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Abstract. This paper is devoted to a multicriterion vector integer programming
problem with Pareto principle of optimality. Quantitative characteristics of two types
of stability under perturbations of the vector criterion parameters with l1 metric are
obtained.
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1 Introduction

Multiobjective combinatorial models of decision making are widespread in de-
sign, control, economics and many other fields of applied research. Therefore in-
terest of mathematicians in multiobjective problems of discrete optimization keeps
very high, as confirmed by the intensive publishing activity (see, for example, bib-
liography in [1]). One of the areas of investigations in such problems is stability of
the problem solution to perturbations of initial data (of the problem parameters).
Various settings of stability problem give rise to numerous directions of research.
Not touching upon wide spectrum of questions appeared in this area we only refer
to the extensive bibliography [2] and to the monographs [3–5].

Present work is concerned with investigations of quantitative characteristics of
stability. Such a characteristic, usually called stability radius, is defined as the
limit level of perturbations of the problem parameters, which save a given property
of a solution set (or of a certain solution). The perturbed parameters are usually
coefficients of the scalar or vector criterion. As a rule, the results of investigation
of a stability radius are its formal expressions, estimations and algorithms of its
calculation. In the case of a single objective, formulae of stability radius are obtained
for problems of Boolean programming, problems on systems of subsets and on graphs
[6], for some scheduling problems [5,7]. Such formulas are the basis of investigations
for algorithmic aspects of the stability analysis of discrete optimization problems
(see, for example,[8–10]).

Our research continues the cycle of works, devoted to the stability of the vector
(multicriterion) integer programming problems [11–17]. In this paper we analyse the
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discrete analogues of the Hausdorff lower and upper semicontinuity of the Pareto
optimal mapping to estimate limit levels of perturbations of the partial criteria
coefficients mentioned above of the vector integer programming problem in the case
of l1 metric. Note that analogous results were obtained earlier in [15] for vector
integer programming problem in the case of l∞ metric.

2 Basic definitions

Consider n-criterion problem of the vector integer programming withm variables:

Cx = (C1x,C2x, . . . , Cnx)
T → min

x∈X
,

where C = [cij ]n×m ∈ Rn×m, n,m ∈ N, Ci is i-th row of the matrix C, i.e.
Ci = (ci1, ci2, . . . , cim), i ∈ Nn = {1, 2, . . . , n}, X is a finite set of (feasible) solutions
in Zm, |X| > 1.

Under a vector integer programming problem we understand the problem of
finding the Pareto set, i.e. the set of efficient (Pareto optimal) solutions

Pn(C) = {x ∈ X : π(x,C) = ∅},

where π(x,C) = {x′ ∈ X : Cx ≥ Cx′, Cx 6= Cx′}.
We denote this problem by Zn(C).
We also define the set of weakly efficient solutions (the Slater set [18])

Sln(C) = {x ∈ X : σ(x,C) = ∅}

and the set of strictly efficient solutions (the Smale set [19])

Smn(C) = {x ∈ X : η(x,C) = ∅},

where
σ(x,C) = {x′ ∈ X : Cix > Cix

′, i ∈ Nn},

η(x,C) = {x′ ∈ X \ {x} : Cx ≥ Cx′}.

For any matrix C ∈ Rn×m the following inclusions are evident

Smn(C) ⊆ Pn(C) ⊆ Sln(C).

It is obvious that in the case, where n = 1, the considered problem turns into
ordinary scalar integer programming problem Z1(C), C ∈ Rm, on the bounded set
of feasible solutions. The Pareto set coincides with the Slater set (P 1(C) = Sl1(C))
and they turn into the set of optimal solutions.

