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On identities of Bol-Moufang type ∗

A. Pavl̊u, A. Vanžurová

Abstract. (Left) Bol loops are usually introduced as loops in which (left) Bol
condition is satisfied, and the existence of the two-sided inverse of any element as well
as the left inverse property are deduced. It appears that some of the assumptions on
the structure are superflous and can be omitted, or modified. Also, Bol loops can be
presented in various settings as far as the family of operation symbols is concerned.
First we give a short survey on main known results on identities of Bol-Moufang type
in quasigroups, written in a unified notation, and try to employ only multiplication
and left division for the equational theory of left Bol loops. Then we propose a rather
non-traditional concept of the variety of left Bol loops in type (2, 1, 0), with operation
symbols (·, −1, e) and with five-element defining set of identities, namely xe = ex = x,
(x−1)−1 = x, x−1(xy) = y, x(y(xz)) = (x(yx))z.

Mathematics subject classification: 20N05.
Keywords and phrases: Groupoid, variety of algebras, quasigroup, loop, Bol
identity, Moufang identity.

1 Preliminaries

The set of all terms over an alphabet X is denoted T(τ)(X). If A = (A;F ) is an
algebra with the carrier set A and the sequence F = (fi)i∈I of operation symbols,
and F̃ = (fi)i∈Ĩ , Ĩ ⊂ I, a subsequence of the sequence F of operation symbols

then Ã = (A; F̃ ) is called a reduct of A. V denotes a class of algebras defined by
identities, i.e. a variety of algebras, and we write V = Mod(Σ) if Σ is the defining
set of identities for V . We will distinguish graphically between identities in a variety
and equalities between elements in a particular algebra.

An algebra with one binary operation (of type τ = (1)) is called a groupoid here,
[4]. (The terminology varies in this respect. In [11] and in [10, p. 23] magma is used,
and 1970’ edition of N. Bourbaki’s Algebra is mentioned as the first source. In [19],
magma means a groupoid with two-sided neutral element.)

Convention. We use a common convention of nonassociative algebra that the
symbol of binary operation can be omitted (to save space and brackets in formulas);
if · is used it plays the role of parentheses, i.e. indicates priority of the ”non-dotted”
multiplication, or other operation.

Given a groupoid (A; ·) and a ∈ A then La : A → A, x 7→ ax denotes the left
translation by an element a, similarly Ra : x 7→ ax denotes the right translation by a.
An element e of a groupoid A = (A; ·) is called a right (respectively left, respectively
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two-sided) neutral element of A if for all elements a ∈ A, ae = a (respectively ea = a,
respectively both equalities) hold(s). The following easy observation is useful:

If e′ is a left and e a right neutral element of A they coincide, e′ = e′e = e.

If ”◦” is a binary operation on the carrier set A then so is its dual (opposite) operation
◦̃ : A → A, (a, b) 7→ a◦̃b := b ◦ a. The groupoid Ã = (A, ◦̃) is dual (opposite)1 to
A = (A, ◦), and left (right) translations of Ã (A). If an identity is satisfied in (A, ◦)
then its dual (”mirror”) is this same identity in Ã = (A, ◦̃) (that is, ”◦̃” replaces
”◦” in each occurance), rewritten into an identity in (A, ◦) [10, p. 2]. A groupoid
B is antiisomorphic to A if it is isomorphic to Ã. The advantage of dualisation is
obvious: it saves space and time. If something is proven for an algebraic structure
(which is not ”self-dual”), the dual (”mirror”) proof must clearly work for the dual
structure, and it is sufficient to study one of both theories.

1.1 Quasigroups, one-sided and two-sided equasigroups. Quasigroups (in
the “usual” sense) form a historically important class of groupoids in which groups
can be considered as a subclass. A (two-sided) quasigroup is often characterized as
a groupoid A = (A; ·) such that the following ”quasigroup property” (Q) is satisfied,
[16]:

(Q) the maps La : A → A and Ra : A → A are bijections for all a ∈ A.

