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Pairwise orthogonality of n-ary operations ∗

G. Belyavskaya

Abstract. The notions of hypercube and of the orthogonality of two hypercubes
were arised in combinatorial analysis. In [11] a connection between n-dimensional
hypercubes and algebraic n-ary operations was established. In this article we use an
algebraic approach to the study of orthogonality of two hypercubes (pairwise orthogo-
nality). We give a criterion of orthogonality of two finite k-invertible n-ary operations,
which is used by the research of orthogonality and parastrophe-orthogonality of two
n-ary T -quasigroups. Some examples are given and connection between admissibility
and pairwise orthogonality of n-ary operations is established.
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1 Introduction

It is known that two binary operations A and B, given on a set Q, are called
orthogonal if the system of equations {A(x, y) = a,B(x, y) = b} has exactly one
solution for any a, b ∈ Q (see [1], where such operations are called compatible).
Orthogonal binary operations, in particular, orthogonal quasigroups were considered
in different works (see, for example, [1–7]).

In [6] H.B. Mann proved that if A,B,C are quasigroups, given on a set Q and
satisfying the equality

C(x,B(x, y)) = A(x, y)

for all x, y ∈ Q, then the quasigroups A and B are orthogonal.

V.D. Belousov in [3, Lemma 2] gave the following criterion of orthogonality of
two binary quasigroups. Let A,B be binary quasigroups on a set Q. Then A

and B are orthogonal if and only if the operation A · B−1 is a quasigroup, where
(A · B−1)(x, y) = A(x,B−1(x, y)) and B−1 is the right inverse quasigroup for B
(B−1(x, z) = y if and only if B(x, y) = z).

In the case of n-ary operations there exist distinct versions of orthogonality
(they are reflected in [11]) which correspond to different types of orthogonality of
n-dimensional hypercubes.

c© G. Belyavskaya, 2005
∗Acknowledgment: The research described in this article was made possible in part by Award

No. MM1-3040-CH-02 of the Moldovan Research and Development Association (MRDA) and the
U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet
Union (CRDF).

5



6 G. BELYAVSKAYA

In this article we consider the weakest (for n > 2) case of orthogonality of n-ary
operations, namely, pairwise orthogonality (see Definition 1). At first orthogonality
of two finite k-invertible n-ary operations (pairwise orthogonality) is considered.
Then, using the obtained criterion of orthogonality of finite n-ary operations, we
give a definition of pairwise orthogonality for arbitrary k-invertible n-operations, in
particular, for finite or infinite n-quasigroups. A connection between admissibility
and pairwise orthogonality of k-invertible n-ary operations is established. In the last
part of the article pairwise orthogonality of n-ary T -quasigroups (n−T -quasigroups),
in particular, n − T -quasigroups which are orthogonal to some their parastrophes
are studied. Some examples of such quasigroups are given.

2 Necessary notions and results

We recall some notations, concepts and results which are used in the article.
At first remember the following designations and notes from [10]. By x

j
i we will

denote the sequence xi, xi+1, . . . , xj , i ≤ j. If j < i, then x
j
i is the empty sequence,

1, n = {1, 2, . . . , n} . Let Q be a finite or an infinite set, n ≥ 1 be a positive integer
and let Qn denote the Cartesian power of the set Q.

A n-ary operation A (briefly, an n-operation) on a set Q is a mapping A : Qn →
Q defined by A(xn

1 ) → xn+1, and in this case we write A(xn
1 ) = xn+1.

A finite n-groupoid (Q,A) of order m is a set Q with one n-ary operation A

defined on Q, where |Q| = m.
A n-ary quasigroup is an n-groupoid such that in the equality

A(xn
1 ) = xn+1

each of n elements from xn+1
1 uniquely defines the (n+ 1)-th element. Usually itself

quasigroup n-operation A is considered as a n-quasigroup.
The n-operation Ei, 1 ≤ i ≤ n, on Q with Ei(x

n
1 ) = xi is called the i-th identity

operation (or the i-th selector) of arity n.
An n-operation A on Q is called i-invertible for some i ∈ 1, n if the equation

A(ai−1
1 , xi, a

n
i+1) = an+1

has a unique solution for each fixed n-tuple (ai−1
1 , an

i+1, an+1) ∈ Qn.

