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Dynamic Programming Approach for Solving

Discrete Optimal Control Problem

and its Multicriterion Version ∗

D. Drucioc, D. Lozovanu, M. Popovici

Abstract. Time discrete systems determined by systems of difference equations are
considered. The characterizations of their optimal trajectories with given starting
and final states is studied. An algorithm based on dynamic programming technique
for determining such trajectories is proposed. In additional multicriterion version for
considered control model is formulated and a general algorithm for determining Pareto
solution is proposed.
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1 Introduction and Problem formulation

In [1] the following discrete optimal control problem is formulated and studied.
Let L be the dynamical system with the set of the states X ⊆ R

n where
at every moment of time t = 0, 1, 2, . . . the state of L is x(t) ∈ X,
x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ R

n. The dynamics of the system L is described
as follows

x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2 . . . , (1)

where
x(0) = xs (2)

is the starting point of system L and u(t) = (u1(t), u2(t), . . . , um(t)) ∈ R
m repre-

sents the vector of control parameters [2–4]. For vectors of control parameters u(t),
t = 0, 1, 2, the admissible sets Ut(x(t)) are given, i.e.

u(t) ∈ Ut(x(t)), t = 0, 1, 2, . . . . (3)

We assume that in (1) the vector function

gt(x(t), u(t)) = (g1
t (x(t), u(t)), g2

t (x(t), u(t)), . . . , gn
t (x(t), u(t)))

is determined uniquely by x(t) and u(t). So, x(t+1) is determined uniquely by x(t)
and u(t) at every moment of time t = 0, 1, 2, . . . .
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Let
x(0), x(1), . . . , x(t), . . . (4)

be a process generated according to (1)–(3).
For each state x(t) we define the numerical determination Ft(x(t)) by using the

following recursive formula

Ft+1(x(t + 1)) = ft(x(t), u(t), Ft(x(t))), t = 0, 1, 2, . . .

and
F0(x(0)) = F0.

In this model Ft(x(t)) expresses the cost of system’s passage from x0 to x(t).

Optimization Problem 1. For a given T determine the vectors of control
parameters u(0), u(1), . . . , u(T − 1), which satisfy the conditions























x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2, . . . , T − 1;
x(0) = x0, x(T ) = xf ,
u(t) ∈ Ut(x(t)), t = 0, 1, 2 . . . , T − 1;
Ft+1(x(t + 1)) = ft(x(t), u(t), Ft(x(t))), t = 0, 1, 2 . . . , T − 1;
F0(x(0)) = F0

(5)

and minimize the object function

Ix0x(T )(u(t)) = FT (x(T )). (6)

Optimization Problem 2. For given T1 and T2 determine T ∈ [T1, T2] and a
control sequence u(0), u(1), .., u(T − 1) which satisfy condition (5) and minimize the
object function (6).

Remark 1 . It is obvious that the optimal solution of problem 2 can be obtained
by reducing to problem 1 fixing the parameter T = T1, T = T1 + 1, . . . , T = T2.
By choosing the optimal value of solutions of problems of type 1 with T = T1, T =
T1 + 1, . . . , T = T2 we obtain the solution of problem 2 with T ∈ [T1, T2].

It is easy to observe that a large class of dynamic optimization problems can be
represented as a problem mentioned above. As example if

ft(x(t), u(t), Ft(x(t))) = Ft(x(t)) + ct(x(t), u(t)),

where F0(x0) = 0 and ct(x(t), u(t)) represents the cost of system’s passages from
state x(t) to state x(t + 1) , then we obtain the discrete control problems with
integral-time which are introduced and treated in [2–7]. Some classes of control
problems from [2, 3] may be obtained if

F0(x0) = 1, ft(x(t), u(t), Ft(x(t))) = Ft(x(t)) · ct(x(t), u(t)), t = 1, 2, . . .

and if

F0(x0) = 0 ft(x(t), u(t), Ft(x(t))) = max{Ft(x(t)), ct(x(t), u(t))}.

In this paper we formulate the multicriterion version of the discrete control prob-
lem and derive an algorithm for determining Pareto solution. The proposed algo-
rithm represents an extension of single objective problem and its algorithm.
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2 Algorithm for determining optimal solution

Let us assume that the starting and final states are fixed, ft(x, u, F ),
t = 0, 1, 2, . . . , are non-decreasing function with respect to the third argument,
i.e. with respect to F .

ft(x, u, F
′

) ≤ ft(x, u, F
′′

) if F
′

≤ F
′′

. (7)

Algorithm 1

1. Set F ∗

0 (x(0)) = F0;F
∗

t (x(t)) = ∞;x(t) ∈ X, t = 1, 2, . . . ;X0 = {x0}.