Adding a perturbing matrix C ′ ∈ Rn×m to the matrix C, we model perturbations
of parameters of the problem. Thus, perturbed problem Zn(C + C ′) has the form

(C + C ′)x→ min
x∈X

.
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The Pareto set of this problem is Pn(C+C ′). For any number k ∈ N we define two
metrics l1 and l∞ in space Rk, i.e. under norms of the vector z = (z1, z2, . . . , zk) ∈
Rk we understand correspondingly the numbers

||z||1 =
∑

i∈Nk

| zi |, ||z||∞ = max{| zi |: i ∈ Nk}.

This allows us formulate the question about quantitative characteristics of the sta-
bility. Later in p. 4 and 5 we deduce the corresponding formulas of the limit levels of
perturbations. Under the norm of a matrix C ′ = [c′ij ]n×m we understand the norm
of the vector which consists of all elements of the matrix, i.e. the norm of the vector
(c′11, c

′
12, . . . , c

′
n,m−1, c

′
nm).

We define the set of perturbing matrices in the space with l1 metric for an
arbitrary number ε > 0:

Ω(ε) = {C ′ ∈ Rn×m : ||C ′||1 < ε}.

Definitions 1–4 given below are well known (see, for example,[11,13,15], in that
case the metric l∞ is defined in the space of perturbing parameters of a vector integer
programming problem).

Definition 1. The vector integer programming problem Zn(C), n ≥ 1, is called
stable to perturbations of elements of matrix C if there exists a number ε > 0 such
that for any perturbing matrix C ′ ∈ Ω(ε) the following inclusion holds:

Pn(C + C ′) ⊆ Pn(C).

It is evident that the stability of the problem is equivalent to the Hausdorff upper
semicontinuity [3, 4, 20] at the point C ∈ Rn×m of the optimal mapping

Pn : Rn×m → 2X , (1)

i.e. the point-to-set (set-valued) mapping that assigns the Pareto set Pn(C) to each
collection of the problem parameters from metric space Rn×m.

Let us consider a quantitative evaluation of stability .

Definition 2. Under stability radius of the vector integer programming problem
Zn(C), n ≥ 1, we understand the number

ρn
1 (C) = sup{ε > 0 : ∀C ′ ∈ Ω(ε) (Pn(C +C ′) ⊆ Pn(C))}

if the problem Zn(C) is stable, and ρn
1 (C) = 0 otherwise.

In other words, the stability radius of the problem Zn(C) is the limit level of
perturbations of elements of matrix C in the space Rn×m with metric l1, which does
not lead to appearance of new efficient solutions.

It is clear that the problem Zn(C) is always stable and its stability radius is
equal to infinity if the equation Pn(C) = X holds. The problem Zn(C), for which
the set P̄n(C) = X \ Pn(C) is non-empty, is called non-trivial.
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Now consider the case where the stability of problem Zn(C) is defined as the
discrete analogue of the Hausdorff lower semicontinuity at the point C of optimal
mapping (1). For the vector integer programming problem, the lower semicontinuity
means that there exists a neighborhood of the point C in space Rn×m where the
Pareto set can only expand.

Definition 3. The vector integer programming problem Zn(C), n ≥ 1, is called
quasistable to perturbations of the elements of matrix C), if there exists a number
ε > 0 such that for any perturbing matrix C ′ ∈ Ω(ε) the following inclusion holds

Pn(C) ⊆ Pn(C + C ′).

Definition 4. Under the quasistability radius of the vector integer programming
problem Zn(C), n ≥ 1, we understand the number

ρn
2 (C) = sup{ε > 0 : ∀C ′ ∈ Ω(ε) (Pn(C) ⊆ Pn(C + C ′))},

if the problem Zn(C) is quasistable, and ρn
2 (C) = 0 otherwise.

In that way, the quasistability radius determines the limit level of perturbations
preserving all efficient solutions of the initial problem.

3 Auxiliary statements

For any solution x ∈ P̄n(C) we define the set

Px(C) = Pn(C) ∩ σ(x,C).

The following properties are obvious.

Property 1. If Pn(C) = Sln(C), then Px(C) 6= ∅ for any solution x ∈ P̄n(C).

