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Pairwise orthogonality of n-ary operations
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Abstract. The notions of hypercube and of the orthogonality of two hypercubes
were arised in combinatorial analysis. In [11] a connection between n-dimensional
hypercubes and algebraic n-ary operations was established. In this article we use an
algebraic approach to the study of orthogonality of two hypercubes (pairwise orthogo-
nality). We give a criterion of orthogonality of two finite k-invertible n-ary operations,
which is used by the research of orthogonality and parastrophe-orthogonality of two
n-ary T-quasigroups. Some examples are given and connection between admissibility
and pairwise orthogonality of n-ary operations is established.

Mathematics subject classification: 20N05, 20N15.

Keywords and phrases: Hypercube, orthogonal hypercubes, n-ary operation,
n-ary quasigroup, n-ary 7T-quasigroup, parastrophe, transversal, orthogonal m-ary
operations .

1 Introduction

It is known that two binary operations A and B, given on a set (), are called
orthogonal if the system of equations {A(x,y) = a,B(x,y) = b} has exactly one
solution for any a,b € @ (see [1], where such operations are called compatible).
Orthogonal binary operations, in particular, orthogonal quasigroups were considered
in different works (see, for example, [1-7]).

In [6] H.B. Mann proved that if A, B, C are quasigroups, given on a set () and
satisfying the equality

C(z, B(z,y)) = Az,y)

for all x,y € @, then the quasigroups A and B are orthogonal.

V.D. Belousov in [3, Lemma 2] gave the following criterion of orthogonality of
two binary quasigroups. Let A, B be binary quasigroups on a set ). Then A
and B are orthogonal if and only if the operation A - B~! is a quasigroup, where
(A- B Y(z,y) = A(z, B Y(z,y)) and B~! is the right inverse quasigroup for B
(B~(z, 2z) = y if and only if B(z,y) = 2).

In the case of n-ary operations there exist distinct versions of orthogonality
(they are reflected in [11]) which correspond to different types of orthogonality of
n-dimensional hypercubes.

© G. Belyavskaya, 2005

*Acknowledgment: The research described in this article was made possible in part by Award
No. MM1-3040-CH-02 of the Moldovan Research and Development Association (MRDA) and the
U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet
Union (CRDF).



6 G. BELYAVSKAYA

In this article we consider the weakest (for n > 2) case of orthogonality of n-ary
operations, namely, pairwise orthogonality (see Definition 1). At first orthogonality
of two finite k-invertible n-ary operations (pairwise orthogonality) is considered.
Then, using the obtained criterion of orthogonality of finite n-ary operations, we
give a definition of pairwise orthogonality for arbitrary k-invertible n-operations, in
particular, for finite or infinite n-quasigroups. A connection between admissibility
and pairwise orthogonality of k-invertible n-ary operations is established. In the last
part of the article pairwise orthogonality of n-ary T-quasigroups (n—T-quasigroups),
in particular, n — T-quasigroups which are orthogonal to some their parastrophes
are studied. Some examples of such quasigroups are given.

2 Necessary notions and results

We recall some notations, concepts and results which are used in the article.
At first remember the following designations and notes from [10]. By z] we will
denote the sequence x;, z;11,...,2;, @ < j. If j <4, then 1:5 is the empty sequence,
1,n=1{1,2,...,n} . Let Q be a finite or an infinite set, n > 1 be a positive integer
and let @™ denote the Cartesian power of the set Q.

A n-ary operation A (briefly, an n-operation) on a set () is a mapping A : Q" —
Q) defined by A(z}) — @41, and in this case we write A(z]) = Tp1.

A finite n-groupoid (Q,A) of order m is a set () with one n-ary operation A
defined on @, where |Q| = m.

A n-ary quasigroup is an n-groupoid such that in the equality

A(@}) = Tnis
cach of n elements from 27" uniquely defines the (n 4 1)-th element. Usually itself
quasigroup n-operation A is considered as a n-quasigroup.

