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On determining the minimum cost flows

in dynamic networks ∗

Maria Fonoberova

Abstract. The dynamic minimum cost flow problem that generalizes the static one
is studied. We assume that the supply and demand function and capacities of edges
depend on time. One very important case of the minimum cost flow problem with
nonlinear cost functions, defined on edges, that do not depend on flow but depend on
time is studied.
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1 Introduction and Problem Formulation

In this paper we study the dynamic version of the minimum cost flow problem
on networks, which generalizes the well-known static minimum cost flow problem.
We use dynamic network flow models instead of the static ones due to the fact that
dynamic flows are much more closer to reality than static flows that can not properly
consider the evolution of the system under study over time. For our problem the
time is an essential component: the flows of some commodity take time to pass from
one location to another and the structure of network changes over time.

The minimum cost flow problem on networks is of special interest not only from
the practical point of view but it also has a great theoretical importance in the
investigation and solving of various optimization problems on graphs. It can be
used for the research and solving of the distribution problem, the synthesis problem
of communication networks or the allocation problem. The field of applications of
the considered problem considerably enlarges in the case when the cost functions
are nonlinear.

In this paper we consider the flow problem on dynamic networks with nonlinear
cost functions, defined on edges. Moreover, we assume that the supply and demand
function and capacities of edges also depend on time. We study one very important
case of the minimum cost flow problem with cost functions that do not depend on
flow but depend on time and derive different approaches for its solving.

Let a dynamic network N = (V,E, q, c, τ, ϕ), which consists of directed graph
G = (V,E) with set of vertices V = V+ ∪ V− ∪ V0, where V+, V− and V0 are sets
of sources, sinks and intermediate nodes, respectively, and set of arcs E, be given.
Without loosing generality, we assume that no edges enter sources or exit sinks. We
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consider the discrete time model, in which all times are integral and bounded by
horizon T , which defines the set T = {0, 1, . . . , T} of time moments we consider.
The functions in network N are defined as follows: demand and supply function
q: V ×T → R, capacity function c: E ×T → R+, transit time function τ : E → R+,
and cost function ϕ: E × T × R+ → R+. The demand and supply function qv(t)
satisfies the following conditions:

a) there exists v ∈ V with qv(0) < 0;

b) if qv(t) < 0 for a node v ∈ V then qv(t) = 0, t = 1, 2, . . . , T ;

c)
∑

t∈T

∑

v∈V

qv(t) = 0.

Nodes v ∈ V with
∑

t∈T
qv(t) < 0 are called sources, nodes v ∈ V with∑

t∈T
qv(t) > 0 are called sinks and nodes v ∈ V with

∑
t∈T

qv(t) = 0 are called
intermediate.

A dynamic flow on N is a function x: E × T → R+ that satisfies the following
conditions:

∑

e∈E+(v)
t−τe≥0

xe(t − τe) −
∑

e∈E−(v)

xe(t) = qv(t), ∀ t ∈ T, ∀ v ∈ V ; (1)

xe(t) = 0, ∀ e ∈ E, t = T − τe + 1, T ; (2)

where E+(v) = {(u, v) | (u, v) ∈ E}, E−(v) = {(v, u) | (v, u) ∈ E}.
Here the function x defines the value xe(t) of flow entering edge e at time t. It

is easy to observe that the flow does not enter edge e at time t if it has to leave the
edge after time T ; this is ensured by condition (2). Conditions (1) represent flow
conservation constraints.

Feasible dynamic flow also has to verify the following capacity constraints:

0 ≤ xe(t) ≤ ce(t), ∀ t ∈ T, ∀ e ∈ E. (3)

Hereinafter we will show that the problem with capacity constraints can be reduced
to the one without restrictions on edge capacities.

The considered problem consists in minimizing the integral cost F of transporting
all the flow on N :

F =
∑

e∈E

∑

t∈T

ϕe(xe(t), t) → min . (4)

In the case when τe = 0, ∀ e ∈ E and T = 0 the formulated problem becomes
the classical problem on a static network.

2 The Time-Expanded Network Method

To solve the formulated dynamic problem we reduce it to a static one on an
auxiliary time-expanded network NT . The essence of such a network is that it
contains copies of the vertices of the dynamic network for each moment of time,
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and the transit times and flows are implicit in the edges linking those copies. The
time-expanded network NT = (V T , ET , cT , qT , ϕT ) is defined as follows:

1. V T : = {v(t) | v ∈ V, t ∈ T};

2. ET : = {(v(t), w(t + τe)) | e = (v,w) ∈ E, 0 ≤ t ≤ T − τe};

3. cT
e(t): = ce(t) for e(t) ∈ ET ;

4. ϕT
e(t)(x

T
e(t)): = ϕe(xe(t), t) for e(t) ∈ ET ;

5. qT
v(t): = qv(t) for v(t) ∈ V T .