Equivalently, for each of the equations a · x = b, y · a = b with a, b ∈ A, there exists
a uniquely determined solution in A, x ∈ A or y ∈ A, respectively [4, 14]. Another
speaking, for any triple of elements a, b, c from A such that a · b = c, each couple
of them determines the third one in A uniquely. Such a characterization might be
sufficient in many aspects, but makes troubles in the infinite case as far as congruence
relations, quotient algebras and homomorphisms are concerned. If a homomorphic
image A′ of a quasigroup A (in the above sense) is finite, or associative, then A′

is a quasigroup. But there are infinite examples of groupoids (even loops) with
the above ”quasigroup property” (Q) admitting homomorphic maps onto (neither
finite nor associative) groupoids in which (Q) fails, i.e. the image is no quasigroup
[1, p. 1182–1183]. That is why the so called equasigroups were introduced (see [6])
defined via identities, i.e. forming a variety (see [7]) (primitive quasigroups in the
sense of [2]). We prefer to keep the outline of an equational theory here.

Under a left quasigroup we will understand an algebra (A; ·, \) of type (2, 2)
in which the following identities hold (that guarantee existence and unicity of the
solution):

(Q1l) : x(x\y) ≈ y, (Q2l) : x\(xy) ≈ y.

Left quasigroups form the variety LQ = Mod({(Q1l), (Q2l)}) in type (2, 2), and an
algebra (A; ·, \) belongs to LQ if and only if in the groupoid (A; ·), the equations
of the form a · u = b are uniquely solvable in A for any a, b ∈ A, with u = a\b.

1sometimes also denoted by Aop
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Similarly, we can introduce mirrors of (Q1l), (Q2l)

(Q1r) : (y/x)x ≈ y, (Q2r) : (yx)/x ≈ y,

the variety of right quasigroups in type (2, 2) with operation symbols (·, /), RQ =
Mod({(Q1r), (Q2r)}), and to give a dual characterization. Each left (right) quasi-
group is left (right) cancellative, that is satisfies the following quasi-identity:

(Cl) xz = xz′ =⇒ z = z′ (left cancellation)

respectively

(Cr) zx = z′x =⇒ z = z′ (right cancellation).

In fact, if Q = (Q; ·, \) ∈ LQ and ab = ab′ for a, b, b′ ∈ Q then a\ab = a\ab′.
Applying (Q2l) we obtain b = b′ (and the dual proof works for right quasigroups).

We prefer ”left” structures here.

If in a left quasigroup Q ∈ LQ, q\q = p\p holds for any p, q ∈ Q, then the
common value e = q\q is a right neutral element of Q.

A quasigroup (”equasigroup”) is an algebra A = (A; ·, \, /) of type (2, 2, 2) sat-
isfying all of (Q1l), (Q2l), (Q1r), (Q2r) (and A ∈ Q iff equations of both types are
solved uniquely in A), [7, 24], i.e. the reduct (A; ·, \) is a left quasigroup, and the
reduct (A; ·, /) is a right one). Obviously, quasigroups are left and right cancellative
(equivalently, all left and right translations are bijections on A).

In the variety of quasigroups Q = Mod({(Q1l), (Q2l), (Q1r), (Q2r)}), the fol-
lowing identities are consequences of the defining ones:

(Q3) : y/(x\y) ≈ x, (Q4) : (y/x)\y ≈ x.

If a quasigroup possesses a neutral element we speak about a loop. If this is the
case, we can identify e with a new nullary operation e : {∅} → A, ∅ 7→ e. Let us
consider the following identities:

(Ur) : xe ≈ x, (Ul) : ex ≈ x,

(AS) x(yz) ≈ (xy)z (associativity),

(CO) xy ≈ yx (commutativity).

Associative groupoids are called semigroups. Commutative associative quasigroups
are also called abelian.

