), (62) and (33) imply
t
/ ld/(r)y(r)|dr < CMy(1+1%2), 0<e<eo € [0,00).
0

Using the estimates (67), (72) and (73), from (63) we obtain

Iy (1) < CMa(14+t%?), 0<e<ey, tel0,0).

' (), 50)) + [y + (at), y(t) = (Fi(t.€),y(t)
|Fi(t,e)] < CMs, 0<e<egg, te]0,00),
then due to (74) we get
ly@I < ly@I(IF @) + [y (8)]) < CMav/E(1+172)%, 0 <e < e,

From the last estimates and (54) the estimate (50) follows.

(72)

(73)

(74)

t € [0,00).
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Proof of estimate (51). Denote by z(t) = u/(t) + ae /%, where « is defined in
(13). Then z(t) is a solution to the problem (23). According to Theorem 3 the
function w;(t), which is defined as

wi(t) = / K(t,7,e)2(r)dr
0
is a solution to the problem

{ (wh(t),m) + [wi(t),n] = (F(t,e),n), Vne Hy(Q), t>0,
wi1(0) = wie,

where

Ft,e) = /0 T Kt e) fu(re)dr — 3 /0 T K R (7)2(r)dr

[ee]
wlez/ e Tz(2eT)dr.
0

Using the estimates (11), (14) and properties (viii), (ix) and (x) from Lemma 3,
similarly as the estimates (53) and (54) were obtained, we obtain the following
estimates

|2(t) — w1 (t)] < CVEQ + V)12 || oo 0,00:12(00)) <

< OMay/e(1+VE), t>0, 0<e< e, (75)

and

et~ w0 < [ Kema)| [ 1 6)as]ar <

< Ollzpocmyay [ Kl elit=rV2dr <

< CMue 1+, >0, 0<e<ep. (76)

Under the conditions on f,uy and w;, if v is a solution to the problem (Fy), then
the function vy (t) = v/(t) is a solution to the problem

(v4(8).m) + o1 (), n] +3(2(er (), m) =
= (F't1n), Ve HYQ), ae te(0,00)
Ul(O) = 20-

Denote by R(t) = wi(t) — v1(t). Then the function R is a solution to the problem
R(6),n) + [R(),1] + 3(v2(OR(t),n) =

- (fl(t,a),n>, vp e HY(Q), ae. te(0,00),
R(O) = W1ieg — 207
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where
Fi(t,e) = F(t,e) + 30 (t)w (t) — f(¢).

For the function R the estimate
t
ROI< RO+ [ Fneldn t20
0
holds. Using the estimate (14) we get

IR(0)] < / e |20 — 2(2em)|dr < Cel| || 1= 0oz < CeMa.
0

(78)

To estimate the second term of the right-hand side of (77) we will present F(t,¢)

in the following form:
Fi(t,e) = 1Ii(t,e) + Ix(t,e) + 3I3(t, ),

where

I(t,e) = / K(tm,e)f (r)dr — 1'(2),
0
Ly(t,e) = / K(t,1,¢) (3u2(7')a — Aa> e 7/edr,
0
I3(t,e) = v*(t)wy (t) — / K(t,7,e)u*(r)z(7)dr.
0
Using the properties (viii) and (x) from Lemma 3, we obtain the estimate

[11(t,8)] < CIf" || 000 r2) VEL+VE), t>0, >0

and, consequently,

t
/ L (r,0)dr < CJlf" e ootz VA + £2), £20, &>0.
0

In view of the inequality (25) and the estimate (10) we have
[ (t)al < [lu)l|Fsqllallzs@) < Vllu@lPllall < CMz,  t = 0.

Therefore the property (xi) from Lemma 3 permits to estimate I(t,¢)

t t 00
/ |Io(T,e)|dT < CM2/ / K(7,s,e)e */*dsdr <
0 o Jo

< CMse, t>0, 0<e<eg.

Further, using the inequalities (25), (50) and (76), we get

[v* (twi(t) — u?()2(1)] < C(Ile(t)IIIIU(t) —o@II([[u®I] + o@D+

(79)
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Hlwn () = =) l[u(t)]?) < CMa(llu(t) = o(®)]] + llwa(t) - 2(0)]]) <
< CMye (14837, >0, 0<e<e. (81)

Using the estimates (10), (14), (42) and property (ix) from Lemma 3, we obtain the
following estimate

/0 T K (7 )[12(r)2(r) — w2(0)2(0)|dr <

< [T K] [ o 6)206) +02(6)2 ()i <

<M, /OOO K(t.7.2)| /t(1 + 12 ()])dsdr <
< CMue 1 +t%), >0, 0<e<ep. (82)
The estimates (81), (82) imply
/Ot [I3(7)|dr < CMae /Y (1 +t%/2), t>0, 0<e<e.
From the last estimate and (79), (80) it follows that
[1Amaar <omta e, iz, 0<esa @

From (77), due to (78) and (83) it follows that
IR(t)] < C Mo (1417%), t>0, 0<e<ep.

The last estimate and (75) imply the estimate (51). Theorem 4 is proved.

Theorem 5. Let T > 0. Suppose that f € W1(0,T; L%(Q)), uo, u1, f(0) — ud +
Aug € HY(Q) N H%(Q), then there exist constants C = C(Q,T) and go = eo(, My)
such that the following estimates

[ = vle o, 20)) < CMave, 0<e < e, (84)
HU — UHL""(O,T;H&(Q)) < CM251/4, 0<e < €0, (85)

are fulfilled. If in addition f € W°°(0,T; L?(2)), then
|[u' — " — Oéhe_t/eHLoo(07T;L2(Q)) < OMsge'/t, 0 <e<e, (86)

is fulfilled, where w is the solution to the problem (P:), v is the solution to the
problem (Py). The constants M;,i = 1,2,3, depend on the same values as M;, the
difference being that the norms || flyr.1(0,00;02(0)) 0 M; are replaced with the norms
Lf[lwwi0,m;L2(0)-
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Proof. For any function f € W20, T; L?(Q)),1 € [1,00], there exits the extension
f € W20, 00; L?()) such that

1 Fllw20,00:22(0)) < CON Fllwai 0.7, 22(0) (87)

(see, for instance, [12]). If @ is the solution to the problem (4), (5) with the same
initial conditions ug,u; and the right-hand side f , then according to Theorem 1 we
have that u(t) = a(t) for t € [0,T]. Similarly, if ¥ is a solution to the problem (6),
(7) with the same initial condition ug and the right-hand side f , then according to
Theorem 2 we have that v(t) = 9(t) for t € [0,T].

Consequently, using the estimates (49), (50), (51) and (87) we obtain the esti-
mates (84), (85) and (86). Theorem 5 is proved.
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