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Some n-ary analogs of the notion of a normalizer

of an n-ary subgroup in a group

A.M. Gal’mak

Abstract. In this article n-ary analogs of the concept of normalizer of a subgroup
of a group are constructed. It is proved that in an n-ary group the role of these n-ary
analogs play the concepts of a normalizer and seminormalizer of n-ary subgroup in
n-ary group. A connection of these analogs with its binary prototypes is established.
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In this article for any n-ary group < A, [ ] > we denote by θA the introduced by
Post [1] equivalence which is defined on a free semigroup FA by the rule: (α, β) ∈ θA

if and only if there exist sequences γ and δ such that [γαδ] = [γβδ].

For any n-ary group < A, [ ] > Post defined also the universal enveloping group
A∗ = FA/θA. In this enveloping group he selected a normal subgroup

Ao = {θA(a1 . . . an−1)|a1, . . . , an−1 ∈ A},

which is called a corresponding group for the group < A, [ ] > and he proved that

A∗/Ao = {θA(a)Ao, θ
2

A(a)Ao, . . . , θ
n−1

A (a)Ao = Ao}

for any a ∈ A, moreover A∗/Ao is a cyclic group of order n − 1, but generating
coset of this cyclic group is an n-ary group that is isomorphic to the n-ary group
< A, [ ] >.

We use standard notations. We remark only that one can find definition of n-ary
group in the book of V.D. Belousov [2]. In this book the existence of the group A∗

is proved and properties of a solution of the equation [x a . . . a
︸ ︷︷ ︸

n−1

] = a are given. This

solution is denoted by the symbol ā and is called a skew element for the element a.

We recall the normalizer of a subset B in an n-ary group < A, [ ] > ([3]) is the
set

NA(B) = {x ∈ A|[x
n−1

B ] = [
i

Bx
n−1−i

B ],∀i = 1, . . . , n − 1},

and a seminormalizer of a subset B in n-ary group < A, [ ] > ([3]) is the set

HNA(B) = {x ∈ A|[x
n−1

B ] = [
n−1

B x]}.
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In [3] it is proved that if < B, [ ] > is an n-ary subgroup of an n-ary group
< A, [ ] >, then < NA(B), [ ] > and < HNA(B), [ ] > are n-ary subgroups in
< A, [ ] > and NA(B) ⊆ HNA(B).

For any subset B of an n-ary group < A, [ ] > it is supposed [4]:

Bo(A) = {θA(α) ∈ Ao | ∃b1, . . . , bn−1 ∈ B, αθAb1 . . . bn−1};

B∗(A) = {θA(α) ∈ A∗ | ∃b1, . . . , bi ∈ B(i ≥ 1), αθAb1 . . . bi}.

It is clear that B∗(A) ⊆ A∗, Bo(A) ⊆ Ao. In particular, A∗(A) = A∗,
Ao(A) = Ao.

If < B, [ ] > is an n-ary subgroup of an n-ary group < A, [ ] >, then B∗(A)
is a subgroup of the group A∗ that is isomorphic to the group B∗, and Bo(A) is a
subgroup of the group Ao, which is isomorphic to the group Bo [4].

Lemma 1. Let < B, [ ] > be an n-ary subgroup of an n-ary group < A, [ ] >, b ∈ B,

u = θA(x b . . . b
︸ ︷︷ ︸

n−2

) ∈ NAo
(Bo(A)). Then x ∈ HNA(B).

Proof. By condition u−1vu ∈ Bo(A) for any

v = θA(bo b . . . b
︸ ︷︷ ︸

n−2

) ∈ Bo(A), bo ∈ B,

i.e.
θA(b̄x̄ x . . . x

︸ ︷︷ ︸

n−3

)θA(bo b . . . b
︸ ︷︷ ︸

n−2

)θA(x b . . . b
︸ ︷︷ ︸

n−2

) ∈ Bo(A),

whence
b̄x̄ x . . . x

︸ ︷︷ ︸

n−3

bo b . . . b
︸ ︷︷ ︸

n−2

x b . . . b
︸ ︷︷ ︸

n−2

θAb1 . . . bn−1

for some b1, . . . , bn−1 ∈ B. Then

[bo b . . . b
︸ ︷︷ ︸

n−2

x] = [x b . . . b
︸ ︷︷ ︸

n−2

b1 . . . bn−1b̄] ∈ [xB . . . B
︸ ︷︷ ︸

n−1

].