If we define a flow correspondence to be xT
e(t): = xe(t), the minimum-cost flow

problem on dynamic networks can be solved by using the solution of the static
minimum cost flow problem on the time-expanded network. It is shown in [2] that for
each minimum-cost flow in the dynamic network there is a corresponding minimum-
cost flow in the static network and vice versa. In such a way, to solve the considered
problem, we have to build the time-expanded network NT for the given dynamic
network N , to solve the classical minimum-cost flow problem on the static network
NT and to reconstruct the solution of the static problem on NT to the dynamic
problem on N .

Remark 1. In the case of the acyclic network the constructed time-expanded
network can be reduced to the network of the smaller size, using the following
algorithm, based on the process of elimination of irrelevant nodes from the time-
expanded network [5]:

Algorithm

1. To build the time-expanded network NT ∗

for the given dynamic network N .

2. To perform a breadth-first parse of the nodes for each source from the time-
expanded network. The result of this step is the set V−(V T ∗

−
) of the nodes that

can be reached from at least a source in V T ∗
.

3. To perform a breadth-first parse of the nodes beginning with the sink for
each sink and to parse the edges in the direction opposite to their normal
orientation. The result of this step is the set V+(V T ∗

+ ) of nodes from which at
least a sink in V T ∗

can be reached.

4. The reduced network will consist of a subset of nodes V T ∗
and edges from ET ∗

determined in the following way

V
′T ∗

= V T ∗

∩ V−(V T ∗

−
) ∩ V+(V T ∗

+ ), E
′T ∗

= ET ∗

∩ (V
′T ∗

× V
′T ∗

).

5. q
′

v(t)

T ∗

: = qv(t) for v(t) ∈ V
′T ∗

;

6. c
′

e(t)

T ∗

: = ce(t) for e(t) ∈ E
′T ∗

;

7. ϕ
′

e(t)

T ∗

(xT
e(t)): = ϕe(xe(t), t) for e(t) ∈ ET . 2
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In the next section we derive the procedure of the reduction of the considered
problem (1)–(4) to the one without condition (3).

3 Reduction of the Considered Problem to the One without

Restrictions on Edge Capacities

The procedure of the reduction of the linear minimum-cost flow problem with
restrictions on edge capacities to the one without restrictions on edge capacities was
proposed in [1]. In this paper we derive this procedure for the minimum-cost flow
problem with nondecreasing and nonnegative cost functions.

It is more optimal to reduce the considered dynamic problem to a static one
and after that to reduce it to the problem without restrictions on edge capacities.
Therefore let us consider problem (1)-(4) on the static network and let us show
that this problem can be reduced to a problem on a new network H. For facility
we will use the same notations as in the dynamic network but will discard all time
information. The new network H will consist of set of vertices W , |W | = n + m,
and set of arcs F , |F | = 2m. The graph (W,F ) is a bipartite graph with two parts
E and V , i.e. W = E

⋃
V and there are only arcs leaving from vertices of set E and

entering vertices of set V . By [u, v] we denote a vertex which corresponds to arc
(u, v) in G. If there is an arc (u, v) in G, then there are arcs ([u, v], u) and ([u, v], v)
in F and ϕ([u,v],u)(x([u,v],u)) = 0 and ϕ([u,v],v)(x([u,v],v)) = ϕ(u,v)(x(u,v)). We associate
value c(u,v) with vertices [u, v] and value

∑
(u,v)∈E c(u,v) − qv with vertices v ∈ V . In

a new problem we have to find flows x([u,v],w) that solve the following problem:

∑

(u,v)∈E

ϕ([u,v],v)(x([u,v],v)) → min (5)

x([u,v],u) + x([u,v],v) = c(u,v) (6)
∑

v∈V

[x([u,v],u) + x([v,u],u)] =
∑

v∈V

c(u,v) − qu (7)

x([u,v],w) ≥ 0 (8)

Now we show that these problems are equivalent. Let us consider that flow x(u,v)

is a feasible one for the initial problem. Set

x([u,v],v) = x(u,v) (9)

x([u,v],u) = c(u,v) − x(u,v) (10)

In such a way flows in the new problem are nonnegative, so condition (8) is true.
Besides, as

x([u,v],v) + x([u,v],u) = c(u,v),

∑

v∈V

[x([u,v],u) + x([v,u],u)] =
∑

v∈V

c(u,v) −
∑

v∈V

x(u,v) +
∑

v∈V

x(v,u),
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then conditions (6) and (7) are true.