The n-operation E;, 1 <i <n, on Q with E;(z}) = x; is called the i-th identity
operation (or the i-th selector) of arity n.
An n-operation A on Q is called i-invertible for some i € 1,n if the equation

i—1 n
A(al ’xi’aiJrl) = Qn+1

has a unique solution for each fixed n-tuple (a’fl, a1, any1) € Q™.
For an i-invertible n-operation there exists the i-inverse n-operation ) A defined
in the following way:

(ZA)A(xililv Tn+1, x?—i—l) =X = A(lel) = Tn+1

for all 1 € QL.
It is evident that

Al DAY, afy) = DA Alel), 2fy) = 2

and WD A] = A for i € T,n.
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Let Q, be the set of all n-ary operations on a finite or an infinite set ). On 2,
define a binary operation @ (the i-multiplication) in the following way:
(2

(A® B)(wt) = Ala} ", Blaf). all),

A, B € Qy,z] € Q™. Shortly this equality can be written as

A®B=A(E,B,E})
(2

where FEj; is the i-th selector.
In [9] it was proved that (§2,; @) is a semigroup with the identity E;. If A; is the
(2

set of all i-invertible n-operations from €2, for some i € 1,n, then (A;; ®) is a group.
(2

In this group Ej; is the identity, the inverse element of A is the operation VA € A;,
since AQE; =E; 0 A, A0WA=0A0 A=EFE,

(2 (] (2 (]
A n-ary quasigroup (Q, A) (or simply A), is an n-groupoid with an i-invertible
n-operation for each i € 1,n [10].
Let A be an n-quasigroup and ¢ € S,11, then the n-quasigroup 7 A defined by

JA(xg?) = To(nt1) < A(lﬂf) = Tn+1

is called the o-parastrophe (or simple, parastrophe) of A [10].

For any n-operation A there exist the o-parastrophes 7 A, where o(n+1) =n+1
(the principal parastrophes). The i-inverse operation @A for A, i € 1,n, is the
o-parastrophe defined by the cycle (i,n + 1).

Let (z7)r denote the (n — 1)-tuple (xlffl,:czﬂ) € Q" ! and let A be an n-
operation, then the (n — 1)-operation A,:

Aa(a)e = Alay ™ 0, 2] )

is called the (n — 1)-retract of A, defined by position k, k € 1,n, with the element a
in this position (with z; = a) [10].

An n-ary operation A on @ is called complete if there exists a permutation @ on
Q" such that A = E 19 (that is A(z}) = E1@(x})). If a complete n-operation A is
finite and has order m, then the equation A(z%) = a has exactly m™ ! solutions for
any a € Q [9].

Any i-invertible n-operation A, i € 1,n, is complete, but there exist complete
n-operations, which are not i-invertible for each i € 1,n [9].

3 Orthogonality of two n-ary operations

In the case of n-ary operations for n > 2 it is possible to consider different
versions of orthogonality. The weakest is the notion of the pairwise orthogonality.
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Definition 1 [11]. Two n-ary operations (n > 2) A and B given on a set Q of order
m are called orthogonal (shortly, A L B) if the system {A(z}]) = a, B(z}) = b} has
ezactly m"~2 solutions for any a,b € Q.

This concept corresponds to two orthogonal n-dimensional hypercubes [11, 13].
The following type of orthogonality is strongest.

Definition 2 [8]. An n-tuple < Ay, As, ..., A, > of n-operations on a set Q is called
orthogonal if the system {A;(x}) = a;}}, has a unique solution for any o} € Q™. A
set X = {A}} , t > n, of n-operations is called orthogonal if any n-tuple of distinct
n-operations from X is orthogonal.

This concept corresponds to an orthogonal n-tuple of n-dimensional hypercubes
[11-13]. Orthogonal n-operations and their sets in the sense of Definition 2 were
considered in many articles (see, for example, [8, 11-17, 19, 20, 22]).

In [11] intermediate types of orthogonality of n-operations and their sets were
studied.

Definition 3 [11 ]. A k-tuple < A¥ > 2 < k < n, of distinct n-operations on a set
Q of order m is called orthogonal if the system {A;(z}) = a;}¥_, has ezactly m"*
solutions for any a’f eQF. Asety = {AY} |t >k, of n-operations is called k-wise
orthogonal if any k-tuple of distinct n-operations from X is orthogonal.

