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A test for completeness with respect to implicit

reducibility in the chain super-intutionistic logics

I.V. Cucu

Abstract. We examine chain logics C2, C3, . . . , which are intermediary between
classical and intuitionistic logics. They are also the logics of pseudo-Boolean algebras
of type < Em, & , ∨ ,⊃, ¬ >, where Em is the chain 0 < τ1 < τ2 < · · · < τm−2 <

1 (m = 2, 3, . . . ). The formula F is called to be implicitly expressible in logic L by
the system Σ of formulas if the relation

L ⊢ (F ∼ q) ∼ ((G1 ∼ H1) & . . . & (Gk ∼ Hk))
is true, where q do not appear in F , and formulas Gi and Hi, for i = 1, . . . , k, are
explicitly expressible in L via Σ. The formula F is said to be implicitly reducible in
logic L to formulas of Σ if there exists a finite sequence of formulas G1, G2, . . . , Gl

where Gl coincides with F and for j = 1, . . . , l the formula Gj is implicitly expressible
in L by Σ ∪ {G1, . . . , Gj−1}. The system Σ is called complete relative to implicit
reducibility in logic L if any formula is implicitly reducible in L to Σ.
The paper contains the criterion for recognition of completeness with respect to im-
plicit reducibility in the logic Cm, for any m = 2, 3, . . . . The criterion is based on 13
closed pre-complete classes of formulas.

Mathematics subject classification: 16D80, 16D90, 16D20.
Keywords and phrases: Chain intermediate logic, pseudo-Boolean algebra, express-
ibility, implicit reducibility, centralizer.

The criterion of functional completeness in classical logic [1, 2] gives an algorithm
which permits, for each finite system of Boolean functions given by formulas or
tables, to recognise if it is possible to obtain any Boolean function via this system
using superpositions or not. Analogous criteria of completeness have been obtained
in general k-valued logic, k > 2 [2, 3], in propositional intuitionistic logic [4], etc.
Each of these criteria is based on a finite number of closed (relative to expressibility
in corresponding logic [5]) classes of functions or formulas that are pre-complete
(i. e. maximal and non-complete).

In connection with the fact that in general 3-valued logic and even in its frag-
ment – in logic of First Iaśkowski’s Matrix [6] there is continuum of closed classes
[4, 7]. A.V. Kuznethov [9] introduced the concepts of implicit expressibility, im-
plicit reducibility and parametrical expressibility, which are natural generalizations
of usual expressibility. He found a criterion for parametrical expressibility in any
general k-valued logic for k ≥ 2.

The research of the mentioned generalizations of expressibility in nonclassical log-
ics is an actual problem. In the present paper the conditions of implicit reducibility
of the set of all formulas in the chain super-intuitionistic logic, which is intermediate
between classical and intuitionistic ones, are found. The criterion of completeness
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with respect to impicit reducibility in these logics is given. This criterion is based
on 13-classes of formulas.

Formulas (of propositional logic) are constructed from variables p, q, r (possi-
bly with indexes) by means of logical operations: & (conjunction), ∨ (disjunc-
tion), ⊃ (implication), ¬ (negation). In the work the formulas are designated
with capital letters of the Latin alphabet. Using the mark ⇋, and reading it as
“means” we introduce designations for seven formulas: 1 ⇋ (p ⊃ p), 0 ⇋ (p &¬p),
⊥ F ⇋ (F ∨ ¬F ) (ternondation), (F ∼ G) ⇋ ((F ⊃ G)& (G ⊃ F )) (equiv-
alence), (F · G) ⇋ ((F ∼ G)&¬¬G), (F &′ G) ⇋ ((F & G) ∼ ⊥ (F ∼ G) and
(F,G,H) ⇋ ((F & G) ∨ (F & H) ∨ (G& H)) (median). In the interpretation of for-
mulas, the symbol F [α1, . . . , αn] designates the result of substitution in the formula
F of the values α1, . . . , αn for variables p1, . . . , pn, respectively.