1.2 Groups as quasigroups. It is well known that a group can be regarded
as a quasigroup G = (G; ·, \, /) for which the reduct (G; ·) is a semigroup (satisfies
(AS)), [14, Chap. II], [4, p. 28], and that in the variety of “groups” in type (2, 2, 2),
G′ = Mod({(Q1l), (Q2l), (Q1r), (Q2r), (AS)}), the following identities hold:

x/x ≈ y/y, x\x ≈ y\y, x/x ≈ x\x,

i.e. a uniquely determined neutral element is present in any G ∈ G′, and G can be
regarded as an associative loop.
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1.3 Loops. A loop is often considered as ”usual” quasigroup (Q, ·), i.e. satisfying
(Q), endowed with an identity element. For our purpose, let us consider a variety
of loops L of type (2, 2, 2, 0) with the sequence of operation symbols (·, \, /, e) as

L = Mod({(Q1l), (Q2l), (Q1r), (Q2r), (Ur), (Ul)});

now a loop L = (Q; ·, \, /, ⌉) will be an algebra belonging to the variety L. Obviously,
a reduct (Q; ·, \, /) of L is in Q. Denote by Gr the subvariety of L determined by
the additional identity (AS).

It is also reasonable to consider left loops with two-sided neutral element in type
(2, 2, 0) with operation symbols (·, \, e) as elements from the variety

LL = Mod({(Q1l), (Q2l), (Ur), (Ul)})

and similarly right loops with two-sided neutral element and operation symbols
(·, /, e) as elements from

RL = Mod({(Q1r), (Q2r), (Ur), (Ul)}).

Associativity is rather a strong property. Many kinds of ”weak” associativity
are studied in quasigroups, e.g. [8, 9, 12, 13, 17, 21, 22], as well as in the varieties
L, LL or RL, respectively.

2 Identities of Bol-Moufang type in quasigroups

2.1 Identities of Bol-Moufang type. An identity s ≈ t where s, t ∈ T(2)(X)
are binary terms, is said to be of Bol-Moufang type if the number of distinct variables
occuring in s as well as in t is three, the total number of variables appearing in s is
four, the same for t, and the order in which the variables appear in s is exactly the
same as the order of these variables in the term t [17]. Historically, some of these
identities have been discovered in connection with geometric closure conditions in
webs.

2.2 Left Bol quasigroups. A (two-sided) quasigroup satisfying the so-called
left Bol identity

(Bl) x(y(xz)) ≈ (x(yx))z

is called a left Bol quasigroup (after Geritt Bol [3]). Similarly, right Bol quasigroups
satisfy its dual, the so called right Bol identity

(Br) ((zx)y)x ≈ z((xy)x).

Both theories are “mirror-symmetric” to each other, we prefer here the variety of
left Bol quasigroups in type (2, 2, 2)

LBQ = Mod({(Q1l), (Q2l), (Q1r), (Q2r), (Bl)}).

Note that the mirror variety RBQ of right Bol quasigroups was investigated in [22].
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Lemma 2.1 [22]. Let (A; ·, \, /) be a left (right) Bol quasigroup. Then (A; ·) has a
unique right (respectively left) neutral element satisfying (Ur) (respectively (Ul) ).

Proof. Let a ∈ A be a fixed element of a left Bol quasigroup. For any
b ∈ A, b(a\a) =

(Q1l)
(a · (a\b)) · (a\a) =

(Q1r)
(a · [((a\b)/a) · a]) · (a\a) =

(Bl)

a((a\b)/a) · (a · (a\a))) =
(Q1l)

a(((a\b)/a) · a) =
(Q1r)

a(a\b) =
(Q1l)

b. So, indeed, a\a is

right neutral, and (Ur) holds. Unicity follows from b(a\a) = b = b(c\c), c ∈ A by
(Cl). Similarly for right Bol quasigroups. �

In any algebra A ∈ LBQ, a new nullary operation eA satisfying (Ur) can be
introduced by eA : {∅} → A, eA(∅) = e ∈ A, and a Bol quasigroup A can be regarded
as a reduct of the algebra A′ = (A; ·, \, /, e) of type (2, 2, 2, 0) from the variety
LBQ′ = Mod({(Q1l), (Q2l), (Q1r), (Q2r), (Ur), (Bl)}) (of left Bol quasigroups with
right neutral element). Consequently, in the variety LBQ (as well as in LBQ′), the
identity x\x ≈ y\y holds. (Analogously for the varieties of right Bol quasigroups
RBQ and RBQ′.)

Corollary 2.2. Each Bol quasigroup (belonging to LBQ, LBQ′, RBQ, or to RBQ′)
satisfies

(H) (xx)x ≈ x(xx) (monoassociativity).