The following connection exists between different considered types of orthogo-
nality.

Theorem 1 [11]. If a set ¥ = {A}} , t > k, of finite n-operations is k-wise
orthogonal, then ¥ is l-wise orthogonal for anyl, 2 <1 < k.

Thus, every pair of different n-ary operations from an orthogonal n-tuple is
orthogonal.

Let A, Ay, ..., A, be n-operations given on a set (. In [14] it is proved that a
n-tuple < A} > of n-operations is orthogonal if and only if the mapping 6 : ! —
(Ar(ah), Aa(xh), ..., Ap(z])) = (A1, Ag, ..., Ap)(x]) is a permutation on Q".

In [1] V.D. Belousov proved that a binary operation A has an operation which
is orthogonal to A (an orthogonal mate) if and only if A is a complete operation.
This is valid and for finite n-operations.

Proposition 1. A finite n-operation A has an orthogonal mate if and only if A is
complete.

Proof. By Proposition 5 of [11] A is a complete n-operation if and only if it is
a component of some permutation § = (A, B{“l) on Q", where < A, B{“l > is an
orthogonal n-tuple. By Theorem 1 A 1 B; for any i € 1,n — 1.
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Conversely, if B is an orthogonal mate for A , that is A | B, then by Corollary
4 of [11] the pair A, B can be embedded in an orthogonal n-tuple of n-operations
and by Proposition 5 of [11] A is a complete n-operation. O

Now we shall consider orthogonality of k-invertible n-operations for some fixed
k, 1 < k <n. For them the following criterion is valid.

Theorem 2. Let k be a fivzed number from 1,n. Two finite k-invertible
n-operations A and B on a set Q are orthogonal if and only if the (n — 1)-retract C,
of the n-operation C = B & %) A, defined by x), = a, is complete for every a € Q.

k

Proof. We shall prove this statement when k& = n for the sake of simplicity. For
the rest k € 1,n — 1 the proof is similar.
Let a be an arbitrary element of @, |Q| = m and the (n—1)-retract C, by x,, = a
of n-operation C' = B @ (™ A is complete for any a € Q. Then the equation
n

Caley™) = Clay™,a) = (Bo WA (@™ a) = B}, MA@ a)) = b

n

has m™ V-1 golutions for any a,b € . From the last equation we have

M B 1,b) = M A2 a) = 2z, whence it follows that the system {A(z7 !, 2) =
a, B(z'™!, 2) = b} has m"2 solutions. Thus, A | B.

Conversely, let A L B, that is the system {A(z}) = a, B(z}) = b} has m" 2
solutions for any a,b € (). From the first equality we have z,, = (”)A(x?*l,a) and
then the equation B(z7™!, M Ax""! a)) =bor Co(a? ') = (Ba™A) (271 a) =b

n

has m”~?2 solutions for any a,b € Q. Therefore, the (n — 1)-retract of B @ (™A,
n
defined by any a € @, is complete. a

For the binary case from Theorem 2 we have the following

Corollary 1. Two finite invertible from the right (that is 2-invertible) binary opera-
tions A, B on Q are orthogonal if and only if the operation C(x,y) = (A-B~4)(z,y) =
A(z, B~Y(x,y)) is a quasigroup.

Proof. The operation C = B-A~!(= Bg (Q)A) is always invertible from the right.
2

If the operation Cyz = C(z,a) is complete for any a € @, that is the equation
C(z,a) = b has exactly m?~? = 1 solutions for any a,b € Q, then the operation C
is invertible from the left (that is 1-invertible). Thus, C is a quasigroup.
Conversely, if C is a quasigroup, then any its (unary) retract is complete (that
is a permutation). O

From this corollary the criterion of V.D.Belousov [3, Lemma 2] for finite binary

quasigroups follows.