By definition, put [z]+ = max{0, z}, where z ∈ R.

Property 2. If the inequality

(Ci + C ′
i)(x− x′) ≤ 0 (2)

holds for any index i ∈ Nn, then

[Ci(x− x′)]+ ≤ ||C ′
i||1||x− x′||∞. (3)

Clearly, inequality (3) holds for Ci(x− x′) ≤ 0. If Ci(x− x′) > 0, then it follows
from (2) and linearity of function Ci(x− x′) that

[Ci(x− x′)]+ = Ci(x− x′) = (Ci + C ′
i)(x− x′) − C ′

i(x− x′) ≤

≤ −C ′
i(x− x′) ≤ ||C ′

i||1||x− x′||∞.
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Property 3. If x ∈ P̄n(C) and

Pn(C) ∩ σ(x,C + C ′) = ∅, (4)

then there exists a solution x∗ ∈ P̄n(C) such that x∗ ∈ Sln(C + C ′).

Since σ(x,C + C ′) = ∅, we can put x∗ = x. If σ(x,C + C ′) 6= ∅, then taking
into account external stability of the Slater set (see, for example,[18]) there exists
a solution x∗ ∈ σ(x,C + C ′) such that x∗ ∈ Sln(C + C ′). It follows from (4) that
x∗ ∈ P̄n(C).

Denote
Cp(x− x′)

Cq(x− x′)

by γ(x, x′, p, q) for any p, q ∈ Nn, x ∈ P̄n(C), x′ ∈ Px(C). It is clear that the
values γ(x, x′, p, q) and ||Cp||1 are positive for any parameters x, x′, p, q under the
assumption Pn(C) = Sln(C).

Lemma 1. Let Pn(C) = Sln(C), x ∈ P̄n(C), p, q ∈ Nn and number ψ be positive
and such that

||Cq||1 max{γ(x, x′, p, q) : x′ ∈ Px(C)} ≤ ψ. (5)

Then for any number ε > ψ there exist C ′ ∈ Ω(ε) and x∗ ∈ P̄n(C) such that

x∗ ∈ Sln(C + C ′). (6)

Proof. It follows directly from Lemma that the inequalities

ε > ψ ≥ ||Cq||1ζ(x),

where ζ(x) = max{γ(x, x′, p, q) : x′ ∈ Px(C)} hold. According to Corollary 1, the
set Px(C) is not empty. It is obvious that there exists number δ > 0 such that

ε > (1 + δ)||Cq||1ζ(x) > ψ. (7)

We define the perturbing matrix C ′ = [c′ij ]n×m by

c′ij =

{

−αj, if i = p, j ∈ Nm,

0, if i ∈ Nn \ {p}, j ∈ Nm,

where αj = (1 + δ) cqj ζ(x). Hence, taking into account (7), we have

C ′ ∈ Ω(ε),

C ′
p = −(1 + δ)Cqζ(x), (8)

C ′
i = (0, 0, . . . , 0) ∈ Rm, i ∈ Nn\{p}. (9)

Let us show that equality (4) holds, i.e. there are no solutions from Pn(C)
belonging to σ(x,C + C ′). Let x0 ∈ Pn(C).
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Case 1: x0 ∈ Px(C). Combining equality (8) and the definition of ζ(x), we
obtain

(Cp + C ′
p)(x− x0) = Cp(x− x0) − (1 + δ)ζ(x)Cq(x− x0) ≤

≤ Cp(x− x0) − (1 + δ)γ(x, x0, p, q)Cq(x− x0) = −δCp(x− x0) < 0.

Hence, x0 6∈ σ(x,C + C ′).

Case 2: x0 ∈ Pn(C) \ Px(C). If there exists an index s ∈ Nn \ {p} such that
Cs(x− x0) < 0, then it follows from (9) that the inequality (Cs + C ′

s)(x− x0) < 0
holds.