2. For t = 1, 2, . . . , T determine:

Xt+1 = {x(t + 1) ∈ X | x(t + 1) = gt(x(t), u(t)),

x(t) ∈ Xt, u(t) ∈ Ut(x(t))}

and for every x(t + 1) ∈ Xt+1 determine

F ∗

t+1(x(t + 1)) = min{ft(x(t), u(t), F ∗

t (x(t))) | x(t + 1) = gt(x(t), u(t)),

x(t) ∈ Xt, u(t) ∈ Ut(x(t))};

3. Find the sequence

xT = x∗(T ), x∗(T − 1), x∗(T − 2), . . . , x∗(1), x∗(0) = x0,

u∗(T − 1), u∗(T − 2), . . . , u∗(1), u∗(0),

which satisfy the conditions

F ∗

T−τ (x
∗(T − 1)) = fT−τ−1(x

∗(T − τ − 1), u∗(T − τ − 1),

F ∗

T−τ−1(x(T − τ − 1))), τ = 0, 1, 2, . . . , T.

Then u∗(0), u∗(1), u∗(2), . . . , u∗(T − 1) represent the optimal solution of problem 1.

Theorem 1. If ft(x, u, F ), t = 0, 1, 2, . . . , T , are non-decreasing functions with
respect to the third argument F , i.e. the functions ft(x, u, F ), t = 0, 1, 2 . . . , T , sa-
tisfy condition (7), then the algorithm determines the optimal solution of problem 1.
Moreover, an arbitrary leading part x∗(0), x∗(0), . . . , x∗(k) of the optimal trajectory
x∗(0), x∗(0), . . . , x∗(k), . . . , x∗(T ) is again an optimal one.

Proof. We prove the theorem by using the induction principle on number of stages
T . In the case T ≤ 1 the theorem is evident. We consider that the theorem holds
for T ≤ k and let us prove it for T = k + 1.

Assume by contrary that u∗(0), u∗(1), . . . , u∗(T − 2), u∗(T − 1) is not an op-
timal solution of problem 1 and u

′

(0), u
′

(1), . . . , u
′

(T − 2), u
′

(T − 1) is an optimal
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solution of problem 1, which differs from u∗(0), u∗(1), . . . , u∗(T −2), u∗(T −1). Then
u

′

(0), u
′

(1), . . . , u
′

(T−2), u
′

(T−1) generate a trajectory x0 = x
′

(0), x
′

(1), . . . , x
′

(T ) =
xT with corresponding numerical evaluations of states

F
′

t+1(x
′

(t + 1)) = ft(x
′

(t), u
′

(t), F
′

t (x
′

(t))), t = 0, 1, 2, . . . , T − 1;

where
F

′

0(x
′

(0)) = F0 and F
′

T (x
′

(T )) < F ∗

T (x
′

(T )), (8)

because x
′

(T ) = x∗(T ). According to the induction principle for problem 1 with
T −1 stages the algorithm finds the optimal solution. So, for arbitrary x(T −1) ∈ X
we obtain the optimal evaluations F ∗

T−1(x(T − 1)) for x(T − 1) ∈ X. Therefore

F ∗

T−1(x
′

(T − 1)) ≤ F
′

T−1(x
′

(T − 1)).

According to the algorithm

fT−1(x
∗(T − 1), u∗(T − 1), F ∗

T−1(x
∗(T − 1))) ≤

≤ fT−1(x
′

(T − 1), u
′

(T − 1), F ∗

T−1(x
′

(T − 1))). (9)

Since ft(x, u, F ), t = 0, 1, 2 . . . are non-decreasing functions with respect to F then

fT−1(x
′

(T − 1), u
′

(T − 1), F ∗

T−1(x
′

(T − 1))) ≤

≤ fT−1(x
′

(T − 1), u
′

(T − 1), F
′

T−1(x
′

(T − 1))). (10)

Using (9) and (10)we obtain

F ∗

T (x(T )) = fT−1(x
∗(T − 1), u∗(T − 1), F ∗

T−1(x
∗(T − 1))) ≤

≤ fT−1(x
′

(T − 1), u
′

(T − 1), F ∗

T−1(x
′

(T − 1))) ≤

≤ fT−1(x
′

(T − 1), u
′

(T − 1), F
′

T−1(x
′

(T − 1))) = F
′

T (x(T )),

i.e
F ∗

T (x(T )) ≤ F
′

T (x(T )),

which contradicts (8). So the algorithm finds the optimal solution of problem 1 with
T = k + 1. 2

Theorem 2. Let X and Ut(x), x ∈ X, t = 0, 1, 2, . . . , T − 1, be the finite sets,
and M = maxx∈X,t=0,1,2,...,T−1 |Ut(x)|. Then the algorithm uses at most M · |X| · T
elementary operations (without operations for calculating the values of functions
ft(x, u, F ) for given x, u, F ).