Proof. In the left Bol case, we use (Bl) with y = x, z = e, and (Ur). �

If the right neutral element of a left Bol quasigroup is two-sided, i.e. satisfies
xe = ex = x for all x, the quasigroup is left alternative: setting y = e in (Bl) we get
x(xz) = (xx)z.

Note that a groupoid A is said to have the left inverse property, or is a LIP -
groupoid, if for each a ∈ A there is at least one a′ ∈ A such that a′(ac) = c for every
c ∈ A [4, p. 111]. The right case is mirror again.

In a Bol quasigroup, each element has a (unique) two-sided inverse, and left
(right) Bol quasigroups have left (right) inverse property:

Lemma 2.3 [22]. In LBQ′ the following identities hold:

lip (e/x) · (xy) ≈ y (left inverse property),

lip′′′ x · ((x\e)y) ≈ y,

bi e/x ≈ x\e (two-sided inverse),

lip′′ (x\e) · (xy) ≈ y,

lip′ x · ((e/x)y) ≈ y,

Proof. Let us evaluate x((e/x) · (xy)) ≈
(Bl)

[x((e/x) · x)] y ≈
(Q1r)

(xe)y ≈
(Ur)

xy.

By left cancellation we obtain (lip). Similarly, (x\e) · (x · ((x\e)y)) ≈
(Bl)

[(x\e)(x · (x\e))] y ≈
(Q1l)

((x\e)·e)y ≈
(Ur)

(x\e)y, and (Cl) gives (lip′′′). Let A ∈ LBQ′

have the right neutral element e. For a ∈ A, ((e/a)(a · e/a))a = (e/a) · (a(e/a ·a)) =
e/a · (ae) = e/a · a. According to (Cr), (e/a) · (a(e/a)) = e/a = (e/a)e, and we
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obtain a(e/a) = e by (Cl). Since also a(a\e) = e holds it must be e/a = a\e again
by (Cl). The rest is a consequence. �

Hence for every (left) Bol quasigroup B ∈ LBQ′, it is natural to introduce for
any b ∈ B an element b−1 =: e/b = b\e, a both-sided inverse. In this way, a
new unary operation b 7→ b−1 of ”inverting” arises (on the carrier set B) satisfying
b−1(bc) = c and b(b−1c) = c for all b, c ∈ B (B has the left inverse property, is a LIP -
quasigroup). Analogously, the same construction works for right Bol quasigroups,
and (cb)b−1 = (cb−1)b = c holds for all b, c ∈ B (right Bol quasigroups have the right
inverse property).

2.3 Moufang quasigroups (are loops). A bit stronger ”weak associativity”
conditions are conditions of Moufang type (after Ruth Moufang). Consider the
following pairs of identities:

(M1) : (xy)(zx) ≈ (x(yz))x, (N1) : ((zx)y)x ≈ z(x(yx)),

(M2) : x((yz)x) ≈ (xy)(zx), (N2) : ((xy)x)z ≈ x(y(xz)).

Each of the identities is a mirror of the other one on the same row. By results of
Bol and Bruck [3], [4, p. 115] all four identities are equivalent in the variety of loops.
By results of [12], they are in fact equivalent even in the variety Q of quasigroups.

Call a quasigroup Moufang if it satisfies (M1), and denote by MQ the vari-
ety of all Moufang quasigroups. If Q is a Moufang quasigroup let us choose a
fixed a ∈ Q. Then e =: a\a is a left neutral element. In fact, for every b ∈ Q,
(ba)b = (b(a · a\a))b = (ba)(a\a · b), and a\a · b = b follows by left cancellation.
Similarly, f =: (a\a)/(a\a) is a right neutral element since [b((a\a)/(a\a)] · (a\a) =
(a\a)[[b((a\a)/(a\a)] · (a\a)] = [(a\a)b][(a\a)/(a\a) · (a\a)] = b · (a\a). Now using
(Cr) we conclude

Lemma 2.4 [12]. Every Moufang quasigroup has an identity element e (and
therefore can be regarded as a reduct of a Moufang loop).

For quasigroups satisfying (M2), a mirror proof of the same statement can be
easily given. To prove that every quasigroup satisfying (N1) (or (N2), respectively)
has a two-sided neutral element is rather more complicated, [12, p. 233].