Intuitionistical and classical propositional calculuses are based on the mentioned
concept of formula. By these calculuses intuitionistical and classical logics are de-
fined. Thus we determine the logic of that calculus as the set of all formulas deducible
in the given calculus. The classical logic in this sense coincides, as it is known, with
the set of formulas valid on the classical matrix.

In this paper we examine logics that are intermediary between classical logic and
intuitionistic one [10, 11]. They are constructed on finite or infinite chains (i.e. linear
ordered sets) of true values. It is known that the logic is called a chain [5] if the for-
mula ((p ⊃ q) ∨ (q ⊃ p)) is true in it. In the considered m-valued logic (m = 2, 3, . . .)
the variables will take values from the set Em, where Em = {0, 1, τ1, τ2, . . . , τm−2}
if m is finite and Em = {0, 1, τ1, τ2, . . . } if m is infinite. Instead of τ1 and τ2 we
will write τ and ω, respectively. We remind that the set of all functions as map-
pings from Em into Em is usually called general m-valued logic Pm. Further we
consider the linear ordering on the set Em by the relation 0 < τ1 < τ2 < . . .
. . . < τm−2 < 1. We define the operations &,∨,⊃, and ¬ on Em as follows:

p & q = min(p, q),
p∨ q = max(p, q),

p ⊃ q =

{

1 if p ≤ q,
q if p > q,

¬ p = p ⊃ 0.

In the considered interpretation of symbols &,∨,⊃ and ¬ each formula expresses
some function of general m-valued logic. Let us observe that the function y p of P3

defined by the equalities y 0 =y τ1 = 1 and y 1 = 0 is not expressed by any formula.
We remind [8, 12] that the pseudo-Boolean algebra is the system A =< M ; &, ∨,⊃
,¬ > that is a lattice by & and ∨, where ⊃ is relative pseudo-complement and ¬
is pseudo-complement. The logic of this algebra is defined as the set of all formulas
that are true on A, i.e. formulas identically equal to the greatest element 1 of this
algebra. We will denote the algebra < Em; &,∨,⊃,¬ > (m = 2, 3, . . .) by Zm. The
logic of this algebra LZm is denoted by Cm. It is also possible to define the logic C1

of one-element algebra which includes the set of all formulas and is contradictory.
The smallest chain logic, called Dummett logic [10], coincides with the intersection
of all m-valued chain logics with m positive integer number.

Two formulas F and G are called equivalent in logic L (write L ⊢ (F ∼ G)) if
the equivalence F ∼ G in L is true. Two formulas are equivalent in logic Cm (m =
1, 2, . . .) if and only if the operators of algebra Zm, expressed by them, are equal.
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Therefore instead of the relation Cm ⊢ (F ∼ G) we sometimes will use the equality
F = G on Zm. If the formula F ∼ G contains only the variables p1, p2, . . . , pn

and the inequality (F ∼ G) [p1/α1, . . . , pn/αn] 6= 1 is true on Zm, then we will
use the notation (F 6= G) [p1/α1, . . . , pn/αn]. The formula F is called explicitly
expressible in logic L by the system of formulas of Σ [9] if it is possible to obtain the
formula F from variables and formulas of Σ using a finite number of times the weak
substitution rule, and the rule of replacement by equivalents in L. The relation of
explicit expressibility is transitive. The formula F is called directly expressible via
the system of formulas of Σ if it is possible to obtain F from variables and formulas
of Σ by using a finite number of times the weak substitution rule. The relation of
direct expressibility is transitive.

The formula F is called implicitly expressible in logic L [9] via the system of
formulas Σ if there exist the formulas Gi and Hi (i = 1, . . . , k) explicitly expressible
in L by Σ such that the predicate L ⊢ (F ∼ q), where q is a variable not contained
in F , is equivalent to the predicate L ⊢ ((G1 ∼ H1)& . . . & (Gk ∼ Hk)).