Vice versa let us consider that the new problem is feasible. If we define the
flow by formula (9), then it is obvious that condition (2) is true. Further in view
of (6) ∑

v∈V

x(u,v) −
∑

v∈V

x(v,u) =
∑

v∈V

[x([u,v],v) − x([v,u],u)] =

=
∑

v∈V

[c(u,v) − x([u,v],u)] −
∑

v∈V

x([v,u],u).

Using (7) we reduce the first part of this equality to qu and hence condition (1) is
true.

It is evident that costs of feasible flows in these two problems are equal, so in such
a way we reduced the problem with restrictions on edge capacities to the problem
without restrictions on edge capacities.

We would like to note that the same argumentation can be held to solve the
considered network problem in the case when there are two-side restrictions on edge
capacity:

re ≤ xe ≤ ce, ∀ e ∈ E,

where re and ce are lower and upper boundaries of the capacity of the edge e at time
t correspondingly. This case can easily be reduced to the one with only one-side
restrictions [1]. We introduce one additional artificial source b1 and one additional
artificial sink b2. For every arc e = (u, v), where re 6= 0 we introduce arcs (b1, v) and
(u, b2) with r and 0 as the upper and lower boundaries of the capacity of the edges.
We reduce c to c− r, but r to 0. We also introduce the arc (b2, b1) with c(b2,b1) = ∞
and r(b2,b1) = 0.

4 The Minimum Cost Flow Problem with Cost Functions that Do

Not Depend on Flow

Further we will study the minimum cost flow problem without restrictions on
edge capacities and with cost functions that do not depend on flow, i.e. when the
cost functions are constant on the constructed time-expanded network. Obviously
that in the case of constant cost functions the structure of optimal solution does
not depend on flow distribution on network. When there is only one source and one
sink the considered problem becomes a problem of finding the shortest path from a
source to a sink. For solving this problem there is a plenty of algorithms [1,3].

The formulated minimum cost flow problem with constant cost functions is re-
lated to network synthesis problems and Steiner trees. The network synthesis prob-
lem is formulated as follows. Let the graph G = (V,E), |V | = n, with source ṽ ∈ V

be given. Moreover with every arc e ∈ E a length ϕe is associated. The problem
consists in finding the graph G∗ = (V,E∗), E∗ ⊂ E, in which there is a path from
the vertex ṽ to every other vertex u ∈ V \ {ṽ} and the total length of its arcs is
minimal.
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It is easy to show that the optimal graph G∗ is a tree rooted at the source. One
of the methods for solving this problem is to generate all trees with the root ṽ that
allow flows, to calculate the cost of the flow and to select the tree with the minimal
cost. Evidently this method can be applied only in the case when the number of
vertices u ∈ V \{ṽ}, for which qu > 0 is not too big. Nevertheless this approach can
be used for some practical problems.

The more general network synthesis problem is formulated as follows. Let the
directed graph G = (V,E), |V | = n be given. With every arc e ∈ E of this graph a
length ϕe is associated. Moreover a subset of vertices Ṽ , |Ṽ | = p (p < n), is given,
for which for every u ∈ V \ Ṽ there is a path P (v, u) from the vertex v ∈ Ṽ to u.
The problem consists in finding the graph G∗ = (V,E∗), E∗ ⊂ E, which satisfies this
condition and the total length of which is minimal. Evidently the optimal graph G∗

is a tree with the base Ṽ ⊂ V . An algorithm for finding the minimal tree with the
given base is proposed in [6].

The particular case of the network synthesis problem is the Steiner problem,
which is formulated as follows. Let the directed graph G = (V,E) with the root
vertex ṽ and the subset of vertices U ⊂ V , where a nonnegative length ϕe is asso-
ciated with each arc e ∈ E, be given. It is necessary to find a tree T ∗ = (V ∗, E∗),
V ∗ ⊂ V , that contains subset of vertices U , i. e. U ⊂ V ∗, and for which the sum of
lengths of its edges is minimal. In our problem subset U represents a set of stocks
on the network. Though the problem of constructing Steiner tree is NP-complete,
many heuristic algorithms have been designated to approximate the result within
polynomial time [4,7].
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