Lemma 2.5. Moufang quasigroups are left and right alternative and elastic, that is
satisfy

(ALTl) (xx)y ≈ x(xy) (left alternativity),
(ALTr) (yx)x ≈ y(xx) (right alternativity),
(FLEX) (xy)x ≈ x(yx) (flexibility, elasticity).

Proof. From (N2) with y = e and (Ur), (xx)z = x(xz). From (N1) with y = e,
(Ul) and (Ur), (zx)x = z(xx). From (N1) with z = e and (Ul) (or from (N2) with
z = e and (Ur)), (xy)x = x(yx). �

Note that if a groupoid satisfies a left Bol identity and possesses a two-sided
neutral element then it is left alternative.
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Every Moufang quasigroup is at the same time left and right Bol quasigroup:

Lemma 2.6. The variety MQ is a subvariety in LBQ as well as in RBQ.

Proof. In MQ, the identity (Bl) is a consequence of (N2) and (FLEX) since

(x(yx))z ≈
(FLEX)

((xy)x)z ≈
(N2)

x(y(xz)),

and (Br) is a consequence of (N1) and (FLEX),

z((xy)x) ≈
(FLEX)

z(x(yx)) ≈
(N1)

((zx)y)x. �

Hence in every Moufang quasigroup each element has a (unique) both-sided
inverse, and both left and right inverse properties are satisfied.

Due to (AS), G′ is a subvariety in MQ. Now it is apparent that in each G ∈ G′

there is a (unique) identity element e satisfying (Ur), (Ul), and each g ∈ G has
a (unique) both-sided inverse g−1 := e/g = g\e. More often, we take (·,−1, e) as
fundamental operations for groups.

3 Bol and Moufang loops

3.1 Left Bol loops. Left Bol loops are usually considered as a subvariety

LBL = Mod({(Q1)l , (Q2)l, (Q1)r, (Q2)r , (Ur), (Ul), (Bl)})

determined in L by the identity (Bl) (and belonging also to Bol quasigroups with
right unit). Similarly, the subvariety RBL of right Bol loops is distinguished by the
additional condition (Br), and has mirror properties [20].

Lemma 3.1 [20]. In the variety LBL of (left) Bol loops the following identities
hold: (H), (lip), (lip′), (bi), (ALT l),

(inv) e/(e/x) ≈ x, (x\e)\e ≈ x,
(sa) (x(yx))\e ≈ (x\e) · (y\e · x\e) (semiautomorphic inverse).

Proof. The first part was already proven. Left alternativity is an imme-
diate consequence of (Bl) and (Ul) if we set y = e and z = y, x(xy) ≈
x(e(xy)) ≈ (x(ex))y ≈ (xx)y (and monoassociativity follows for y = x). From (bi),
e/(e/x) ≈ e/(x\e) ≈

(Q3)
x. Now (x(yx)) · [(x\e) · (y\e · x\e)] ≈

(Q3)
x(y(x(x\e(y\e ·

x\e))) ≈
(lip′)

x(y(y\e · x\e)) ≈
(lip′)

x(x\e) ≈
(Q1l)

e which is equivalent to (sa). �

In the more usual notation, x−1(xy) = y, x(x−1y) = y, (x−1)−1 = x, and
(x(yx))−1 = x−1(y−1x−1). Further, x−1x = xx−1 = e due to (Q1l), (Q1r).

3.2 Moufang loops. The variety of Moufang loops ML is introduced as the
subvariety of L satisfying the identity of Moufang (N2) (or equivalently, any one of
the identities (M1), (M2), (N1) [4, 12]), and ML is exactly a common part of LBL
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and RBL. It can be easily checked that a left Bol loop is Moufang if and only if it
is elastic, or equivalently, if and only if is right alternative:

Lemma 3.2 [2, p. 105, 1]. In L, a pair of identities (Bl), (FLEX) is equivalent
to (N2), and a pair of identities (Br), (FLEX) is equivalent to (N1).

Lemma 3.3 [2, p. 105, 5]. In the variety L of loops, a couple of identities (Bl),
(ALTr) is equivalent to (N2), and a couple (Br), (ALTl) of identities is equivalent
to (N1).