Because the relation of implicit expressibility, generally speaking, is not transi-
tive, we are going to introduce a new concept. The formula F is called implicitly
reducible in logic L via formulas of Σ if there exists a finite sequence of formulas
G1, G2, . . . , Gl , where Gl coincides with F and each term of this sequence can be
implicitly expressible in L by Σ and terms of the sequence placed before it. We will
say that the system Σ′ of formulas is implicitly reducible in L to the system Σ if
each formula of Σ′ is implicitly reducible in L to Σ. It is clear that the relation of
implicit reducibility is transitive. The system Σ of formulas is called complete with
respect to implicit reducibility in logic L if each formula (in language of this logic) is
implicitly reducible in L to Σ. The system Σ of formulas is said to be pre-complete
with respect to implicit reducibility in L if Σ is not complete by this reducibility in
L, but the system Σ ∪ {F} is complete relative to implicit reducibility in L, for any
formula F .

Two functions f(x1, x2, . . . , xn) and g(x1, x2, . . . , xk) of Pm are called permutable
[13] if the identity f(g(x11, . . . , x1k), . . . , g(xn1, . . . , xnk)) = g(f(x11, . . . , xn1), . . . ,
f(x1k, . . . , xnk)) is true. The set of all functions of Pm, permutable with the given
function f , is called the centralizer of function f (denoted ≺f≻)[13]. The set of
all formulas which in the interpretation on Zm are permutable with the function f
(from Pm) is called the formula centralizer on the algebra Zm of function f . We say
the function f(x1, . . . , xn) of Pm preserves the predicate (relation) R(x1, . . . , xw) if
for any possible values of variables xij ∈ Em (i = 1, . . . , w; j = 1, ..n), from the truth
of R(x11, x21, . . . , xw1), . . . , R(x12, x22, . . . , xw2), . . . , R(x1n, x2n, . . . , xwn) follows the
truth of R(f(x11, x12, . . . , x1n), . . . , f(x21, x22, . . . , x2n), . . . , f(xw1, xw2, . . . , xwn)).
The centralizer ≺f(x1, . . . , xn)≻ coincides with the set of all functions of Pm which
preserve the predicate f(x1, . . . , xn) = xn+1, where the variable xn+1 differs from
x1, . . . , xn [9]. We say that the formula F preserves, on the algebra Zm, the predicate
R if the function of logic Cm, expressed by formula F , preserves R. The predicate
could be replaced by the corresponding to it matrix (αij) (i = 1, . . . , w; j = 1, . . . , t)
of elements of algebra Zm [14] such that the predicate R is true on all those
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and only those sets of elements that are columns in this matrix. Let us observe
that each formula of the system {p & q, p∨ q, p ⊃ q,¬p} preserves on the algebra
Zm (m = 3, 4, . . .) the below predicates and matrices, therefore any formula pre-
serves them too:

¬x = ¬y, x 6= τj (j = 1, 2, . . . ,m − 2), (1)
(

0 τ 1
0 τj 1

)

(j = 1, 2, . . . ,m − 2), (2)

(

0 τ ω 1
0 τv τw 1

)

(v, w = 1, 2, . . . ,m − 2; v < w), (3)

(

0 τj 1 1
0 τv τw 1

)

(j, v, w = 1, 2, . . . ,m − 2; v < w). (4)

We present the next affirmation without any proof.

Affirmation. If the function f belongs to the class Cm (m = 2, 3, . . .) then the
following identity:

f(¬¬x1, . . . ,¬¬xn) = ¬¬f(x1, . . . , xn) (5)

is true.
Let us observe that the class of all formulas that preserve on Zm some predicate

is closed relative to the explicit expressibility in logic Cm, but it is not necessarily
closed relative to the implicit expressibility in this logic [9]. It is easy to see that any
class of formulas is closed relative to the implicit reducibility in logic Cm if and only
if it is closed relative to the implicit expressibility. We remind that the centralizer of
one or another function is closed relative to the implicit expressibility. It is obvious
that for each m = 1, 2, . . ., if the class of functions K is closed relative to the implicit
expressibility in logic Cm then K is closed relative to the implicit expressibility in
any logic Cn where n ≥ m.