Since bo is an arbitrary element of B, then the inclusion is proved

[B . . . B
︸ ︷︷ ︸

n−1

x] ⊆ [xB . . . B
︸ ︷︷ ︸

n−1

]. (1)

If we again apply the condition, then we obtain uvu−1 ∈ Bo(A), i.e.

θA(x b . . . b
︸ ︷︷ ︸

n−2

)θA(bo b . . . b
︸ ︷︷ ︸

n−2

)θA(b̄x̄ x . . . x
︸ ︷︷ ︸

n−3

) ∈ Bo(A),

whence
x b . . . b

︸ ︷︷ ︸

n−2

bo b . . . b
︸ ︷︷ ︸

n−2

b̄x̄ x . . . x
︸ ︷︷ ︸

n−3

θAc1 . . . cn−1
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for some c1, . . . , cn−1 ∈ B. Then

[x b . . . b
︸ ︷︷ ︸

n−2

bo] = [c1 . . . cn−1x] ∈ [B . . . B
︸ ︷︷ ︸

n−1

x],

whence
[xB . . . B

︸ ︷︷ ︸

n−1

] ⊆ [B . . . B
︸ ︷︷ ︸

n−1

x]. (2)

From (1) and (2) it follows

[xB . . . B
︸ ︷︷ ︸

n−1

] = [B . . . B
︸ ︷︷ ︸

n−1

x].

Therefore, x ∈ HNA(B). The lemma is proved.

Theorem 1. If < B, [ ] > is an n-ary subgroup in an n-ary group < A, [ ] >, then

(HNA(B))o(A) = NAo
(Bo(A)).

Proof. We fix h ∈ HNA(B) and choose an arbitrary

u = θA(ho h . . . h
︸ ︷︷ ︸

n−2

) ∈ (HNA(B))o(A), ho ∈ HNA(B).

If bo is an arbitrary element, b is a fixed element of the set B, then

v = θA(bo b . . . b
︸ ︷︷ ︸

n−2

)

is an arbitrary element of Bo(A). Since ho, h̄ ∈ HNA(B), then

u−1vu = θA(h̄h̄o ho . . . ho
︸ ︷︷ ︸

n−3

)θA(bo b . . . b
︸ ︷︷ ︸

n−2

)θA(ho h . . . h
︸ ︷︷ ︸

n−2

) =

= θA(h̄h̄o ho . . . ho
︸ ︷︷ ︸

n−3

bo b . . . b
︸ ︷︷ ︸

n−2

ho h . . . h
︸ ︷︷ ︸

n−2

) = θA(h̄h̄o ho . . . ho
︸ ︷︷ ︸

n−3

[bo b . . . b
︸ ︷︷ ︸

n−2

ho]h . . . h
︸ ︷︷ ︸

n−2

) =

= θA(h̄h̄o ho . . . ho
︸ ︷︷ ︸

n−3

[hob1 . . . bn−1]h . . . h
︸ ︷︷ ︸

n−2

) = θA([h̄b1 . . . bn−1]h . . . h
︸ ︷︷ ︸

n−2

) =

= θA([b′1 . . . b′n−1h̄]h . . . h
︸ ︷︷ ︸

n−2

) = θA(b′1 . . . b′n−1),

where b1, . . . , bn−1, b
′

1, . . . , b
′

n−1 ∈ B. Then, u−1vu ∈ Bo(A), whence u ∈
NAo

(Bo(A)) and the inclusion is proved
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(HNA(B))o(A) ⊆ NAo
(Bo(A)). (3)

Since any element u ∈ NAo
(Bo(A)) can be presented in the form

u = θA(x b . . . b
︸ ︷︷ ︸

n−2

), b ∈ B,

then by Lemma 1 x ∈ HNA(B), whence, taking into consideration B ⊆ HNA(B),
we have

u = θA(x b . . . b
︸ ︷︷ ︸

n−2

) ∈ (HNA(B))o(A).

Therefore,

NAo
(Bo(A)) ⊆ (HNA(B))o(A). (4)

From (3) and (4) it follows the needed equality. The theorem is proved.