If for any index i ∈ Nn \ {p} the inequality Ci(x− x0) ≥ 0 holds, then it follows
from x ∈ P̄n(C) and x0 ∈ Pn(C)\Px(C)) that the inequality Cp(x−x

0) < 0 is true.
Hence, we have from equality (8):

(Cp + C ′
p)(x− x0) ≤ Cp(x− x0) < 0.

Consequently we obtain x0 6∈ σ(x,C + C ′) in this case.
Thus, equality (4) holds. Hence it follows from Corollary 3 that there exists a

solution x∗ ∈ P̄n(C) such that inclusion (6) holds.
Lemma 1 is proved.
From Lemma 4.3 [4] (see also Theorem 3.2 [15]) we obtain

Lemma 2. For any solution x ∈ Sln(C) \ Pn(C) and for any number ε > 0 there
exists a matrix C∗ ∈ Ω(ε) such that x ∈ Pn(C + C∗).

Lemma 3. Let for number ξ and for solutions x and x′ the inequalities

0 < ξ||x− x′||∞ ≤
∑

i∈Nn

[Ci(x− x′)]+ (10)

hold. Then for any perturbing matrix C ′ ∈ Ω(ξ) we have x 6∈ π(x′, C + C ′).

Proof. Suppose, to the contrary, that there exists a perturbing pair C ′ ∈ Ω(ξ) such
that x ∈ π(x′, C + C ′). Then for any index i ∈ Nn inequality (2) is valid. Hence, it
follows from Corollary 2 that inequality (3) holds. Since C ′ ∈ Ω(ξ), we have

∑

i∈Nn

[Ci(x− x′)]+ ≤
∑

i∈Nn

||C ′
i||1||x− x′||∞ =

= ||C ′||1||x− x′||∞ < ξ||x− x′||∞,

which gives a contradiction with condition (10).
Lemma 3 is proved.

Lemma 4. Let x, x′ ∈ X, x 6= x′. Let vector η = (η1, η2, . . . , ηn) consist of positive
elements such that

ηi||x− x′||∞ > [Ci(x− x′)]+, i ∈ Nn. (11)

Then for any number ε > ‖η‖1 there exists a perturbing matrix C ′ ∈ Ω(ε) such that
x ∈ π(x′, C + C ′).
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Proof. It is enough to build a perturbing matrix C ′ ∈ Ω(ε) such that

(Ci +C ′
i)(x− x′) < 0, i ∈ Nn. (12)

Let q = arg max{|xj − x′j | : j ∈ Nn}. Define the elements of perturbing matrix
C ′ = [c′ij ]n×m by the formula

c′ij =

{

βi sign(x′q − xq), if i ∈ Nm, j = q,

0, if i ∈ Nn, j 6= q.

It is clear that C ′ ∈ Ω(ε). It follows from the above formula that

C ′
i(x−x

′) =
∑

j∈Nm

c′ij(xj−x
′
j) = c′iq(xq−x

′
q) = −βi|xq−x

′
q| = −βi||x−x

′||∞, i ∈ Nn

holds. Hence, combining the linearity of the function Ci(x− x′) and ratio (11), we
prove inequalities (12):

(Ci +C ′
i)(x− x′) = Ci(x− x′) + C ′

i(x− x′) =

= Ci(x− x′) − βi||x− x′||∞ ≤ [Ci(x− x′)]+ − βi||x− x′||∞ < 0, i ∈ Nn.

Lemma 4 is proved.

4 Stability radius

It is well known [21] (see also [3,4,13,15]) that necessary and sufficient condition
for non-stability of the problem Zn(C) is that the Pareto set Pn(C) does not coincide
with the Slater set Sln(C). In this case the stability radius of the problem Zn(C)
is equal to zero.

It remains to consider the case where Pn(C) = Sln(C).