Let us define the functions f1 and f2 from P4 as follows:
f1(0) = 0, f1(τ) = 1, f1(w) = ω, f1(1) = 1,
f2(0) = 0, f2(τ) = ω, f2(w) = ω, f2(1) = 1.

We denote the classes of formulas preserving the predicates x = 0, x = 1, ¬x =
y, x& y = z, x∨ y = z, (x ∼ (y ∼ z)) = u on Z2, yyx = y, ⊥x = ⊥y, (x& y =
z)& (¬x = ¬y), ((x ∼ y)&¬¬y = z)& (¬x = ¬y), ((x& y) ∼ ((x ∼ y) ∨ ¬(x ∼
y)) = z)& (¬x = ¬y) on Z3, f1(x) = y, f2(x) = y, respectively, on Z4 by symbols
Ω0,Ω1, . . . ,Ω12. Let us observe that the class Ω5 on algebra Z2 coincides with known
class of linear Boolean functions. Remind that the closure relative to the implicit
expressibility in C2 of classes Ω0, . . . ,Ω5 is based on the fact that they are centralizers
of some functions. Analogous closure in C3 of classes Ω6, . . . ,Ω10 is shown in [15].
It follows that these classes are closed relative to the implicit expressibility in any
other logic Cm, where m ≥ 3.

Assertion 1 ( A.V. Kuznetsov [9]). In order that the system Σ of formulas could
be complete by the implicit reducibility in logic C2 it is necessary and sufficient that
Σ be not included in any of clases Ω0, . . . ,Ω5.
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According to [15] the next criterion of completeness relative to the implicit re-
ducibility in logic of First Iaśkowski’s Matrix is true:

Assertion 2. In order that the system Σ of formulas could be complete with respect
to the implicit reducibility in logic C3 it is necessary and sufficient that for each
i = 0, . . . , 10 should exist a formula of Σ which doesn’t belong to the class Ωi.

The next criteria of completeness with respect to the reducibility in any chain
logic included in C4 are true:

Theorem 1. For any m = 4, 5, . . ., in order that the system Σ of formulas could be
complete by the implicit reducibility in logic Cm it is necessary and sufficient that Σ
be complete by implicit reducibility in logic C3 and be not included in the following
two formula centralizers on algebra Z4:

≺f1(p)≻, ≺f2(p)≻. (6)

Proof. Necessity. Let the system Σ be complete with respect to the implicit
reducibility in logic Cm (m ≥ 4). Then, since the implicit reducibility in logic
Cm (m ≥ 2) implies the implicit reducibility in Cm−1, it results that Σ is complete
by the implicit reducibility in C3. Because formula centralizers are closed relative
to the implicit reducibility in logic C4, then they are closed relative to the implicit
reducibility in Cm where m > 4. Moreover, they are not complete in Cm, because
they don’t contain for example the formula ((x ⊃ y)&¬¬y). So no one of them
could contain Σ.

Sufficiency. Let Σ be complete by the implicit reducibility in logic C3 and be
not included in any of two formula centralizers (6). Then Σ is complete by the
implicit reducibility in C2, since there exist, in accordance with Assertion 2, the
formulas F0, . . . , F10 which don’t belong to Ω0, ..,Ω10, and also there exist F11, F12,
which don’t belong to Ω11,Ω12, respectively. Let us suppose that these formulas
don’t contain other variables except p1, . . . , pn. It is sufficient to prove that every
formula of system {p & q, p∨ q, p ⊃ q, ¬p} is implicitly reducible to the system Σ
of formulas in Cm (m = 4, 5, . . .). It is known [10] that in any chain logic Cm the
relation

Cm ⊢ (p∨ q) ∼ (((p ⊃ q) ⊃ q)& ((q ⊃ p) ⊃ p))

is true. The conjunction is implicitly expressible via the implication in any chain
logic Cm, because the relation

Cm⊢((p & q) ∼ r) ∼ (((p ⊃ (q ⊃ r)) ∼ 1)&((r ⊃ p) ⊃ 1)&((r ⊃ q) ∼ 1))

is true. It remains to prove that the formulas ¬p and p ⊃ q are implicit reducible
to the system Σ in any chain logic included in C4.

