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Abstract. Functional bases of centro-affine invariants are constructed for the three-
dimensional differential systems with polynomial right-hand sides of order less than
three.
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1 On the number of elements in a functional basis
of invariants

It is known [1-3] that in the study of a polynomial differential system with the
aid of Lie algebras and the orbit’s theory an important role belongs to invariants
and comitants of the systems [4-5]. Functional basis of invariants (comitants) should
be especially mentioned. This can be explained by the fact that knowledge of Lie
algebra of operators allows us to determine beforehand the exact number of elements
in a minimal basis. In this article using the general theorem of algebraic invariants
theory [4] functional bases of centro-affine invariants are studied for different three-
dimensional differential systems with right-hand sides of order less than three.

Consider the three-dimensional differential system

¥ = a’ + ala® + al ja*2’ (j,a,5=13), (1)

where the coeflicient tensor aiﬁ is symmetrical in lower indices, in which the com-

plete convolution holds, and the group of centro-affine transformations GL(3,R):
T = qla” (A =det(q) #0; j,r=1,3).

The Lie algebra of operators [1] for linear representation of the group GL(3,R)
in the space of coefficients of system (1) is given by the following operators:

d; =D + D + D (i =T,9), 2)
where 5 5
(0) 1 0) _ 2 0 _ 3
Dii=aga D =a5m Di=dgs
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DY = a3%, Dy = al%, D = a2%; (3)
D = algoy + gy — oy —aiy
Dél) = a%aia% + a%aia% +a§88§ - a%aa%,
DY) = —al sy ooy +al s + ol
DY = ot (o = al) g+ ey — otz —al
D = ol g+ ey + (o al) gy — otz —
D) = —alr + (o} = ad) 50y + b+ adoy —adg
DY = —aj s + ol oy + b+ (o} o) 5y —adn
D) = —al g — ooy + (o} = ad) s + aby el
DY) =~y ol bl -t ()
D§2) —a1; 68%1 +ag 68%2 +azs 8;3 +ags 88:1))3 201 88%1 -
%2%%2 %3%%3 — 24}, 85{’1 —ai 85{’2 — afy 85{’3’
Déz) = —0%2% - 2a§2%%2 - a%?)%%g + a%l% + a%zz%%g—
_a§28ai§2 + agsaaig’g - ai’2aai;{,2 — 2a3, 85%2 —ajs 8533’
Déz) = —ajs 65}3 — aj 65%3 - 2a§3%;}3 - a%s%%g - ‘133%%3—
—2‘1%387%3 + aifl(‘)ai‘%l + afy 85{’2 + a3y 85%2 —ajs &%37
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D = a2 " + (a3 — al +aj + (a3y — 2aj,) =1 + (a35 — ajg) =+
4 11 80&1 (a1s 11)8%2 13 aaig (agy 12)(9&%2 (a3s 13)&%3
0 0 0 0 0 0 0
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+a —a —2a79—=— — @ —a — 209 =—o — Qi3 —=,
% 3“%3 " 3‘1%2 2 8@%2 b aags " 8@%2 2 8@%’2 s aags

0 0
DY = a}) =1 +aly— + (afs — a})) + a3y + (a3s — aly) =1+
5 8&%1 8&%2 8&%3 8&%2 8&%3

o 4, 8 4, 0
—a —a
1 11 2 12 2
Oazs dais Oass
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+(a35 — 2a13) - 2‘11337:337

— 2020 — — a3 — — a5y —
139 2 11973 12 5 3
daszs dajs Oass

0 0 0 0
DY = —2ajy =1 — aby =1 — A= + (al; — 2a}y) =5 + (aly — ady) =5+
6 daly dal, daly da?, da?,

Hola—oh) g o o oy g —dha ~dhg

D%Z) = —ai, 85%3 — a3, 8553 - 2@38%,3 +a}y 85%1 + a3y 85%2 + (a5 — a%2)aai%3+

+ag2aai%2 + (a3 — a%z)aai%g + (ads — 26‘%3)85%3 — af 85%3 - a§2aai§,3 - 2‘1%38%37
D = —2nlag o, — b~~~

0
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Q33

0 0 0 0 0
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1
+a +a
3 2353 33
11 ajs ais a9 Dasy 9

2) 1 (9 8 1 8 2 8 (9 2 (9

1 2
=—ai35 7 — 20357 —A33 57 — Q353 203355 —A335 5+
dajy Oayy Oays Oafy Oasy Oaszs

D

0 0 0 0
2 2 3 2 2 3 2 3 2

+ai1 =+ (aly—aj3) == +aj3 ==+ (a3 —2a33) == +(a33—a33) == +a33=—=-
g 3 (aiy 13)9 3 135 3 (a3, 23) 9ad, (a53—az3) Dl 35 %)

According to [2] is proved the following
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Theorem 1. The polynomial 6(a) in the coefficients of the system (1) is a centro-
affine invariant [3] of the system (1) with weight g iff the equalities

di0) = —gb (i=T3), d;(0)=0 (j =7,9), (6)

hold, where d; (i =1,3) and d; (j =4,9) are the operators (2)-(5).