Theorem 1. Let
Pn(C) = Sln(C),

ϕ = min
x∈P̄ n(C)

max
x′∈Px(C)

min
i∈Nn

Ci(x− x′)

||x− x′||∞
,

ψ = min
x∈P̄ n(C)

min
(i,k)∈Nn×Nn

max
x′∈Px(C)

Ci(x− x′)

Ck(x− x′)
||Ck||1.

Then the stability radius ρn
1 (C) of any non-trivial vector integer programming prob-

lem Zn(C), n ≥ 1, has the following bounds: 0 < ϕ ≤ ρn
1 (C) ≤ ψ.

Proof. It follows from Corollary 1 that for any solution x ∈ P̄n(C) the set Px(C)
is nonempty. Hence, ϕ > 0.

We now prove that ρ1(C) ≥ ϕ. Let C ′ ∈ Ω(ϕ). Then it follows directly from the
definition of ϕ that for any x ∈ P̄n(C) there exists a solution x0 ∈ Px(C) such that:

‖C ′
i‖1 ≤ ‖C ′‖1 < ϕ ≤

Ci(x− x0)

‖x− x0‖∞
, i ∈ Nn
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holds. Therefore, we have

(Ci + C ′
i)(x− x0) ≥ Ci(x− x0) − ‖C ′

i‖1‖x− x0‖∞ > 0, i ∈ Nn,

i.e. x0 ∈ π(x,C +C ′). Hence, x ∈ P̄n(C +C ′). Thus, for any matrix C ′ ∈ Ω(ϕ) the
inclusion Pn(C + C ′) ⊆ Pn(C) holds. Consequently, ρn

1 (C) ≥ ϕ.

In particular, let us prove that ρn
1 (C) ≤ ψ. Suppose that ε > ψ. It follows from

the definition of ψ that there exist indices p, q ∈ Nn and solution x ∈ P̄n(C) such
that the inequality (5) is fulfilled. It follows from lemma 1 that for any number
ε1, where ε > ε1 > ψ > 0, there exist C ′ ∈ Ω(ε1) and x∗ ∈ P̄n(C) such that
x∗ ∈ Sln(C + C ′).

There are only two cases.

Case 1: x∗ ∈ Pn(C + C ′). Since x∗ ∈ P̄n(C)), it follows that Pn(C + C ′) 6⊆
Pn(C), C ′ ∈ Ω(ε).

Case 2: x∗ ∈ Sln(C + C ′) \ Pn(C + C ′). It follows from Lemma 2 that for
ε2 := ε− ε1 > 0 there exists a matrix C ′′ ∈ Ω(ε2) such that x∗ ∈ Pn(C + C ′ +C ′′).
In other words, for any number ε = ε1 + ε2 > ψ there exists matrix C0 = C ′ + C ′′

such that Pn(C + C0) 6⊆ Pn(C), C0 ∈ Ω(ε).

Combining the results of considered above cases, we see that the inequality
ρn
1 (C) < ε holds for any ε > ψ. Consequently, ρn

1 (C) ≤ ψ.

Theorem 1 is proved.

As corollaries of Theorem 1 and of the mentioned above criterion of stability of
the non-trivial problem Zn(C), we obtain the following results.

Corollary 1. For the stability radius of any non-trivial vector integer programming
problem Zn(C), n ≥ 1, we have

min
x∈P̄ n(C)

max
x′∈P n(C)∩π(x,C)

min
i∈Nn

Ci(x− x′)

||x− x′||∞
≤ ρn

1 (C) ≤ min
i∈Nn

‖Ci‖1 ≤ ‖C‖1. (13)

If the lower bound is equal to zero, then ρn(C) = 0.

Proof. Suppose that i = k in the expression ψ (see Theorem 1). Then

ρn
1 (C) ≤ ‖Ci‖1, i ∈ Nn.

Hence, the upper bound is valid in (13).

Now we show that

ρn
1 (C) ≥ ϕ′, (14)

where ϕ′ is the left-hand side of (13).