Proof. It is sufficient to prove that at step t the algorithm uses not more than M ·|X|
elementary operations. Indeed for finding the value Ft+1(x(t + 1)) for x(t + 1) ∈ X
it is necessary to use

∑

x∈X |Ut(x)| operations. Since
∑

x∈X |Ut(x)| ≤ |X| · M then
at step t the algorithm uses not more than |X| · M elementary operations. So in
general the algorithm uses not more than |X| · M · T elementary operations. 2
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3 The discrete optimal control problem on network

Let L be a dynamical system with a finite set of states X, and at every moment of
time t = 0, 1, 2, . . . the system L is described by a directed graph G = (X,E), where
the vertices x ∈ X correspond to the states of L and an arbitrary edge e = (x, y) ∈ E
identifies the possibility of the system passage from the state x = x(t) to the state
y = x(t + 1). So, the set of edges E(x) = {e(x, y)|(x, y) ∈ E} originated in x(t)
corresponds to an admissible set of control parameters Ut(x(t)) which determines
the next possible state y = x(t+1) of L at the moment of time t. Two states x0 and
xf are chosen, where x0 = x(0) is the starting state and xf = x(T ) is the final state
of system L. In addition we assume that to each edge e = (x, y) ∈ E a cost function
ce(t) is associated which depends on time and which expresses the cost of system L
to pass from the state x = x(t) to the state y = x(t + 1) at the stage [t, t + 1] (like
a transition). For given dynamic network we regard the problem of finding a se-
quence of system transitions (x(0), x(1)), (x(1), x(2)), . . . , (x(T (xf − 1)), x(T (xf )))
which transfers the system from the starting state x0 = x(0) to the final state
xf = x(T (xf )) with minimal integral-time cost. Like in Section 1 we will discuss
two variants of problem. First when time T is fixed and second when T ∈ [T1, T2].
It is easy to observe that for solving these problems we can use algorithm 1.
We put F0(x(0)) = 0 and Ft+1(x(t + 1)) = Ft(x(t)) + c(x(t),x(t+1))(t). A more
general model is obtained if for each edge e ∈ E a function fet(x(t), Ft(x(t)))
is associated. Here we put u(t) = et and we have the same function like in
Section 1, i.e. ft(x(t), u(t), Ft(x(t))) = fet(x(t), Ft(x(t))). For the trajectory
x(0), x(1), . . . , x(t), x(t + 1), . . . of system passages we have the following recursive
formula Ft+1(x(t + 1)) = fet(x(t), Ft(x(t))), t = 0, 1, 2, . . . , and F0(x(0)) = F0.

4 Multicriterion Discrete Control Problem: Pareto Optimum

In this section we extend the control model from Section 1 using the concept of
cooperative games.

4.1 General Statement of the Problem

We assume that the dynamics of the system L is controlled by p players, who
coordinate their actions using the common vector of control parameters u(t). So the
dynamics of the system L is described according to (1)–(3).

Let x(0), x(1), . . . , x(t), . . . be a process generated according to (1)–(3) with the
given vector of control parameter u(t), t = 0, 1, 2, . . . . For each state we define the
quantities F i

t (x(t)), i = 1, 2, . . . , p, in the following way:

F i
t+1(x(t + 1)) = f i

t (x(t), u(t), F i
t (x(t))), (10)

where

F i
0(x(0)) = F i

0, i = 1, 2, . . . , p, (11)
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are given representations of the starting state x(0) of the system L; f i
t (x(t), u(t),

F i
t (x(t))), t = 0, 1, 2, . . . , are arbitrary functions. So, F i

t (x(t)) expresses the cost of
system’s passage from the state x(0) to the state x(t) for player i.

In this model we assume that players choose vectors of control parameters in
order to achieve the final state xf from the starting state x0 at the moment of time
T (xf ), where T1 ≤ T (xf ) ≤ T2.

For the given u(t) the cost of system’s passage from x0 to xf for player i is
calculated on the basis of (1)–(3), (10), (11) and we put

Ii
x0xf

(u(t)) = F i
T (xf )(xf ),

if the trajectory passes through xf at the time moment T (xf ) such that
T1 ≤ T (xf ) ≤ T2; otherwise we put

Ii
x0xf

(u(t)) = ∞.

