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The Multidimensional Directed Euler Tour

of Cubic Manifold

Mariana Bujac

Abstract. In the paper [3] we tried to generalize the problem of existence of a di-
rected (n−1)-dimensional Euler tour for the abstract directed n-dimensional manifold,
which is a complex of multi-ary relations [5], namely by means of abstract simplexes.
In the paper [3] we show the existence of such kind of tour only for manifolds of odd
dimension because we have not enough conditions to do more. In the present paper
we will show conditions of existence for a directed Euler tour of abstract manifolds
with even dimensions. In this purpose, we will introduce some new definitions which
permit us to define manifolds by so-called abstract cubes.

Mathematics subject classification: 18F15, 32Q60, 32C10.
Keywords and phrases: Abstract directed manifold, vacuum, Euler tour, abstract
cube, abstract cubic complex, abstract cubic manifold, totally coherent manifold.

For clarity, let’s remind some notions and introduce other new ones, although
they will be rather numerous.

Definition 1 [2]. The complex of multi-ary relations, Kn = {Sm
λ : λ ∈ Λ,

cardΛ < ∞, 0 ≤ m ≤ n}, denoted V n, is called an abstract manifold of

dimension n if it satisfies the following postulates:

A. ∀Sn−1 ∈ V n is a common face exactly for two abstract n-dimensional sim-
plexes;

B. for ∀Sn
i , Sn

j ∈ V n, i 6= j, exists a sequence of n-dimensional simplexes

Sn
1 = Sn

i , Sn
2 , . . . , Sn

k = Sn
j , k ≥ 2, where Sn

r ∩ Sn
r+1 = Sn−1

r,r+1,
r ∈ {1, 2, . . . , k − 1};

C. for ∀Sm ∈ V n it holds that ∃Sn ∈ V n such that Sm is a face of Sn,
m ∈ {0, 1, . . . , n − 1};

D. for two disjoint simplexes ∀Sn
i , Sn

j ∈ V n, where Sn
i ∩ Sn

j = Sm, it holds that

∃Sn
1 = Sn

i , Sn
2 , . . . , Sn

k = Sn
j such that

k⋂
l=1

Sn
l = Sm.

From the postulate A it results immediately that ∀Sn ∈ V n takes part in the
building of V n just one time.

Definition 2 [4]. Let Kn be a complex of multi-ary relations and
Sm = [xi0 , xi1 , . . . , xim ] be a simplex from Kn.

Let’s consider
◦

Sm = (xi0 , xi1 , . . . , xim) = Sm\{Fλ}, λ ∈ Λ′, where {Fλ}, λ ∈ Λ′ is
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the set of all proper faces [5] of Sm.
◦

Sm is called a m-dimensional vacuum of
the simplex Sm, m ∈ {1, 2, . . . , n}.

There are two ways for generalization of an Euler tour/directed Euler tour for
Kn in the graph theory. We consider the case when Kn ≡ V n.

a) Let Z be the group of integer numbers, F : V n → Z be a family of
single–valued maps that satisfies: for ∀Sm ∈ V n and ∀f ∈ F it holds that
f(−Sm) = −f(Sm), 0 ≤ m ≤ n. We will denote f(Sm) = g ∈ Z and will use
the notation gSm for f(Sm).

Definition 3 [3]. The formal sum

lm = g1S
m
1 + g2S

m
2 + . . . ,+gαm

Sm
αm

, (1)

where αm is the number of all m-dimensional simplexes of manifold V n, is called
a m-dimensional ∆-chain [5] of the manifold V n. Moreover, if in (1) |gi| = 1,
i ∈ {1, 2, . . . , αm} and ∆lm = 0 [5], then the ∆-chain is called a m-dimensional

Euler ∆-cycle of V n. If the simplexes Sm
i and Sm

j , i, j ∈ {1, 2, . . . , , αm}, i 6= j,
are also coherent, where gi = 1 or gi = −1, ∀i ∈ {1, 2, . . . , αm} and ∆lm = 0, then
this ∆-chain will be called a m-dimensional Euler ∆-contour of the manifold
V n.

Let’s remind that the manifold V n is called directed if there exists a n-dimensional
∆-cycle, ∆ln = 0.