At first we consider the case Pn(C) 6= Sln(C). Then ρn
1 (C) = 0. Let us show

that ϕ′ = 0. It is obvious that there exists solution x0 ∈ P̄n(C)∩Sln(C). Therefore
for any solution x′ ∈ Pn(C) ∩ π(x,C) there exists an index s ∈ Nn for which
Cs(x

0 − x′) = 0. Hence, ϕ′ = 0.
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Now we will consider the case Pn(C) = Sln(C) and prove that ϕ′ = ϕ

(see Theorem 1). By definition, put

τ(x, x′) = min
{Ci(x− x′)

||x− x′||∞
: i ∈ Nn

}

.

According to the evident inclusion

Px(C) ⊆ Pn(C) ∩ π(x,C),

we define the set

Q(x) = (Pn(C) ∩ π(x,C)) \ Px(C).

From the above notations it is clear that

τ(x, x′)

{

= 0, if x′ ∈ Q(x),
> 0 if x′ ∈ Px(C).

Since the set Px(C) is nonempty (in view of Corollary 1), it is clear that ϕ′ = ϕ.

We will prove that ρn
1 (C) = 0 for ϕ′ = 0. In this case it follows directly from the

definition of ϕ′ that there exists a solution x0 ∈ P̄n(C) such that for any solution
x′ ∈ Pn(C) ∩ π(x0, C) there exists an index s ∈ Nn for which Cs(x

0 − x′) = 0.
In other words, there is no solution x′ ∈ Pn(C) ∩ π(x0, C) belonging to σ(x0, C).
Hence, Pn(C) ∩ σ(x0, C) = ∅. Thus, it follows from corollary 3 that there exists a
solution x∗ ∈ P̄n(C) such that x∗ ∈ Sln(C), i.e. Pn(C) 6= Sln(C). According to
the stability criterion of the problem Zn(C), we have that the problem Zn(C) is
non-stable. Consequently, ρn

1 (C) = 0.

Corollary 1 is proved.

From Corollary 1, we have the following statement.

Corollary 2. Let the vector integer programming problem Zn(C), n ≥ 1, be non
trivial. Let matrix C ∈ Rn×m contain at least one null row. Then the problem
Zn(C) is nonstable.

Corollary 3. If the vector integer programming problem Zn(C), n ≥ 1, has a unique
efficient solution x0, then

ρn
1 (C) = min

x∈P̄ n(C)
min
i∈Nn

Ci(x− x0)

||x− x0||∞
. (15)

Proof. We denote the right-hand side of formula (15) by θ. It follows from Corollary
1 that the inequality ρn

1 (C) ≥ θ holds. Hence, to prove corollary 3 it is enough to
show that ρn

1 (C) ≤ θ.

Let ε > θ. It follows from the definition of θ that there exist a solution
x∗ ∈ P̄n(C) and an index s ∈ Nn such that

Cs(x
∗ − x0) = θ||x∗ − x0||∞. (16)
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Let q = arg max{|x∗j − x0
j | : j ∈ Nn} and the elements of perturbing matrix

C ′ = [c′ij ]n×m be defined by the formula:

c′ij =

{

γ sign(x0
q − x∗q), if i = s, j = q,

0, if i ∈ Nn \ {s}, j ∈ Nm \ {q},

where θ < γ < ε.
It is obvious that C ′ ∈ Ω(ε). From the construction of matrix C ′ we have

C ′
s(x

∗ − x0) =
∑

j∈Nm

c′sj(x
∗ − x0) = c′sq(x

∗ − x0) = −γ|x∗q − x0
q | = −γ||x∗ − x0||∞.