Definition 1. The set of polynomial invariants {0s(a), s € B} of the system (1)
with respect to the GL(3,R)-group is called a functional basis of invariants of the
system (1) with respect to this group if any invariant 6(a) of the system (1) with
respect to the GL(3,R)-group can be written as a univocal function of the invariants
Os(a). (Here B is some set of finite or transfinite natural numbers.)

Definition 2. A functional basis of invariants of the system (1) with respect to
the GL(3,R)- group is called minimal if any invariant could not be removed out,
overwise it is not a functional basis anymore.

With the aid of Theorem 1 we obtaine

Lemma 1. The number of elements u in a functional basis of centro-affine invari-
ants for the system (1) is equal to 22 (i.e. p=22).

Proof. We observe, according to equalities (6), that any invariant 6(a) satisfies a
non-homogeneous linear system of partial differential equations of the first order.
In the theory of equations (see for example [6]) it is known that the number of
functionally independent solutions (invariants) of the system (6) is equal to

w=N —rankM; + 1, (7)

where N is the number of coefficients in the system (1), and M; is the matrix,
constructed on coordinate vectors of the operators (2)—(5). As for coefficients of
the system (1) we have N = 30, and the general rank of the matrix M; is equal to
9, according to equality (7) we obtain that the number of functionally independent
solutions (invariants) of the system (6) is equal to 22. Lemma 1 is proved.
Remark, with the aid of respective combinations of the operators (3)-(5), the
truth of equalities of the type (7) can be showed for any subsystem of the system
(1). Taking into consideration this fact and equality (7) we obtain that for u holds

Lemma 2. The number of elements p in the basis of centro-affine invariants for
the three-dimensional differential system is given in the Table 1.

Table 1
I Differential system Number of the system
0 |[#/=d (j=1,3) (8)
3 i = ahr® (j,a=1,3) (9)

(6%

4 i =d +ahr® (j,a=1,3)

13 3:] =al + al g2®a® (j,a,0=1,3)
19 | &/ =ala® + ajaﬁwaxﬁ (j,a,8=1,3)

10 i =a’ ﬁwaxﬁ (J,a, 6 =1,3)
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Remark 1. For the system (8) we have p = 0, as writing the equation (6) with
the operators DZ(O)(H) =—g0 (i=1,3), Dj(#) =0 (j =4,9) from (3) we obtain
that the constant is the unique solution of this system. Such invariants will not be
considered further.

To construct invariants of the system (1) and (9)—(13) we will use their notation
with the aid of the convolution and alternation [4]. Further the unit three-vector

ePI" with coordinates e!23 = —g132 = 312 = 321 — 231 — _ 213 — 1 apd
eP” =0 (p,q,r =1,3) will be used in other cases.
2 Centro-affine invariants of functional bases
for the systems (9)—(13) and (1)
Theorem 2. The expressions
01 =al, 0= agag, 03 = ao‘aﬁaﬁ, (14)

form a functional basis of centro-affine invariants of the system (9).

Proof. We observe that the invariants (14) satisfy DZ(I)(HJ-) =0 (i=1,9; j=1,3),
where DZ-(l) is from (4). One can verify that the Jacobi matrix for the polynomials
from (14) has the general rank 3. Hence the indicated invariants are functionally
independent and according to Table 1 form a functional basis of centro-affine invari-
ants of the system (9). Theorem 2 is proved.

From (5) with the aid of information from Table 1 we obtain

Theorem 3. The expressions

i = m qﬁa ﬁfﬁqu" 19 = apsagta;’ua‘s5aguai’/yepqrssw,
iz = aﬁpagqalsaita’ju guqu%st“ iy = a(;apagqagrazsaﬁ/‘taguewesw,
i5 = apsaqtagraiuagua sEPT e g = ag‘sagta(graauagyawqurssm, (15)
i7 = apsagtamauuaﬁyaaégpqrgstu is = apsaf;tagragua’éy%uepqrem,
Qg = apsaqﬁtagrafmag“a ¥ ePTestu o = g2 agt al ag WY P gstu

form a functional basis of centro-affine invariants of the system (10).