It is obvious that the manifold V n determines the existence of the
n-dimensional Euler ∆-cycle. Every n-dimensional simplex takes part in this cycle
and repetitions are not admitted. It is obvious that the existence of a n-dimensional
Euler ∆-contour is determined on a manifold with coherent simplexes.

This generalization of the directed Euler tour in the graph theory is trivial and
is not far-reaching for obtaining other information, with exception of the classical
results [1]. It is more important to examine the next generalization.

b) Let Sm = {Sm
1 , Sm

2 , . . . , Sm
αm

}, 0 ≤ m ≤ n, be the set of all m-dimensional
simplexes of the manifold V n.

Definition 4 [3]. The sequence of simplexes Sm
1 , Sm

2 , . . . , Sm
αm

of the manifold V n

is called a linear m-dimensional Euler cycle of this manifold
if for ∀Sm

r , Sm
r+1 ∈ V n, r ∈ {1, 2, . . . , αm}, it holds that Sm

r ∩ Sm
r+1 = Sm−1 ∈

Sm−1, Sm
1 ≡ Sm

αm
. Moreover, if ∀Sm

r , Sm
r+1 ∈ V n are coherent, r ∈ {1, 2, . . . , αm−1},

the sequence mentioned above will be called a linear m-dimensional Euler con-

tour of the manifold V n.

It is necessarily to define the next new notion to achieve our goal. We define the
next notion by induction.
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Definition 5.

1o. The abstract 0-dimensional (1-dimensional, respectively) cube and the
abstract simplex of the same dimension are the same. The vacuum of

0-dimensional (1-dimensional, respectively) cube and the simplex’ vac-
uum of the same dimension are the same.

2o. Let consider two pairs of 0-dimensional cubes S0
1 , S0

2 and S0
3 , S0

4 . The 2-ary
relations of the pairs of cubes S0

1 , S0
2 and S0

3 , S0
4 determine the existence of

the 1-dimensional cubes S1
1 = (S0

1 , S0
2), S1

2 = (S0
3 , S0

4), S1
3 = (S0

1 , S0
3) and

S1
4 = (S0

2 , S0
4). We construct between these pairs of cubes only the 2 and 3-ary

relations which determine a simplicial complex. So we have the existence of
the simplexes S1

5 = (S0
1 , S0

4), S2
1 = (S0

1 , S0
3 , S0

4) and S2
2 = (S0

1 , S0
2 , S0

4).
To define the notion of a 2-dimensional abstract cube, we define the vacuum

of the respective cube, denoted
◦

I2. The vacuum of 2-dimensional cube is

the union of the vacuums of simplexes [4]
◦

I2 =
◦

S2
1 ∪

◦

S2
2 ∪

◦

S1
5 . The abstract

2-dimensional cube is defined from its vacuum by the following relation

I2 =
4⋃

i=1

S1
i

⋃ ◦

I2.

����������
S0

4

S0
2S0

1

S0
3

Figure 1

In Figure 1 so called procube, which will be denoted I2(∆), is represented.

3o. Let’s consider, as axiomatic principle, that Ii is an abstract i-dimensional

cube, 1 ≤ i ≤ n−1 and Ii(∆) is the respective procube, but
◦

Ii is its vacuum.

4o. Let’s inductively define n-dimensional abstract cubes by the cubes of
dimension n−1. So let consider 2n cubes of dimension n−1: In−1

1 , In−1
2 , . . . ,

In−1
2n , and In−1

1 (∆), In−1
2 (∆), . . . , In−1

2n (∆) are respective procubes. It is
considered only the i-ary relations between 0-dimensional cubes of their procubes,
2 ≤ i ≤ n, which determine a simplicial complex [7]. The vacuum of

n-dimensional cube, denoted
◦

In, is the union of all the vacuums of
simplexes which do not intersect the procubes In−1

j (∆), 1 ≤ j ≤ 2n. The

abstract n-dimensional cube is the union In =
2n⋃
i=1

In−1
i

⋃ ◦

In. Let’s denote

the procube of the cube In by In(∆), which represents the simplicial complex
mentioned above.
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Definition 6. Any abstract cube Im, 0 ≤ m ≤ n−1, which takes part in the building
of the cube In, in concordance with Definition 5, is called a proper face of the

cube In.