Proof. Let B be a Bol loop satisfying (ALTr). Let us show that B is also elastic.
Let a, c ∈ B. Then (Bl) with x = z =: a and y =: c and (ALTr) give (a(ca))a =
a(c(aa)) = a((ca)a). Now let a, b ∈ B be arbitrary elements. Then (ab)a =
(a((b/a) · a))a = a(((b/a) · a)a) = a(ba), that is, (FLEX) holds in B. Hence B is
Moufang. The converse is obvious. �

Corollary 3.4. A left (right) Bol loop is a Moufang loop if and only if it is right
(left) alternative.

Lemma 3.5. For Bol loops (particularly for Moufang loops), (a−1)2 = (a2)−1.

Proof. In a left Bol loop, (a−1a−1)(aa) =
(ALT )l

a−1(a−1(aa)) =
(lip)

a−1a ≈ e. In the

case of a right Bol loop, a mirror proof works. �

The common value can be denoted by a−2 := (a−1)2 = (a2)−1. Similarly,
(an)−1 = (a−1)n for any natural number n.

More generally, in a left Bol loop B, a power an can be introduced for any element
a ∈ B and any integer: a0 = e, an = a · an−1, a−n = (a−1)n for any natural n ∈ N.
In a left Bol loop, bn(bma) = bn+ma, in particular, bnbm = bn+m (Bol and Moufang
loops are power-associative) [20].

The variety CML of commutative Moufang loops can be characterized as a
subvariety of L, which is characterized by the additional identity x2(yz) ≈ (xy)(xz),
a modification of (M1).

The fact that most of the varieties of loops of Bol-Moufang type can be defined
in several equivalent ways was a motivation for [17–19].

3.3 Left Bol left loops. We can investigate Bol conditions even in weaker
structures, and await reasonable results.

Let us start with a left loop (with a two-sided neutral element e) which satisfies
left Bol identity (Bl), and can be called a left Bol left loop. More formally, let
Q = (Q; ·, \, e) belong to

LBLL = Mod({(Q1l), (Q2l), (Ul), (Ur), (Bl)}).

Our aim is to show that on Q, a suitable binary operation / can be introduced in such
a way that our algebra Q is in fact a reduct of some left Bol loop from LBL. Note
that both concepts are different from the theoretical view-point of universal algebra,
but as far as more practical purposes are concerned: their classes of examples are in
a bijective correspondence, that is, essentially the same.
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Lemma 3.6. In any Q ∈ LBLL, the following identities are satisfied:

(lip′): x(x\e · y) ≈ y,
(lip′′): x\e(xy) ≈ y,
(∗): x\e · x ≈ e.

Proof. Let us start from the chain of identities

x\e · (x(x\e · y)) ≈
(Bl)

[x\e · (x · x\e)]y ≈
(Q1l),(Ur)

x\e · y.

Due to left cancellation, (lip′) is obtained. To prove (lip′′) we proceed similarly,
x(x\e(xy)) ≈

(Bl)
x(x\e · x))y ≈

(lip′)
xy, and we use (Cl) again. Setting y = e in (lip′)

we get the rest. �

Given Q ∈ LBLL let us introduce a new binary operation ”\” on Q by

a/b := b\e(ba · b\e) for any a, b ∈ Q.

Let us check that (Q1r) and (Q2r) are satisfied:

xy/y = y\e(y(xy)·)y\e =
(Bl)

y\e(y(x(y·y\e))) =
(Q1l)

y\e(y(x·e)) =
(Ur)

y\e(yx)x =
(lip′)

x,

x/y · y = [y\e(yx · y\e)]y =
(Bl)

y\e(yx · (y\e · y)) =
(∗)

y\e(yx · e) =
(Ur)

y\e(yx) =
(lip′)

x.

4 Bol loops in signature (·, −1
, e)

As we have already seen, varieties of loops of Bol-Moufang type (including
groups) can be introduced in various types. The fact that they belong to the class
of the so called IP -loops is of considerable importance.

(Left) Bol loops are frequently introduced as loops in which (left) Bol condition
is satisfied, and consequences of the axioms (some of which might be redundant) are
derived: particularly the existence of two-sided inverse elements and the left inverse
property, (LIP ), are remarkable. We propose here a rather non-traditional way how
to minimalize the axiomatic system.