By remark 2.2.20 [4], corresponding group No of n-ary subgroup < N, [ ] > of
n-ary group < A, [ ] > is isomorphic to subgroup No(A) of corresponding group Ao.
Therefore from Theorem 1 follows

Corollary 1. The corresponding Post group of semi-normalizer < HNA(B), [ ] >
of n-ary subgroup < B, [ ] > in n-ary group < A, [ ] > is isomorphic to normalizer

of subgroup Bo(A) in corresponding group Ao:

(HNA(B))o ≃ NAo
(Bo(A)).

Thus Theorem 1 and Corollary 1 establish a correspondence between a semi-
normalizer of n-ary subgroup in an n-ary group and its binary prototype in the
corresponding Post group.

We notice in [5] a correspondence between a semi-normalizer of an n-ary sub-
group in an n-ary group and its binary prototype in the group to which the n-ary
group is reducible by Gluskin-Hossu theorem. Namely, the following propositions
are proved.

Theorem 2 [5]. A semi-normalizer of n-ary subgroup < B, [ ] > in n-ary group

< A, [ ] > coincides with the normalizer of the subgroup < Ba, a© > in the group

< A, a© > for any a ∈ HNA(B), where Ba = [B . . . B
︸ ︷︷ ︸

n−1

a], and the operation a© is

defined in the following way

x a©y = [xā a . . . a
︸ ︷︷ ︸

n−3

y].
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Corollary 2 [5]. A semi-normalizer of n-ary subgroup < B, [ ] > in n-ary group <
A, [ ] > coincides with the normalizer of the subgroup < B, a© > in group < A, a© >
for any a ∈ B.

We establish now a connection between normalizer of an n-ary subgroup in n-ary
group and its binary prototype in enveloping Post group.

Lemma 2 [3]. If < B, [ ] > is an n-ary subgroup of an n-ary group < A, [ ] >, then

NA(B) = {x ∈ A|[xB x . . . x
︸ ︷︷ ︸

n−3

x̄] = B} = {x ∈ A|[x̄ x . . . x
︸ ︷︷ ︸

n−3

Bx] = B}.

Lemma 3. If < B, [ ] > is an n-ary subgroup of an n-ary group < A, [ ] >,

x ∈ NA(B), then

[x . . . x
︸ ︷︷ ︸

i−1

B x . . . x
︸ ︷︷ ︸

n−i−1

x̄] = B, [x̄ x . . . x
︸ ︷︷ ︸

n−i−1

B x . . . x
︸ ︷︷ ︸

i−1

] = B

for any i = 1, . . . , n − 1.

Proof. We prove the second equality. If i = 1, then B = B. If i = 2, then by
Lemma 2

[x̄ x . . . x
︸ ︷︷ ︸

n−3

Bx] = B.

From the last equality we have

[x̄ x . . . x
︸ ︷︷ ︸

n−3

[x̄ x . . . x
︸ ︷︷ ︸

n−3

Bx]x] = [x̄ x . . . x
︸ ︷︷ ︸

n−3

Bx], [x̄ x . . . x
︸ ︷︷ ︸

n−4

Bxx] = B,

whence

[x̄ x . . . x
︸ ︷︷ ︸

n−3

[x̄ x . . . x
︸ ︷︷ ︸

n−4

Bxx]x] = [x̄ x . . . x
︸ ︷︷ ︸

n−3

Bx], [x̄ x . . . x
︸ ︷︷ ︸

n−5

Bxxx] = B.

Further we have

[x̄xB x . . . x
︸ ︷︷ ︸

n−3

] = B, [x̄B x . . . x
︸ ︷︷ ︸

n−2

] = B.

Therefore, the second equality is true for any i = 1, . . . , n − 1.

The first equality is proved similarly. The lemma is proved.

Theorem 3. If < B, [ ] > is an n-ary subgroup of an n-ary group < A, [ ] >, then

(NA(B))∗(A) = NA∗
(B∗(A)).
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Proof. We fix an element h ∈ NA(B) and take any element

u = θA(ho h . . . h
︸ ︷︷ ︸

i−1

) ∈ (NA(B))∗(A), ho ∈ NA(B).