Proposition 2. If A and B are k-invertible n-operations on a set Q for some
k € 1,n, then the following equalities are equivalent: C = B® WA, C @& A = B,
K k
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A=®WCeB, CeAasWB=E, WA ®CaB=E, Ao WBaC = E4,
k k k k k k k
ke Ba*®A=E.
k k

Proof. It is easy to see taking into account that all k-invertible n-operations on
Q@ form a group with the identity Fj with the respect to the k-multiplication of
n-operations. U

Remark 1. If A and B are n-quasigroups, then they are k-invertible for any k € 1, n,
so A L B if and only if for some k € 1,7 the (n — 1)-retract C, of C = B @ (W A,
k

defined by xj, = a, is complete for any a € Q. If that holds for some fixed k € 1,n,
then the (n — 1)-retract of C; = B® () A, defined by z; = a, is also complete for any
1

l€1,nand any a € Q.
From Proposition 2 and Theorem 2 we have the following

Corollary 2. If A and B are finite n-quasigroups on Q, C = B&® ®A and A L B,
k
then C L WA ®C 1 BB for any k € 1,n.

Proof. C L WA (F)C 1 *)B) follows from the second (from the third) equality of
Proposition 2 and Theorem 2, since A and B are n-quasigroups and so any (n — 1)-
retract of B (A4) is an (n — 1)-quasigroup which is always complete. Further use
Remark 1. O

Using the criterion of orthogonality of two finite n-operations from Theorem 2
we can define a pairwise orthogonality of arbitrary k-invertible n-operations (finite
or infinite).

Definition 4. Two k-invertible n-operations A and B , given on an arbitrary set
Q, are called orthogonal if the (n — 1)-retract of the n-operation B @ (k) A, defined by
k

T = a, 1s complete for each a € Q.

As it was noted above, an n-operation A on () is called complete if there exists
a permutation (a bijection) @ on Q™ such that A = E1%. In the case of Definition
4 each (n — 1)-retract

k—1 k—1 (k k—1
Ca(at)e = Clay ™" a,afyy) = By, WA@Y a a7 40), 2744)
is complete, that is C, = Ej1) for some permutation 1 of Q" L.

Remark 2. Note that for binary case (n=2) Definition 4 is equivalent to the usual
definition of orthogonality of two 1- or 2-invertible operations.

Indeed, let A, B be 2-invertible binary operations on a set ) and A 1 B, that is
the system {A(z,y) = a, B(x,y) = b} has a unique solution for any a,b € Q). Then
A~Y(x,a) = y and the equation B(z, A~!(x,a)) = b has a unique solution x for any
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a,b € Q, that is Cy(7) = B(z, Ryz) = Ep,r = pux where Ryx = A7 Y(x,a), E is
the selector in the l-ary case (Ex = ex = x) and so ¢, is a bijection @ on (. Thus,
Cy = ¢, is a complete 1-ary (unary) operation for any a € Q.

Conversely, if C, = ¢, is a bijection for any a € (), then the equation
B(x, A~'(x,a)) = b has a unique solution for any a,b € @ and the system {A(x,y) =
a, B(z,y) = b} has a unique solution.

For 1-invertible binary operations the proof is similar.

Now we consider a connection between orthogonality of two n-operations and
their admissibility.

It is known that a binary quasigroup (@, -) is called admissible if it has a complete
permutation (a bijection) (or a transversal).

A permutation 6 on @Q is called complete for a quasigroup (@, -) if the mapping
0': 0’z = x - 0x is a permutation on Q. All elements 'z, v € @Q, are different and
form a transversal which is defined by the permutation 6 [5].

A binary quasigroup of order m has an orthogonal mate if and only if it has m dis-
joint transversals 61,65, ...,0. (or m disjoint complete permutations 61,6, ..., 0,,),
that is 0;x # 0z, # j, for any z € Q [5].

Using the criterion of Corollary 4 of orthogonality of binary 2-invertible (or
l-invertible) operations A and B on @ of order m, it is easy to find in this case m
disjoint transversals.

Indeed, if A L B, then the operation A-B~! ((A-B~Y)(z,y) = A(z, B~ (z,y)))
is a quasigroup. By y = a we have A(z, B~!(x,a)) = A(z, Ryz) = Cyz and C, is a
permutation where R, : R,z = B~!(x,a) is also permutation. Thus, in A there exist
m disjoint complete permutations {R,,a € @} which define m disjoint transversals
{Cqya € Q}.