This fact results from the next lemmas.

Lemma 1. If the formula ¬ p is implicitly reducible to the system Σ of formu-
las in logic C3 then this formula is implicitly reducible to Σ in logic Cm, for any
m = 3, 4, . . .
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Lemma 2. If the formula 0 is implicitly reducible to the system Σ of formu-
las in logic C2 then this formula is implicitly reducible to Σ in logic Cm, for any
m = 3, 4, . . .

Lemma 3. The formula 1 is explicitly expressible through 0 and ¬p in Cm, for any
m = 3, 4, . . .

Lemma 4. If the formula ⊥p is implicitly reducible to the system Σ of formu-
las in logic C3 then this formula is implicitly reducible to Σ in logic Cm, for any
m = 3, 4, . . .

Lemma 5. If the formula p & q is implicitly reducible to the system Σ of formulas
in logic C2 then the formula ¬¬(p & q) is explicitly expressible through 0, 1, ¬p and
Σ in logic Cm, for any m = 3, 4, . . .

Lemma 6. If the formula ¬p & q is implicitly reducible to the system Σ of formulas
in logic C3 then the formulas ¬p & q and ¬p∨ q are implicitly expressible through
0, 1, ¬p, ⊥p, ¬¬(p & q) and Σ in the logic Cm, for any m = 3, 4, . . .

In order to obtain the implication we further present 5 lemmas without proofs.

Lemma 7. At least one of 4 following formulas:

p ⊃ q, p ∼ q, ⊥p∨⊥q, (p & q) ∼ ((p ∼ q) ∨ ¬ (p ∼ q)) (7)

is explicitly expressible in Cm through formulas of the system

{0, 1, ¬p, ⊥p, ¬p & q, ¬p∨ q} (8)

and F8, for any m = 3, 4, . . .

Lemma 8. At least one of 3 formulas:

p ⊃ q, ⊥p ∨⊥q, (p & q) ∼ ((p ∼ q) ∨ ¬ (p ∼ q)) (9)

is explicitly expressible through formulas of the system (8) and F8, F9 in Cm, for any
m = 3, 4, . . .

Lemma 9. At least one of following 4 systems:

{p ⊃ q}, {(p ∼ q)∨ q}, {(p & q) ∼ ((p ∼ q) ∨ ¬ (p ∼ q)), T ′}, {⊥p∨⊥q, T ′}, (10)

is explicitly expressible through formulas of the system (8) and F8, F9 and F10 in
Cm, for any m = 3, 4, . . ., where

T ′[τ, τ, 1] = T ′[τ, 1, τ ] = τ, T ′[τ, 1, 1] = 1. (11)

Lemma 10. The implication (p ⊃ q) is implicitly expressible in Cm, for any m =
4, 5, . . ., through formulas of system (8), formula F11 and any of two systems {(p ∼
q)∨ q} or {(p & q) ∼ ((p ∼ q) ∨ ¬ (p ∼ q)), T ′}, where T ′ is 3-ary formula, which
satisfies (11) conditions.
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Lemma 11. The formula p ⊃ q is implicitly expressible in Cm, for any m = 4, 5, . . .,
through formulas of (8), formulas F11, F12 and the system {⊥ p∨ ⊥ q, T ′}, where
T ′ is the 3-ary formula satisfying conditions (11).