Jacobi matrix for the invariants i1 — i1¢ is calculated when

1 1 1 1 1 1
aj; =ajp=aj3=ayp =1, ay=2 a3 =3, a=-1,
_ 2 2 _ _ 2 _
ajo =06, aj3=-1, ay»p =0, a3 =>5 a3=>0,
3
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its rank is equal to 10, that shows the functional independence of i1 — i1¢.
Using the operators DZ-(O) + Di(l) (1=1,9) from (3)-(4) and p = 4 from Table 1,
is proved

Theorem 4. The expressions (14) and

«

uaga;’aéa“a”&?g,ﬂg (16)

94:CL

form a functional bases of centro-affine invariants of the system (11).

Using the operators DZ-(O) + DZ-(2) (i =1,9) from (3), (5) and p = 13 from Table
1, is proved

Theorem 5. The expressions (15) with any three invariants from the following
four

. . B 5 B 5 Y 0
i1 = agﬁaﬁ, 119 = agﬁawaﬂya , 13 = agﬁ/aaéaﬂya , 14 = agyagyama ata” (17)

form a functional basis of centro-affine invariants of the system (12).

Jacobi matrix for elements of a basis of centro-affine invariants of the system
(12) from (15) and (17) is calculated when

1 2 3 1 1 1 1 1

a =3, a" =5, a =7 a=ap=a3=ap=1, ay3y=2
1 2 _ 2 2 _ 2 _ 2 _

azgg =3, ayjy=-1, aj;=06, aj3=-1, a3=0, az3=>,

012’,3 =0, a?l = a%z = a%?, =1, 032 =T, ‘133 =4, 033 =0,
its rank is equal to 13, that shows the functional independence of the indicated

Iinvariants.

Remark 2. The invariants (17) for the system (12) are obtained from tensorial ex-
pressions of the comitants Ky, Kg, K7 and Kj7, respectively, from the monograph
[4, p. 141-142] after the substitution =~ for a™.

Using the operators Di(l) + DZ@) (1=1,9) from (4)—(5) and p = 19 from Table
1 is proved

Theorem 6. The expressions (14), (15) and

- a, B v 6 pgr ;.  _ a B v & pegr . __ o B vy & _pgr
115 = Ay Gagap, 055", 16 = ayag,a3,a068"", i17 = ayag al,ap ™,
o _ oo By 6 pgr ; _ a B v & p o _pgr o By & W _pqr
18 = a5agpas,a5,.6"", g = apagag ap,al e, s = ajaza)ag.an e, (18)

form a functional basis of the centro-affine invariants of the system (13).

Jacobi matrix for elements of a basis of centro-affine invariants of the system
(13) from (14), (15) and (18) is calculated when

a% = -1, a% =9, azl,) =-9, a7=4, a% =9, ag =1,
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it’s rank is equal to 19, that shows the functional independence of indicated invari-
ants.

Remark 3. The invariants

191 = a%ﬁ{ a’, g9 = a®a’ a’, i3 = a%a’a’ a‘;,
B%ay v aB 776 Taf

i9q = agagyag“a‘sa“, o5 = af’;agﬁag“aéa“ (19)
for the system (1) are obtained from tensorial expressions of the comitants K3, Ky,
Kg, Kj2 and K3, respectively, from the monograph [4, p. 141-142] after the sub-
stitution z~ for a~.

Using the operators DZ(O) + Di(l) + Di@) (i = 1,9) from (3)—(5), Remark 3 and
the statement of Lemma 1 about the number of centro-affine invariants in functional
basis (22 elements) for the system (1), is proved

Theorem 7. The expressions (14)-(16) and (18), with i11 from (17) and iz
from (19) form a functional basis of centro-affine invariants of the system (1).

Jacobi matrix for elements of a basis of centro-affine invariants of the system (1)
from (14)—(16) and (18) with 41; from (17), i1 from (19) is calculated when

(1:3, (1:5, a:7’ (11:—7, (12:5, a§:—9,

its rank is equal to 22, that shows the functional independence of indicated invari-
ants.
One can verify

Remark 4. With the aid of the invariants (14)-(19) it is possible to construct
other functional bases of centro-affine invariants of the system (1) consisting of 22
elements.
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