For an i-invertible n-operation there exists the i-inverse n-operation (i)A defined
in the following way:

(i)A(xi−1
1 , xn+1, x

n
i+1) = xi ⇔ A(xn

1 ) = xn+1

for all xn+1
1 ∈ Qn+1.

It is evident that

A(xi−1
1 , (i)A(xn

1 ), xn
i+1) = (i)A(xi−1

1 , A(xn
1 ), xn

i+1) = xi

and (i)[(i)A] = A for i ∈ 1, n.
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Let Ωn be the set of all n-ary operations on a finite or an infinite set Q. On Ωn

define a binary operation ⊕
i

(the i-multiplication) in the following way:

(A⊕
i
B)(xn

1 ) = A(xi−1
1 , B(xn

1 ), xn
i+1),

A,B ∈ Ωn, x
n
1 ∈ Qn. Shortly this equality can be written as

A⊕
i
B = A(Ei−1

1 , B,En
i+1)

where Ei is the i-th selector.

In [9] it was proved that (Ωn;⊕
i
) is a semigroup with the identity Ei. If Λi is the

set of all i-invertible n-operations from Ωn for some i ∈ 1, n, then (Λi;⊕
i
) is a group.

In this group Ei is the identity, the inverse element of A is the operation (i)A ∈ Λi,
since A⊕

i
Ei = Ei ⊕

i
A, A⊕

i

(i)A = (i)A⊕
i
A = Ei.

A n-ary quasigroup (Q,A) (or simply A), is an n-groupoid with an i-invertible
n-operation for each i ∈ 1, n [10].

Let A be an n-quasigroup and σ ∈ Sn+1, then the n-quasigroup σA defined by

σA(xσn
σ1 ) = xσ(n+1) ⇔ A(xn

1 ) = xn+1

is called the σ-parastrophe (or simple, parastrophe) of A [10].

For any n-operation A there exist the σ-parastrophes σA, where σ(n+1) = n+1
(the principal parastrophes). The i-inverse operation (i)A for A, i ∈ 1, n, is the
σ-parastrophe defined by the cycle (i, n+ 1).

Let (xn
1 )k denote the (n − 1)-tuple (xk−1

1 , xn
k+1) ∈ Qn−1 and let A be an n-

operation, then the (n− 1)-operation Aa:

Aa(x
n
1 )k = A(xk−1

1 , a, xn
k+1)

is called the (n− 1)-retract of A, defined by position k, k ∈ 1, n, with the element a
in this position (with xk = a) [10].

An n-ary operation A on Q is called complete if there exists a permutation ϕ on
Qn such that A = E1ϕ (that is A(xn

1 ) = E1ϕ(xn
1 )). If a complete n-operation A is

finite and has order m, then the equation A(xn
1 ) = a has exactly mn−1 solutions for

any a ∈ Q [9].

Any i-invertible n-operation A, i ∈ 1, n, is complete, but there exist complete
n-operations, which are not i-invertible for each i ∈ 1, n [9].

3 Orthogonality of two n-ary operations

In the case of n-ary operations for n > 2 it is possible to consider different
versions of orthogonality. The weakest is the notion of the pairwise orthogonality.
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Definition 1 [11]. Two n-ary operations (n ≥ 2) A and B given on a set Q of order
m are called orthogonal (shortly, A ⊥ B) if the system {A(xn

1 ) = a,B(xn
1 ) = b} has

exactly mn−2 solutions for any a, b ∈ Q.

This concept corresponds to two orthogonal n-dimensional hypercubes [11, 13].
The following type of orthogonality is strongest.

Definition 2 [8]. An n-tuple < A1, A2, . . . , An > of n-operations on a set Q is called
orthogonal if the system {Ai(x

n
1 ) = ai}

n
i=1 has a unique solution for any an

1 ∈ Qn. A
set Σ = {At

1} , t ≥ n, of n-operations is called orthogonal if any n-tuple of distinct
n-operations from Σ is orthogonal.

This concept corresponds to an orthogonal n-tuple of n-dimensional hypercubes
[11–13]. Orthogonal n-operations and their sets in the sense of Definition 2 were
considered in many articles (see, for example, [8, 11–17, 19, 20, 22]).