Example 1. The cube I3, plotted in Figure 2, is the union I3 =
6⋃

i=1

I2
i

⋃ ◦

I3, where

I2
1 = (S0

1 , S0
2 , S0

7 , S0
6), I2

2 = (S0
2 , S0

3 , S0
8 , S0

7), I2
3 = (S0

4 , S0
3 , S0

8 , S0
5),

I2
4 = (S0

1 , S0
4 , S0

5 , S0
6), I2

5 = (S0
6 , S0

7 , S0
8 , S0

5), I2
6 = (S0

1 , S0
2 , S0

3 , S0
4).

The vacuum of the 3-dimensional cube is the union of the vacuums of simplexes
◦

I3 = (
2⋃

i=1

◦

S3
i )

⋃
(

8⋃
i=1

◦

S2
i )

⋃
S1

1 , where

S3
1 = (S0

2 , S0
6 , S0

7 , S0
8), S3

2 = (S0
1 , S0

3 , S0
4 , S0

5),
S2

1 = (S0
1 , S0

2 , S0
3 , S0

8), S2
2 = (S0

1 , S0
6 , S0

5 , S0
8), S2

3 = (S0
1 , S0

2 , S0
8 , S0

6),
S2

4 = (S0
1 , S0

3 , S0
8 , S0

5), S2
5 = (S0

1 , S0
6 , S0

8), S2
6 = (S0

1 , S0
8 , S0

3), S2
7 = (S0

1 , S0
5 , S0

3),
S2

8 = (S0
6 , S0

8 , S0
2), S1

1 = (S0
1 , S0

8).
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Figure 2

Let’s denote Im, 1 ≤ m ≤ n, the abstract m-dimensional cube, constructed by
the set of vertices X = {x1, x2, . . . , x2m}.

Definition 7. The finite and nonempty sequence of abstract cubes, denoted
In = {Im, 0 ≤ m ≤ n}, is called abstract n-dimensional cubic complex if
are satisfied the following postulates:

1. for ∀Is, It ∈ In, 0 ≤ s, t ≤ n, it holds Is ∩ It ∈ In or Is ∩ It = ∅;

2. any face Ik of ∀In ∈ In, k < n, is an element of In;

3. ∃In ∈ In.

We need to define the orientation for an abstract cube Ir ∈ In. Thus,
we give an analogy with the classical geometrical situation. Considering an ar-
bitrary unit cube given of his vertices, Ir = (x1, x2, . . . , x2r), from the line-
ar space Rn. Let’s fix a 0-dimensional face xi0 of this cube, as the origin of
coordinates of the linear space Rn. Using all other 0-dimensional faces, xj ,
1 ≤ j ≤ 2r, which are adjacent with the origin x0, we will represent by arcs the
2-ary relations of the examined coordinate system. The sequence of 0-dimensional
faces shows a positive oriented cube, because it belongs to the 1-dimensional
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simplexes of positive orientation of the examined coordinate system, which respects
the counterclockwise order (see Figure 3, on the left), having an even number of
transpositions’ arrangement of the order indicated by their simplexes. Let’s denote
this geometrical cube +Ir = +(x1, x2, . . . , x2r).

If the sequence of 0-dimensional faces of the examined cube belongs to
1-dimensional simplexes with negative orientation of examined coordinate sys-
tem, which respect the counterclockwise order (see Figure 3, on the right), hav-
ing an odd number of transpositions’ arrangement of the order indicated by their
simplexes, we will have a cube with negative orientation. In this case we will denote
it −Ir = −(x1, x2, . . . , x2r).

XXXXXXy
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���

������*
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x0
x1

x2

x3

x2r

. . .

XXXXXXy
�
�
�
�
���

������*

-s

x0
x1

x3

x2

x2r

. . .