Let us introduce a variety of left Bol loops B in type (2, 1, 0) with operation
symbols (·,−1, e). Considering the fact that Bol loops belong to the class of left
inverse property loops we can choose

xe ≈ x, ex ≈ x, (x−1)−1 ≈ x, x−1(xy) ≈ y, x(y(xz)) ≈ (x(yx))z

as a basis of identities. For some purposes, this definition in type (2, 1, 0) seems to
be quite convenient, and the fact that groups (in the usual setting) form a subvariety
in B is transparent enough.

Let K denote a class of algebras in type (2, 1, 0), with a sequence of operation
symbols (·,−1, e). Let us consider the following set of identities:
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(INr) : x · x−1 ≈ e, (INl) : x−1 · x ≈ e,
(LIP ) : x−1(xy) ≈ y, (LIP )′ : x(x−1y) ≈ y,
(INV ) : (x−1)−1 ≈ x, (Lu) : (x−1((xx)x−1) · x ≈ x.

The following can be easily checked.

Lemma 4.1. In an algebra B = (Q; ·,−1, e) ∈ K the following implications are
satisfied:

(i) (Ur) and (LIP ) imply (INl),
(ii) (Ur), (INV ) and (LIP ) imply (INr),
(iii) if (Ur), (INV ) and (LIP ) are satisfied then also (LIP )′ holds,
(iv) if (Ur) and (N2) hold then (FLEX) is also satisfied,
(v) (Ur), (INV ), (LIP ) and (N2) imply (Ul),
(vi) (Ur) and (N2) imply (Bl),
(vii) if (Ur), (INV ), (LIP ) and (N2) hold then (ALTl) is satisfied.

Proof. Under the respective assumptions, we get the following chains of identities:

x−1x ≈
(Ur)

x−1(xe) ≈
(LIP )

e,

xx−1 ≈
(INV )

(x−1)−1x−1 ≈
(Ur)

(x−1)−1(x−1e) ≈
(LIP )

e,

x(x−1y) ≈
(INV )

(x−1)−1(x−1y)x ≈
(LIP )

e,

(x−1((xx)x−1)) ·x ≈
(Bl)

x−1 · [(xx)(x−1x)] ≈
(INl)

x−1 · [(xx)e] ≈
(Ur)

x−1 · (xx) ≈
(LIP )

x,

x(yx) ≈
(Ur)

x(y(xe)) ≈
(N2)

(x(yx))e ≈
(Ur)

(xy)x,

ex ≈
(INr)

(xx−1)x ≈
(FLEX)

x(x−1x) ≈
(INl)

xe ≈
(Ur)

x,

x(y(xz)) ≈
(N2)

((xy)x)z ≈
(FLEX)

(x(yx))z,

x(xz) ≈
(Ul)

x(e(xz)) ≈
(N2)

((xe)x)z ≈
(Ur)

(xx)z. �

The condition (Lu) tells that the “left neutral” element el
b of b ∈ B, determined

by the equation el
b ·b = b, is of the form b−1[(bb)b−1]. In general, left neutral elements

el
a, el

b corresponding to different elements a 6= b might be different.

Lemma 4.2. Let B ∈ K be an algebra satisfying (LIP ). Then B satisfies the left
cancellation law (Cl).

Proof. Let a, c, c′ ∈ B and suppose ac = ac′. Then we evaluate c =
(LIP )

a−1(ac) =

a−1(ac′) =
(LIP )

c′. �

Lemma 4.3. Let B ∈ K satisfy (Ur), (INr), (Cl) and (Bl). Then B satisfies also
the right cancellation law (Cr).
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Proof. Let the assumptions hold in B. Suppose ca = c′a. Then also a(ca) = a(c′a).
Calculate

ac =
(Ur)

a(ce) =
(INr)

a(c(aa−1)) =
(Bl)

(a(ca)) · a−1 =

= (a(c′a)) · a−1 ≈
(Bl)

a(c′(aa−1)) ≈
(INr)

a(c′e) = ac′.