In [11] intermediate types of orthogonality of n-operations and their sets were
studied.

Definition 3 [11 ]. A k-tuple < Ak
1 >, 2 ≤ k ≤ n, of distinct n-operations on a set

Q of order m is called orthogonal if the system {Ai(x
n
1 ) = ai}

k
i=1 has exactly mn−k

solutions for any ak
1 ∈ Qk. A set Σ = {At

1} , t ≥ k, of n-operations is called k-wise
orthogonal if any k-tuple of distinct n-operations from Σ is orthogonal.

The following connection exists between different considered types of orthogo-
nality.

Theorem 1 [11]. If a set Σ = {At
1} , t ≥ k, of finite n-operations is k-wise

orthogonal, then Σ is l-wise orthogonal for any l, 2 ≤ l ≤ k.

Thus, every pair of different n-ary operations from an orthogonal n-tuple is
orthogonal.

Let A1, A2, . . . , An be n-operations given on a set Q. In [14] it is proved that a
n-tuple < An

1 > of n-operations is orthogonal if and only if the mapping θ̄ : xn
1 →

(A1(x
n
1 ), A2(x

n
1 ), . . . , An(xn

1 )) = (A1, A2, . . . , An)(xn
1 ) is a permutation on Qn.

In [1] V.D. Belousov proved that a binary operation A has an operation which
is orthogonal to A (an orthogonal mate) if and only if A is a complete operation.
This is valid and for finite n-operations.

Proposition 1. A finite n-operation A has an orthogonal mate if and only if A is
complete.

Proof. By Proposition 5 of [11] A is a complete n-operation if and only if it is
a component of some permutation θ = (A,Bn−1

1 ) on Qn, where < A,Bn−1
1 > is an

orthogonal n-tuple. By Theorem 1 A ⊥ Bi for any i ∈ 1, n− 1.
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Conversely, if B is an orthogonal mate for A , that is A ⊥ B, then by Corollary
4 of [11] the pair A,B can be embedded in an orthogonal n-tuple of n-operations
and by Proposition 5 of [11] A is a complete n-operation. �

Now we shall consider orthogonality of k-invertible n-operations for some fixed
k, 1 ≤ k ≤ n. For them the following criterion is valid.

Theorem 2. Let k be a fixed number from 1, n. Two finite k-invertible
n-operations A and B on a set Q are orthogonal if and only if the (n−1)-retract Ca

of the n-operation C = B ⊕
k

(k)A, defined by xk = a, is complete for every a ∈ Q.

Proof. We shall prove this statement when k = n for the sake of simplicity. For
the rest k ∈ 1, n− 1 the proof is similar.

Let a be an arbitrary element of Q, |Q| = m and the (n−1)-retract Ca by xn = a

of n-operation C = B ⊕
n

(n)A is complete for any a ∈ Q. Then the equation

Ca(x
n−1
1 ) = C(xn−1

1 , a) = (B ⊕
n

(n)A)(xn−1
1 , a) = B(xn−1

1 , (n)A(xn−1
1 , a)) = b

has m(n−1)−1 solutions for any a, b ∈ Q. From the last equation we have
(n)B(xn−1

1 , b) = (n)A(xn−1
1 , a) = z, whence it follows that the system {A(xn−1

1 , z) =
a,B(xn−1

1 , z) = b} has mn−2 solutions. Thus, A ⊥ B.
Conversely, let A ⊥ B, that is the system {A(xn

1 ) = a,B(xn
1 ) = b} has mn−2

solutions for any a, b ∈ Q. From the first equality we have xn = (n)A(xn−1
1 , a) and

then the equation B(xn−1
1 , (n)A(xn−1

1 , a)) = b or Ca(x
n−1
1 ) = (B⊕

n

(n)A)(xn−1
1 , a) = b

has mn−2 solutions for any a, b ∈ Q. Therefore, the (n − 1)-retract of B ⊕
n

(n)A,

defined by any a ∈ Q, is complete. �

For the binary case from Theorem 2 we have the following

Corollary 1. Two finite invertible from the right (that is 2-invertible) binary opera-
tions A,B on Q are orthogonal if and only if the operation C(x, y) = (A·B−1)(x, y) =
A(x,B−1(x, y)) is a quasigroup.