Figure 3

Is obvious
Theorem 1. Let In be a complex made of abstract cubes and consider an
arbitrary r-dimensional cube Im = (xi1 , xi2 , . . . , xir) ∈ In, 1 ≤ r ≤ n, having a set
of 0-dimensional faces {xi0 , xi1 , . . . , xi2r }. For a fixed xit ∈ {xi1 , xi2 , . . . , xi2r }, all
the pairs (xit , xij ), j ∈ {1, . . . , 2r}\{t}, form binary relations, so determine graphi-
cally some arcs.

This analogy allows us to define the orientation of an abstract cube Ir.

Definition 8. If the number of transpositions of the sequence (i1, i2, . . . , i2r ) is
even, the abstract cube mentioned above is called positively oriented cube and is
denoted +Ir. Otherwise, if the number of transpositions is odd, the abstract cube Ir

is negatively oriented and is denoted −Ir.

Holds
Theorem 2. Let V n

∆ be a manifold defined by abstract simplexes (see Definition 1)
and V n

2
be a manifold defined by respective abstract cubes (see Definition 5). If V n

∆

and Vn
2

have the same genus, then they belong to the same class [4].

The proof is simple if we rely on the procubes of the abstract cubes which make
the manifold V n

2
. In this case, the last one is built from abstract simplexes (see

Definition 5).

Let’s consider the collection of all single-valued maps, H : In → Z, that satisfies
the propriety: if Ir

i ∈ In, 0 ≤ r ≤ n, is an abstract negative oriented cube, −Ir
i ,

then h(−Ir
i ) = −h(Ir

i ), for ∀h ∈ H. We will denote h(Ir
i ) = gi. For simplicity, we

will use giI
r
i for h(Ir

i ), and so −giI
r
i for −Ir

i .
By analogy with the elements of the complex of multi-ary relations, the following

notions allow us to determine the coherence, the noncoherence and the orientability
of the abstract cube Ir ∈ In and of the cubic manifold.
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Definition 9. The sum of all r-dimensional cubes of cubic complex In,

Lr
C = g1I

r
1 + g2I

r
2 + . . . + gβr

Ir
βr

, 2 ≤ r ≤ n, (2)

where βr is the cardinal of the set of all r-dimensional abstract cubes from In, is
called a 2-chain of dimension r, formed by the cubes of the complex In.

Definition 10. The expression

Lr
C1

+ Lr
C2

=

βr∑

i=1

(g1
i + g2

i )I
r
i (3)

is called the sum of the 2-chains Lr
C1

=
βr∑
i=1

g1
i I

r
i and Lr

C2
=

βr∑
i=1

g2
i I

r
i .

Analogously with the case from [6], it is easy to verify the following affirmation:

Theorem 3. The set of all r-dimensional 2-chains of the complex of cubes In,
denoted Lr, 0 ≤ r ≤ n, forms a commutative group with respect to the operation
defined by (3).

Definition 11. The abstract cubes Ir, Ir−1 ∈ In are called coherent if they have
the same orientation, otherwise they are called noncoherent. If the cubes Ir and
Ir−1, where Ir−1 is a face of Ir, have the same orientation (the opposite orientation,
respectively), the ratio [Ir : Ir−1] (−[Ir−1 : Ir], respectively) is called their incidence

coefficient.

Let’s mention that ∀Ir
i ∈ In, Ir

i = (xi1 , xi2 , . . . , xi2r ), have r pairs of opposite
(r − 1)-dimensional faces. Let Ir−1

ij0
and Ir−1

ij1
be a pair of opposite faces of Ir

i ,

j ∈ {1, 2, . . . , 2r}.
It is obvious that Ir−1

ij0
and Ir−1

ij1
are noncoherent (see Definition 11). Using the

algebraical border [6] of Ir
i , we can determine which faces of the cube Ir

i are coherent:

2Ir
i =

r∑

j=0

(−1)j(Ir−1
ij0

− Ir−1
ij1

) (4)

Definition 12. The cubic complex In is called an abstract cubic n-dimensional

manifold if the following proprieties are satisfied:

A. any (n−1)-dimensional cube is a common face exactly for two n-dimensional
cubes from In;

B. for ∀In
i , In

j ∈ In, i 6= j, it exists a sequence of n-dimensional cubes from

In, In
i1

= In
i , In

i2
. . . , In

iq
= In

j , where In
r ∩ In

r+1 = In−1
r,r+1, r ∈ {i1, i2, . . . , iq−1};