We consider the problem of finding Pareto solution u∗(t), i.e. there is no other
vector u(t) for which

(

I1
x0xf

(u(t)), I2
x0xf

(u(t)) . . . , Ip
x0xf

(u(t))
)

≤

≤
(

I1
x0xf

(u∗(t)), I2
x0xf

(u∗(t)) . . . , Ip
x0xf

(u∗(t))
)

and for any i0 ∈ {1, 2, . . . , p}

Ii0
x0xf

(u(t)) < Ii0
x0xf

(u∗(t)).

4.2 Multicriterion Problem on Network and Algorithm

for its Solving on T-Partite Networks

We formulate the multicriterion control model on network in general form on the
basis of the control model from Section 3.

Let G = (X,E) be a directed graph of transactions for the dynamical system L
with the given starting state x0 ∈ X and the final state xf ∈ X. In addition, for
the state x0 starting representations F 1

0 (x0) = F 1
0 , F 2

0 (x0) = F 2
0 , . . . , F p

0 (x0) = F p
0

are given, which express the payoff functions of players at the time moment t = 0.
We define the control u∗ on G as a map

u : (x, t) → (y, t + 1) ∈ XG(x) × {t + 1} for x ∈ X \ {xf}, t = 1, 2, . . . .

For an arbitrary control u we define the quantities:

I1
x0xf

(u), I2
x0xf

(u), . . . , Ip
x0xf

(u)

in the following way.
Let

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf
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be a trajectory from x0 to xf generated by control u, where T (xf ) is the time
moment when the state xf is reached. Then we put

Ii
x0xf

(u) = F i
T (xf )(xf ) if T1 ≤ T (xf ) ≤ T2, i = 1, p,

where F i
t (x(t)) are calculated recursively by using the following formula

F i
t+1(x(t + 1)) = f i

(x(t),x(t+1))(x(t), F i
t (x(t))), t = 0, T (xf ) − 1;

F i
0(x(0)) = F i

0,

where f1
e (·, ·), f2

e (·, ·), . . . , fp
e (·, ·) are arbitrary functions. If T (xf ) /∈ [T1, T2] then

we put

Ii(u) = ∞, i = 1, p.

We regard the problem of finding Pareto solution u∗.

In the following let us show that if the graph G has the structure of (T + 1)-
partite graph and T1 = T2 = T , then the algorithm from Sect. 2 can be extended
for the multicriterion control problem on network.

So, assume that the vertex set X is represented as X = Z0 ∪ Z1 ∪ · · · ∪
ZT , Zi ∩ Zj = ∅, i 6= j, and the edge set E is divided into T non-empty
subsets E = E0 ∪ E1 ∪ · · · ∪ ET−1 such that an arbitrary edge e = (y, z) ∈ Et

begins in y ∈ ZT and enters z ∈ Zt+1, t = 0, T − 1.

In this case for the nondecreasing function f i
e(·, ·) with respect to the second ar-

gument the values Ii(u) = F i
t (xt) can be calculated by using the following algorithm.

Algorithm 2

Preliminary step (Step 0): For the starting position x(0) = x0 set F i
0(x(0)) = F i

0,
i = 1, p; for any x ∈ X \ {x0} put F i

t (x(t)) = ∞, i = 1, p, t = 1, T .

General step (Step t, t ≥ 0): For an arbitrary state x(t+1) ∈ Xt+1 find a vertex
x′(t) ∈ Xt such that there is no other vertex x(t) ∈ Xt \ {xf} for which

(

f1
(x(t),x(t+1))(x(t), F 1

t (x(t))), f2
(x(t),x(t+1))(x(t), F 2

t (x(t))), . . .

. . . , fp

(x(t),x(t+1))(x(t), F p
t (x(t)))

)

≤

≤
(

f1
(x′(t),x(t+1))(x

′(t), F 1
t (x′(t))), f2

(x′(t),x(t+1))(x
′(t), F 2

t (x′(t))), . . .

. . . , fp

(x′(t),x(t+1))
(x′(t), F p

t (x′(t)))
)

and

f i0
(x(t),x(t+1))(x(t), F i0

t (x(t))) < f i0
(x′(t),x(t+1))(x

′(t), F i0
t (x′(t)))

for any i0 ∈ {1, 2, . . . , p}.
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Then calculate

F i
t+1(x(t + 1)) = f i

(x′(t),x(t+1))(x
′(t), F i

t (x
′(t))), i = 1, p.

If t < T − 1 then go to the next step; otherwise STOP. 2

If F i
t (x(t)) are known for every vertex x(t) ∈ X then Pareto optimum u∗ can be

found starting from the end position xf by fixing each time u∗(x(t)) = x(t + 1) for
which

F i
t+1(x(t + 1)) = f i

(x(t),x(t+1))(x(t), F i
t (x(t))), i = 1, p.
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