From the above qualities and equality (16), we have

(Cs + C ′
s)(x

∗ − x0) = Cs(x
∗ − x0) − γ||x∗ − x0||∞ = (θ − γ)||x∗ − x0||∞ < 0,

i.e. x0 6∈ π(x∗, C+C ′). If π(x∗, C+C ′) = ∅, then x∗ ∈ Pn(C+C ′). If π(x∗, C+C ′) 6=
∅, then due to external stability of the Pareto set Pn(C+C ′) (see, for example,[18])
there exists a solution x̂ ∈ π(x∗, C + C ′) such that x̂ ∈ Pn(C + C ′).

Thus in the case, Pn(C) = {x0}, for any number ε > θ there exist matrix
C ′ ∈ Ω(ε) and solution x′ 6= x such that x′ ∈ Pn(C+C ′), i.e. Pn(C+C ′) 6⊆ Pn(C).
Thus, for any number ε > θ the inequality ρn

1 (C) < ε holds. Hence, ρn
1 (C) ≤ θ.

Corollary 3 is proved.
It follows from Corollary 3 that the lower bound ϕ in Theorem 1 is attainable

for |Pn(C)| = 1.
Since P 1(C) = Sl1(C), as a corollary of Theorem 1, we have

Corollary 4. Singlecriterion (scalar) integer programming problem Z1(C)
(C ∈ Rm) is always stable.

5 Quasistability radius

Theorem 2. The quasistability radius ρn
2 (C) of the vector integer programming

problem Zn(C), n ≥ 1, is expressed by the formula

ρn
2 (C) = min

x′∈P n(C)
min

x∈X\{x′}

∑

i∈Nn

[Ci(x− x′)]+

||x− x′||∞
. (17)

Proof. It is evident that the right-hand side of formula (17) is nonnegative for any
matrix C. We denote it by ξ.

First let us prove the inequality ρn
2 (C) ≥ ξ. If ξ = 0, then the inequality is

evident.
Let ξ > 0 and C ′ ∈ Ω(ξ). It follows from the definition of the value ξ that for

any vectors x′ ∈ Pn(C) and x ∈ X \ {x′} the inequality

ξ||x− x′||∞ ≤
∑

i∈Nn

[Ci(x− x′)]+
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holds. Hence, it follows from Lemma 3 that x 6∈ π(x′, C + C ′), i.e. in view of
x′ 6∈ π(x′, C +C ′) the set π(x′, C +C ′) is non-empty. Therefore x′ ∈ Pn(C) belongs
to the set Pn(C+C ′) for any perturbing matrix C ′ ∈ Ω(ξ), i.e. Pn(C) ⊆ Pn(C+C ′).
Consequently, ρn

2 (C) ≥ ξ.

Now we show that ρn
2 (C) ≤ ξ. Let ε > ξ. It follows directly from the definition

of the number ξ that there exist solutions x′ ∈ Pn(C) and x 6= x′ such that

ξ||x− x′||∞ =
∑

i∈Nn

[Ci(x− x′)]+.

Hence, it is obvious that there exist positive numbers ηi, i ∈ Nn, such that

ηi||x− x′||∞ > [Ci(x− x′)]+, i ∈ Nn, ε >
∑

i∈Nn

ηi > ξ.

Thus, it follows from Lemma 4 that there exists a matrix C ′ ∈ Ω(ε) for which
x ∈ π(x′, C + C ′), i.e. x′ 6∈ Pn(C + C ′). This means that the inequality ρn

2 (C) < ε

holds for any number ε > ξ. Consequently, ρn
2 (C) ≤ ξ.

Theorem 2 is proved.

Any problem on a system of subsets of a finite set is equivalent to a boolean
programming problem. Thus formula (17) easily moves to the well-known [17, 22]
formula of the quasistability radius of the vector integer programming problem with
linear criteria.

Corollary 5. A necessary and sufficient condition for the quasistability of the vector
integer programming problem Zn(C), n ≥ 1, is the equality Pn(C) = Smn(C) [3].

Corollary 6. Singlecriterion (scalar) vector integer programming problem Z1(C)
(C ∈ Rm) is quasistable if and only if it has a unique optimal solution.
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