C. for ∀Ip ∈ In, 0 ≤ p ≤ n − 1, ∃In ∈ In, where Ip is a face of In;

D. for disjoint cubes ∀In
i , In

j ∈ In, In
i ∩ In

j = Ip, 2 ≤ p < n, it exists a sequence

of abstract cubes, In
i1

= In
i , In

i2
, . . . , In

iq
= In

j , such that
q⋂

j=1

In
ij

= Ip.
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Let’s denote the n-dimensional cubic manifold by Vn
2
. From A it results that any

n-dimensional face takes part in the building of Vn
2

just one time.

Is obvious
Theorem 4. Let’s have two coherent cubes Ir

i , Ir
j ∈ In and their common face Ir−1

ij

of dimension r − 1. Their incident coefficients have opposite signs, [Ir
i : Ir−1

ij ] =

= −[Ir
j : Ir−1

ij ].

Definition 13. Let Ln
C ∈ Ln be an arbitrary 2-chain, Ln

C =
βn∑
i=1

giI
n
i . The sum

2Ln
C =

βn∑

i=1

gi2In
i , gi ∈ Z, 1 ≤ i ≤ βn (5)

is called a 2-border or algebraical border of the 2-chain Ln
C .

Using the formula (5) we will define the orientability for an abstract cubic
manifold, Vn

2
.

Definition 14. If there exists a n-dimensional 2-chain of the cubic manifold Vn
2
,

2Ln
C ∈ Ln, such that 2Ln

C = 0 (so there exists a n-dimensional 2-chain), then the
manifold Vn

2
is called directed. The directed manifold V n

2
is called totally

coherent if all its n-dimensional cubes have the same orientation.

Holds
Theorem 5. An abstract directed cubic manifold Vn

2
is totally coherent.

The proof results from the fact that an abstract directed manifold V n
∆ , built

from simplexes, is totally coherent [3] and the cubes are built from procubes (see
Definition 5), but the procubes – from abstract simplexes.

Holds
Theorem 6. The abstract totally coherent directed cubic n-dimensional manifold,
where n = 2m, has a linear Euler 2-contour of dimension n − 1.

Proof. Using Theorem 5, we put into correspondence to the cubic
manifold Vn

2
an oriented graph G = (X,U), where X = {In

1 , In
2 . . . , In

βn
} and

U = {In−1
1 , In−1

2 . . . , In−1

βn−1
}. X is the set of all n-dimensional cubes of Vn

2
, which

represent vertexes of the graph G, denoted xi = In
i , 1 ≤ i ≤ βn. U is the set of

all (n − 1)-dimensional cubes of manifold Vn
2
, which represent arcs of the graph G,

denoted uj = In−1
j , 1 ≤ j ≤ βn−1. We can fix arcs orientation: (xp, xq) ∈ U , if In

p

and In
q are coherent, respecting the indicated order and having only one common

face (it follows from Theorem 4 and Definition 11).
Every n-dimensional cube component of the cubic manifold Vn

2
has pairs of

opposite (n − 1)-dimensional faces, with opposite orientation. Thus, if xi is the
tail of an arc in G, it exists exactly one arc which head is xi. The valency of
every vertex in G = (X,U) is even, and the graph G is pseudosymmetrical [1]. So
we are in the conditions of classical theorem of the graph theory, where any conex
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and pseudosymmetrical graph has a directed Euler tour. Translating this result in
the language of used notations, we obtain that the abstract cubic manifold Vn

2
has

a linear (n − 1)-dimensional Euler 2-contour. Theorem 6 is proved.

Now we can show the conditions for existence of a linear (n − 1)-dimensional
Euler contour for an abstract even dimensional manifold, V n

∆ .

Holds
Theorem 7. Let V 2m

∆ , m ≥ 1, be an abstract directed manifold of odd dimension.
It has a directed linear (2m − 1)-dimensional Euler tour if the simplexes of V 2m

∆

determine an cubic manifold.

The proof results from Theorems 5 and 6.

The author plan to publish some essential results for existence and
applications of the directed linear Euler tours on Vn

2
with different dimensions.
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