From the formulated above lemmas it results that conditions of theorem are
sufficient, namely the formula ¬p is implicitly reducible to the system Σ of formulas
in logic Cm, for any m = 3, 4, . . .. Lemmas 1 – 11 allow us to deduce that the
implication p ⊃ q is implicitlty reducible to Σ in any chain logic Cm included in
C4. So, according to lemmas 1 – 6 the formulas of the system (8) are implicitly
reducible to Σ. Lemmas 7 – 9 permit to conclude that at least one of 4 systems
of formulas (10) is explicitly expressible in logic Cm through formulas (8) and F8 –
F10. Therefore it remains to observe that one of these systems consists of p ⊃ q, but
the implication is implicitly expressible in Cm through any other of 3 systems and
formulas F11, F12 and (8), in accordance with Lemmas 10 and 11.

From Assertion 1, 2 and Theorem 1 the next criterion of completeness with
respect to implicit reducibility in an arbitrary chain logic results.

Theorem 2. In order that the system of formulas Σ could be complete relative to the
implicit reducibility in any chain logic L, including Dummett logic, it is necessary
and sufficient that the next conditions be satisfied simultaneously:

1) if L ⊆ C2 then the system Σ is included neither in Ω0, nor in Ω1, nor in Ω2,
nor in Ω3, nor in Ω4, nor in Ω5;

2) if L ⊆ C3 then Σ is also included neither in Ω6, nor in Ω7, nor in Ω8, nor in
Ω9, nor in Ω10;

3) if L ⊆ C4 then Σ is also included neither in Ω11, nor in Ω12.

Proof. Necessity results from the fact that all these classes are closed relative to
the implicit reducibility in Cm and are pairwise incomparable to inclusions.

Sufficiency. Let conditions 1)–3) be satisfied. Then the system Σ is complete
relative to implicit reducibility in C2 according to Assertion 1, and it is complete
relative to the implicit reducibility in C3 by Assertion 2 and it is complete relative
to implicit reducibility in any chain logic Cm, included in C4 according to Theorem
1.

From this criterion the next corollaries follow.

Theorem 3. For any chain logic L (including Dummett logic) there exists an
algorithm that allows to recognize for any finite system Σ of formulas if Σ is complete
relative to implicit reducibility in logic L or not.

From Assertion 1 it results that the classes Ω0,Ω1, . . . ,Ω5 and only they are
pre-complete relative to implicit reducibility in C2, and the classes Ω0,Ω1, . . . ,Ω10

and only they are pre-complete by implicit reducibility in C3.

Theorem 4. The next 13 classes: Ω0,Ω1, . . . ,Ω12 of formulas and only they are
pre-complete relative to implicit reducibility in logic Cm, for any m = 4, 5, . . ..

A system Σ of formulas is called weak complete with respect to implicit reducibil-
ity in logic L if the system Σ ∪ {p ⊃ p, p&¬p} is complete by implicit reducibility
in L.
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Theorem 5 (criterion of weak completeness with respect to implicit reducibility in
an arbitrary chain logic). In order that the system Σ of formulas be weak complete
relative to implicit reducibility in chain logic L it is necessary and sufficient that the
next conditions be satisfied simultaneously:

1) if L ⊆ C2 then system Σ is included neither in Ω3, nor in Ω4, nor in Ω5;
2) if L ⊆ C3 then system Σ is also included neither in Ω6, nor in Ω7, nor in Ω8,

nor in Ω9, nor in Ω10;
3) if L ⊆ C4 then system Σ is also included neither in Ω11, nor in Ω12.

The logics L1 and L2 are called equal relative to completeness by implicit re-
ducibility if any system Σ of formulas is complete by implicit reducibility in L1 if
and only if this system is complete by implicit reducibility in L2.

Theorem 6. Any chain logic is equal relative to completeness with respect to implicit
reducibility to one and only one of the next 4 logics: the absolute contradictory logic,
the classical logic, the logic C3 and C4 logic.
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First Iaśkowski’s Matrix. Bul. Acad. of Sci. of Moldova, 1988, N 1, p. 23–29 (in Russian)

State University of Moldova
A. Mateevici str., 60
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