Hence ac = ac′, and by (Cl), also c = c′. �

In the class K, distinguish the variety

B = Mod({(Ur), (Ul), (INV ), (LIP ), (Bl)}),

and call its algebras again left Bol loops.

Corollary 4.4. Algebras from B satisfy (INr), (INl), and are both left and right
cancellative.

Let us consider also the varieties

M = Mod({(Ur), (INV ), (LIP ), (N2)}), G = Mod({(Ur), (INr), (AS).

In G, the identities (Ul), (INl), (INr), (INV ) are satisfied (now we have ”usual”
groups). Obviously, we obtain the chain of subvarieties G ⊂ M ⊂ B.

Proposition 4.5. Given an algebra B = (Q; ·,−1, e) ∈ B of type (2, 1, 0) let us
introduce a couple of binary operations \, / by a\b := a−1b, b/a := a−1((ab)a−1),
a, b ∈ Q [15]. Then B′ = (Q; ·, \, /, e) is a Bol loop belonging to the variety BL.

Proof. Let us verify that in B′, (Q1l), (Q2l), (Q1r) and (Q2r) hold. Given a, b ∈ Q
let us evaluate

a(a\b) = a(a−1b) =
(LIP )′

b, a\(ab) = a−1(ab) =
(LIP )

b,

(b/a)a = (a−1((ab)a−1)a =
(Bl)

a−1((ab)(a−1a)) =
(INl)

a−1((ab)e) =
(Ur)

a−1(ab) =
(LIP )

b,

(ba)/a = a−1((a(ba))a−1) =
(Bl)

a−1(a(b(aa−1))) =
(LIP )

b(aa−1) =
(INr)

be =
(Ur)

b.

Since (Ur), (Ul) and (Bl) are among the defining identities of B the rest follows. �

The varieties B and BL are term equivalent, the same for the varieties of groups
G and Gr, or for Moufang loops.

For any B ∈ B the map J : Q → Q, x 7→ x−1 is an involutive permutation of the
underlying set Q, and moreover a semiautomorphism of the loop B ([20, p. 344]),
that is, J(x(yx)) = J(x)(J(y)J(x)) holds.

Lemma 4.6. In the variety B the following identities are satisfied:

(SA)′ : [x(y−1x)]−1 ≈ x−1(yx−1), (SA) : [x(yx)]−1 ≈ x−1(y−1x−1).
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Proof. The first assertion (SA)′ follows by right cancellation (Cr) from

x−1(yx−1) · x(y−1x) ≈
(Bl)

x−1(y(x−1[x(y−1x)])) ≈
(LIP )

x−1(y(y−1x)) ≈
(LIP )′

≈
(LIP )′

x−1x ≈
(INl)

≈ [x(y−1x)]−1 · x(y−1x),

and the second is a consequence. �

Lemma 4.7. In the variety B, the following identities hold for n ≥ 2:

(i) xn(xn−1(. . . (x3(x2(x1(x2(x3(. . . (xn−1(xnz)) . . . ) ≈

≈ xn(xn−1(. . . [x3([x2(x1x2)]x3)] . . . )xn−1))xn) · z,

(ii) xn(xn−1(. . . (x2(x1(x2(. . . (xn−1xn) . . . ) ≈

≈ xn((xn−1(. . . [. . . [x2(x1x2)] . . . ]xn−1)xn),

(iii) [xn(xn−1(. . . (x2(x1(x2(. . . (xn−1xn) . . . )]−1 ≈

≈ x−1
n (x−1

n−1(. . . (x
−1
2 (x−1

1 (x−1
2 (. . . (x−1

n−1x
−1
n ) . . . ).

Proof. We use the idenity (Bl) (n − 1)-times to prove the first identity,

[xn((xn−1([. . . [x3([x2(x1x2)]x3)] . . . ]xn−1))xn)] · z ≈
(Bl)

≈
(Bl)

xn((xn−1([. . . [x3([x2(x1x2)]x3)] . . . ]xn−1))(xnz)) ≈
(Bl)

. . .

. . . ≈
(Bl)

xn(xn−1(. . . (x3(x2(x1(x2(x3(. . . (xn−1(xnz)) . . . ).

For z = e, the second identity is obtained, and (iii) is a consequence of (SA). �
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