In [20, 22] the admissibility of n-quasigroups and their connection with orthog-
onality were considered. By analogue with n-quasigroups (see [21]) the following
definition of admissible n-operations was given.

Definition 5. An n-operation B given on a set Q) is called admissible if for some k,
1<k <mn, onQ there exists an (n — 1)-operation A such that the (n — 1)-operation
C:

Clai)r = By ™' Ak 2fy1)

is complete. In this case the (n — 1)-operation C is called a k-transversal of the
n-operation B, defined by the (n — 1)-operation A.

The n-tuples (xlf_l, A(x})g, w}t, ) are positions of elements of a k-transversal C.
The values C(z7})x, when (n — 1)-tuples (z7); run through Q" !, are the elements
of the k-transversal C.

Two k-transversals of an n-operation B defined by (n — 1)-operations A; and As
are called disjoint if Ay (27)g # Ag(z7), for all (27), € Q"L

From Theorem 2 it follows
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Proposition 3. Let A, B be finite k-invertible n-operations given on a set Q) of
order m, A L B. Then the (n — 1)-operations *) A, (z}), = (’“)A(mlf_l,a,xzﬂ),
a € @, define m pairwise disjoint k-transversals in B.

Proof. By Theorem 2 A | B if and only if the (n — 1)-operation
Calaf)y = By~ WA@Y a,2y1),af41) = Bt W Ag(@)p, 2f4)

is complete for any a € Q. Thus, by Definition 5 the operations ¥ A,, a € Q, define
m transversals Cy, a € (). It is evident that (k)Aa(ac’f)k =+ (k)Ab(ac?)k, if a # b, since
A is a k-invertible n-operation. Moreover, in this case we have C,(z])r # Cp(2])k
by virtue of k-invertibility of the n-operation B. O

Let A, B be two n-operations on a set (). Recall that an n-operation B is called
isotopic to an n-operation A if there exists an (n + 1)-tuple T' = (a1, g, ..., an, )
of permutations (bijections) of @ such that B(x}) = vy tA(ayz1, aewa, ..., anzy)
for all 27 € Q™ (shortly, B = AT)[10].

It is easy to prove that the following statement is valid.

Proposition 4. Any n-operation B which is isotopic to a complete finite or infinite
n-operation A is also complete.

Proof. Let A be a complete n-operation onaset Q, B = AT, T = (a1, a9, ..., an,7),
then A = E;p for some permutation g = (C1,Cy,...,Cy,) (where the n-tuple
< C1,0y,...,C, > of n-operations is orthogonal) and

B(Iﬂf) = 7_114(051'/1;17 a2, ... 70‘nxn) =
7_1E1¢(a1x1, QQL, . oy Uy Tyy) = 7_1E1(Cl, Coy...,Cp)(anx1, a0z, ... apy) =

El(’yilal,ag, L. ,Cn)(.f?)

where C;(2}) = Ci(a1w1,0T2,...,0,7,). It is easy to see that the n-tuple
<~71C0y,Cs,...,C, > is also orthogonal. Thus, B = Ev, where

E:(y_lﬁl,é%...,ﬁn). O
From Proposition 1 and Proposition 3 we obtain the following

Corollary 3. If a finite n-operation A has an orthogonal mate and B = AT, T =
(1,9, ...,ap,7), then B has an orthogonal mate too.
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4  Pairwise orthogonal n — T-quasigroups

Below we shall consider in more detail orthogonality of two n-ary T-quasigroups
(briefly, n — T-quasigroups) which are closely connected with finite or infinite abelian
groups and generalize the known binary T-quasigroups.

Definition 6 [18]. An n-quasigroup (Q,A) is called an n — T-quasigroup if there
exist a binary abelian group (Q,+), its automorphisms a1, g, ..., q, and an element
a € @ such that

A(2]) = aqz1 + agzo + - + apx, +a (1)

for all 7 € Q™.

Let k € T,n, then the k-inverse n-operation *) A for an n — T-quasigroup A of
(1) has the form

(k)A(ac?) = 041;1(—061.%'1—062.%'2—- Q1T 1T — Qg 1T —  — QX —a) (2)

and is also n — T-quasigroup, since the mapping I : Ix = —xz is an automorphism
in an abelian group.