If bo is any element and b is a fixed element from B, then

v = θA(bo b . . . b
︸ ︷︷ ︸

j−1

)

is any element from B∗(A). Since ho, h ∈ NA(B), then, if we apply Lemma 2, after
that Lemma 3, then we obtain

u−1vu = θA(h̄ h . . . h
︸ ︷︷ ︸

n−i−1

h̄o ho . . . ho
︸ ︷︷ ︸

n−3

)θA(bo b . . . b
︸ ︷︷ ︸

j−1

)θA(ho h . . . h
︸ ︷︷ ︸

i−1

) =

= θA(h̄ h . . . h
︸ ︷︷ ︸

n−i−1

h̄o ho . . . ho
︸ ︷︷ ︸

n−3

bo b . . . b
︸ ︷︷ ︸

j−1

ho h . . . h
︸ ︷︷ ︸

i−1

) =

= θA(h̄ h . . . h
︸ ︷︷ ︸

n−i−1

[h̄o ho . . . ho
︸ ︷︷ ︸

n−3

boho] [h̄o ho . . . ho
︸ ︷︷ ︸

n−3

bho] . . . [h̄o ho . . . ho
︸ ︷︷ ︸

n−3

bho]

︸ ︷︷ ︸

j−1

h . . . h
︸ ︷︷ ︸

i−1

) =

= θA(h̄ h . . . h
︸ ︷︷ ︸

n−i−1

b′o b′ . . . b′
︸ ︷︷ ︸

j−1

h . . . h
︸ ︷︷ ︸

i−1

) =

= θA([h̄ h . . . h
︸ ︷︷ ︸

n−i−1

b′o h . . . h
︸ ︷︷ ︸

i−1

] [h̄ h . . . h
︸ ︷︷ ︸

n−i−1

b′ h . . . h
︸ ︷︷ ︸

i−1

] . . . [h̄ h . . . h
︸ ︷︷ ︸

n−i−1

b′ h . . . h
︸ ︷︷ ︸

i−1

]

︸ ︷︷ ︸

j−1

) = θA(b′′o b′′ . . . b′′
︸ ︷︷ ︸

j−1

),

where b′o, b
′, b′′o , b

′′ ∈ B. Therefore, u−1vu ∈ B∗(A), u ∈ NA∗(B∗(A)) and the follo-
wing inclusion is proved

(NA(B))∗(A) ⊆ NA∗(B∗(A)). (5)

Let c ∈ B and

u = θA(x c . . . c
︸ ︷︷ ︸

i−1

) = θA(x)θA(c . . . c
︸ ︷︷ ︸

i−1

)

be an element of NA∗(B∗(A)). Since

θA(c . . . c
︸ ︷︷ ︸

i−1

) ∈ B∗(A) ⊆ NA∗(B∗(A)),
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then from the last equality it follows

θA(x) ∈ NA∗(B∗(A)). (6)

Thus θ−1

A (x)θA(b)θA(x) ∈ B∗(A) for any b ∈ B, whence

θA(x̄ x . . . x
︸ ︷︷ ︸

n−3

bx) ∈ B∗(A),

i.e.
[x̄ x . . . x

︸ ︷︷ ︸

n−3

bx] = b′

for some b′ ∈ B. Since the element b was an arbitrary element of B, then

[x̄ x . . . x
︸ ︷︷ ︸

n−3

Bx] ⊆ B. (7)

From (6) it follows also that θA(x)θA(b)θ−1

A (x) ∈ B∗(A) for any b ∈ B, whence

[xB x . . . x
︸ ︷︷ ︸

n−3

x̄] ⊆ B.

From the last inclusion it follows that

B ⊆ [x̄ x . . . x
︸ ︷︷ ︸

n−3

Bx]. (8)

Then from (7) and (8) it follows

[x̄ x . . . x
︸ ︷︷ ︸

n−3

Bx] = B,

whence, taking in consideration Lemma 2, x ∈ NA(B). Then

u = θA(x c . . . c
︸ ︷︷ ︸

i−1

) ∈ (NA(B))∗(A),

whence
NA∗(B∗(A)) ⊆ (NA(B))∗(A). (9)

From (5) and (9) the required equality follows. The theorem is proved.

By Theorem 2.2.19 [4] universal enveloping Post group N∗ of an n-ary subgroup
< N, [ ] > of an n-ary group < A, [ ] > is isomorphic to a subgroup N∗(A) of
universal enveloping Post group A∗. Therefore from Theorem 3 it follows

Corollary 3. An universal enveloping Post group of a normalizer < NA(B), [ ] > of

n-ary subgroup < B, [ ] > in n-ary group < A, [ ] > is isomorphic to the normalizer

of subgroup B∗(A) in universal enveloping Post group A∗:

(NA(B))∗ ≃ NA∗(B∗(A)).
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