Proposition 5. Let (Q, A) and (Q, B) be two finite n — T -quasigroups over a group
(Q,4+) of odd order,

A(z}) = a1y + agwe + -+ - + Qp_1Tp—1 + Tk + Qg 1TEt1 + 0 F AT,

B(z}) = fio1 + Boxo + - + Br_1Tk—1 + T + Brr1Zrp1 + - + Ban,
where §; = 2a; for eachi € T,n, i £k, then C = B® WA =A, B=A® A and
k k
AL(ADA), ALW A BaeA) LW A
k k

Proof. In this case 3; = 2q; is an automorphism for any i € 1,n, i # k, since in a
group (@, +) of odd order the mapping x — 2z is a permutation. Find the form of
the n-operation C using (2): C(z}) = (B @ ®A)(2}) = Bz, (k)A(x’f),xZH) =
k

2001 + 200w + - -+ 200 1T — Q1T —Q2Ty —  — Q1T+ T — Q1 Thq1 —

C = QpTy + 2041 %k 41 o0 20T, = a1y + @y + o0+ ap1Tp1 + X+
oo 1Tyl + o+ @, = A(2]). Any (n — 1)-retract of C = Ais a (n — 1)-
quasigroup, so is complete and A 1| B by Definition 4 (or by Theorem 2). Since
C=Bo®A=A then B=A® A. Orthogonality of the rest n-operations pointed

k k

in the proposition follows from Corollary 2. U

The following useful criterion of orthogonality of two n — T-quasigroups is valid.

Theorem 3. Two n — T-quasigroups (Q, A) and (Q, B) where

A(ac?) =11 +axe + -+ 0Ty + a, B(ac?) = P1x1+ Poxo + -+ Bpxy + 0
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are orthogonal if and only if the (n — 1)-operation C':

Cx )k =mnx1 + 7222+ - + Veo1Th—1 + Vet1Th+1 + - + YnTn (3)

is complete, where

1 -1 ..
Yixy = Bixi — Broy oy = (B — Broy, oi)xy, i€ 1,n,i # k.

Proof. By Remark 1 and Definition 4 we need to prove that C is complete if
and only if the (n — 1)-retract C. of C = B @ (¥ A defined by z; = ¢, for some
k

k € 1,n and ¢ € Q, is complete. Using (2) we have C(z}) = (B % ) A) () =

B2, (k)A(x?),a:ZH) = Bix1 + Baxa + -+ + Bp_17k-1 + Bpay (—onz1 — aszs —
S = Q1T+ T — Q1 TRyl — 0 — QT — @) + e 1Tpgr + o+ Buy + b =
(81— By tar)zy + (B2 — Brag, tag)za + -+ (Be—1 — Broy, 1) -1 + Broy, ' op +
(Bre+1— By, 1) T + -+ (Bn— Bra, o)z — Bray, ta+b = O+ Bray, o —
Bragta+b (see (3)).

Let x; = ¢ be an arbitrary element of (), then we have

C(ay ' e, apyy) = Ce(a)y, = Caf)k + d = RaC(a})s,

where d = By, 'c — Bragta + b, Rgx = x + d. Thus, the (n — 1)-retract C.(z7);
of C, defined by x, = ¢, is isotopic to the (n — 1)-ary operation C: C, = 6T,
T = (e,&,...,¢ R;l) (e denotes the identity permutation on Q) and by Proposition
4 C, is complete if and only if C' is complete. O

Remark 3. Note that if the conditions of Theorem 3 hold for some k € 1,n, then
they hold for any k € 1,n (see Remark 1 for n-quasigroups).

Corollary 4. If in Theorem 3 v;, = [Bi, — @galzlaio is a permutation for some
io € 1,n, ig # k, then A L B.

Proof. In this case the (n — 1)-operation C of (3) is ig-invertible, so it is
complete. O

From Theorem 3 and Corollary 4 a number of useful statements follow.

Corollary 5. Let in Theorem 3 oy, = 3, for some k € 1,n. Then

(i) if Bi, — v, is a permutation for some ig € 1,n, ig # k, then A L B;

(ii) if (Q,+) is an (abelian) group of odd order and 3;, = 2cv;, for someip € 1,n,
1#k, then A 1L B.

Proof. By aj = 3, we have ﬁkalzl =candy; = f;—«q; foralli € 1,n, i # k. In (i)
use Corollary 4. Item (ii) is a particular case of (i), since 3;, = 2, is a permutation
(and so an automorphism) in a group of odd order. [l
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Corollary 6. Let X = {Al} be a set of n — T-quasigroups on a set QQ over the same

group (Q,+): -
Ai(z]) = anz1 + qipra + - + QinT, i € 1,8, (4)

where o, = Qg = -+ = oy, for some k € 1,n. If for all i,5 € 1,t, i # j there
exists one number s € 1,n, s # k such that o — ajs 18 a permutation, then the set
> is pairwise orthogonal.

Proof. In this case A; L A; for each i,j € 1,t, i # j by virtue of item (i) of
Corollary 5 since o, = aj, for all 4,j € 1,¢, i # j. O

Example 1. Let ¥ = {A’ffl} be a set of n — T-quasigroups over a group (Q,+)
(with the identity 0) of a prime order p, where n — T-quasigroups of (4) have the
form

Ai(2]) = a1z +arpxa + - + a1 p—1Tp—1 + ap,

n
Ay(x7) = agwy + agxa + - + agp_1Tp—1 + axy,

n
Ap_1(27) = ap—1x1 + ap_1222 + - + Ap_1 n—1Tn—1 + ATy,

a1 = a;x, a; #aj,if i # j, 1,5 € 1,p— 1, ajpx = agpex, if k # 1 and k # n,a;, = a,
i€l,p—1,a,a;ay, €Q\0forallielp—1.

By Corollary 6 the set ¥ is pairwise orthogonal by s = 1 since a;1 — aj1 =
a; —aj # 0, so the mapping x — (a; — a;)z is a permutation by i # j and by
A = 0op@ = -+ - = ap_1 n« = ax (here k = n).

Further we shall establish some conditions for orthogonality of an n — T-
quasigroup to some its parastrophes, using Theorem 3. Parastrophe-orthogonality of
binary quasigroups and minimal identities connected with such orthogonality were
in detail studied by V.D.Belousov in [4].

At first we recall that an automorphism « of a group (Q,+) is called complete
if the mapping r — x + ax is a permutation of @), that is if « is a complete per-
mutation [5].

Proposition 6. If an n—T-quasigroup (Q,A), A(z}) = a1x1+agza+- - -+anzn+a
where oy is a complete automorphism of the group (Q,+) for some | € 1,n, then

A1 D4,

Proof. Using expression (2) for A and taking in Theorem 3 k # [, B = WA we
obtain (; = ozfl and G = —a;lak. Then v; = 5 —ﬂkalglal = a;l —f—a;laka;lal =
a; (¢ + o) is a permutation and so A L (VA by Corollary 4. O

Corollary 7. An n—T-quasigroup (Q, A) over a group (Q,+) with A(x}) = axq1 +
azry + -+ + axy, + a, where « is a complete automorphism of (Q,+), is orthogonal
to WA for each | € T,n. Moreover, if, in addition, n > 3, then the set ¥ =
{4, WA,..., (")A} s pairwise orthogonal.
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Proof. The first statement follows immediately from Proposition 6. Prove that
A 1L UAfor each i,j € T,n, i # j. By (2) we have

DAGED) = a (—az) —amg — -+ — @i + 2§ — QTjp) — - — Qly — @) =

-1 -1
— X1 =Ty — - — X1+ X — Ty — o — Ty — A=

ISEl+I$2+--'+I$Z’,1+O[715Ei+f$i+1+--'+]l‘n+b:

121 + agxg + -+ apxy, + 0,0 = —Oflav

DA} = Tzy + Txo +otTrjta ey I+ o, + b=
Brx1 + Bexa + - - + By + b

Since i # j and n > 3 then there exists k € 1,n such that ay = 6 (k # 4,7). In
this case we have a™tz; — (Iz;) = (a™! + €)zj, so the map B —a; = o~ ! + ¢ is
a permutation since « is a complete automorphism. By item (i) of Corollary 5 (if
io =4)) WA L U)A. Taking into account that A L WA for any [ € T,n, we obtain
that ¥ is a pairwise orthogonal set. O

From Corollary 7, in particular, it follows that if A is an n — T-quasigroup
(n>3) (Q,A): Ax}) = x1 + 22+ -+ + x5, + a over a group of odd order, then
Y ={A4, WA, ..., (”)A} is pairwise orthogonal set, since the identity automorphism
€ in such group is complete.

A direct corollary of Theorem 3 for an n — T-quasigroup which is orthogonal to
some its principal o-parastrophe is the following

Proposition 7. Let (Q,A) be an n — T-quasigroup over a group (Q,+): A(z}) =
oaxy] + agro + -+ apxy +a, o(n+1) =n+1. Then A L A if and only if for
some k € 1,n the (n — 1)-operation C':

6(.’E?)k = (Oéo-l—Oéo—kaglal)xl—f—(agg—ao—kalzla2)x2+- . '+(Ola(k71) _aaka];lak—l)xk—1+

-1 -1
(aa(k+1) — Qg O‘k;—i—l)xk;—l—l + (aon — Qo O‘n)xn

is complete.

Proof. By the definition of a principal parastrophe “A (o(n+1) =n+1) of A

—1
TA(Y) = A2l 1]) = auxy-1y + o190+ -+ QpT-1, +a =

iy + faze + - + Buwpn + a,
where 3;x; = agizi, © € 1,n. Further use Theorem 3 with ~v; = 3; — ﬁkalzlai =

-1
i — Qg Q. ]

Corollary 8. If (Q,A) is an n — T-quasigroup, n > 3 , A(z]) = a1x1 + aszas +
ot apry t+a, o(n+1) =n+1, ok =k for some k € 1,n and gy — iy 1S @
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permutation for some ig € 1,n, iy # k, then A 1L 7A. If, in addition, (Q,+) has
odd order and oy, = 20y, , then A L 7A.

Proof. We have 7 A(z7) = 171 + Baza + -+ + Be—1Th—1 + Tk + P11 + -+ +
Bnxyn + a, where 3; = agi, S0 B = ag, as ok = k and we can use items (i) and (ii)
of Corollary 5, respectively. O

Note that for n = 2 we have o = ¢ (that is 7A = A) by the conditions of this
corollary (if 03 =3, 01 =1, then 0 = (1,02,3) = 02 = 2).

Example 2. Let (Q, A) be an n — T-quasigroup, n > 3, over a group of odd order
with A(z}) = aqz1 + 20022+ -+ apep +a, g =1, 0(n+1) =n+ 1,01 =2 and
ok = k for some k € 1,n, k # 1. Then ay1 — a3 = ag — a1 = 201 — a1 = ;. By
Corollary 8 A L A for any a; # 0,4 € 1,n, i # 2.

Corollary 9. If (Q,A) is an n — T-quasigroup , n > 3, over a group of a prime
order, A(z}) = a1x1+agxe+- - -+anrpn+a, a; # 0, a; # aj, ifi # j, o(n+1) =n+1,
ok =k for some k € 1,n and oig # ig for some ig # k, then A 1. 7A.

Proof. In a group of a prime order all mappings ¢ — ax, where a # 0 are auto-
morphisms. If oig # iy, then the mapping z — (asi, — a;,)r is a permutation (an
automorphism), so by Corollary 8 A 1 7 A. O

Example 3. Let (Q,+) = (Z,,+) be a group of a prime order p > 7, Q =
{0,1,2,...,p—1}, A(29) = 321 +5x2+4x3+224+25 and 0 = (2,3), then 03 = 2 # 3,
o4 =4 (k=40 =3), “Aa}) = A@@?3) = a1 + baz + 4w + 204 + a5 =

3r1 + 49 + bxs + 2x4 + x5. By Corollary 9 A 1 7 A.
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