Proof. The operation C = B ·A−1(= B ⊕
2

(2)A) is always invertible from the right.

If the operation Cax = C(x, a) is complete for any a ∈ Q, that is the equation
C(x, a) = b has exactly m2−2 = 1 solutions for any a, b ∈ Q, then the operation C
is invertible from the left (that is 1-invertible). Thus, C is a quasigroup.

Conversely, if C is a quasigroup, then any its (unary) retract is complete (that
is a permutation). �

From this corollary the criterion of V.D.Belousov [3, Lemma 2] for finite binary
quasigroups follows.

Proposition 2. If A and B are k-invertible n-operations on a set Q for some
k ∈ 1, n, then the following equalities are equivalent: C = B ⊕

k

(k)A, C ⊕
k
A = B,
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A = (k)C ⊕
k
B, C ⊕

k
A⊕

k

(k)B = Ek,
(k)A⊕

k

(k)C ⊕
k
B = Ek, A⊕

k

(k)B ⊕
k
C = Ek,

(k)C ⊕
k
B ⊕

k

(k)A = Ek.

Proof. It is easy to see taking into account that all k-invertible n-operations on
Q form a group with the identity Ek with the respect to the k-multiplication of
n-operations. �

Remark 1. IfA andB are n-quasigroups, then they are k-invertible for any k ∈ 1, n,
so A ⊥ B if and only if for some k ∈ 1, n the (n − 1)-retract Ca of C = B ⊕

k

(k)A,

defined by xk = a, is complete for any a ∈ Q. If that holds for some fixed k ∈ 1, n,
then the (n−1)-retract of C1 = B⊕

l

(l)A, defined by xl = a, is also complete for any

l ∈ 1, n and any a ∈ Q.

From Proposition 2 and Theorem 2 we have the following

Corollary 2. If A and B are finite n-quasigroups on Q, C = B⊕
k

(k)A and A ⊥ B,

then C ⊥ (k)A, (k)C ⊥ (k)B for any k ∈ 1, n.

Proof. C ⊥ (k)A ((k)C ⊥ (k)B) follows from the second (from the third) equality of
Proposition 2 and Theorem 2, since A and B are n-quasigroups and so any (n− 1)-
retract of B (A) is an (n − 1)-quasigroup which is always complete. Further use
Remark 1. �

Using the criterion of orthogonality of two finite n-operations from Theorem 2
we can define a pairwise orthogonality of arbitrary k-invertible n-operations (finite
or infinite).

Definition 4. Two k-invertible n-operations A and B , given on an arbitrary set
Q, are called orthogonal if the (n− 1)-retract of the n-operation B⊕

k

(k)A,defined by

xk = a, is complete for each a ∈ Q.

As it was noted above, an n-operation A on Q is called complete if there exists
a permutation (a bijection) ϕ on Qn such that A = E1ϕ. In the case of Definition
4 each (n− 1)-retract

Ca(x
n
1 )k = C(xk−1

1 , a, xn
k+1) = B(xk−1

1 , (k)A(xk−1
1 , a, xn

k+1), x
n
k+1)

is complete, that is Ca = E1ψ for some permutation ψ of Qn−1.

Remark 2. Note that for binary case (n=2) Definition 4 is equivalent to the usual
definition of orthogonality of two 1- or 2-invertible operations.

Indeed, let A,B be 2-invertible binary operations on a set Q and A ⊥ B, that is
the system {A(x, y) = a,B(x, y) = b} has a unique solution for any a, b ∈ Q. Then
A−1(x, a) = y and the equation B(x,A−1(x, a)) = b has a unique solution x for any
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a, b ∈ Q, that is Ca(x) = B(x,Rax) = Eϕax = ϕax where Rax = A−1(x, a), E is
the selector in the 1-ary case (Ex = εx = x) and so ϕa is a bijection Q on Q. Thus,
Ca = ϕa is a complete 1-ary (unary) operation for any a ∈ Q.

Conversely, if Ca = ϕa is a bijection for any a ∈ Q, then the equation
B(x,A−1(x, a)) = b has a unique solution for any a, b ∈ Q and the system {A(x, y) =
a,B(x, y) = b} has a unique solution.

For 1-invertible binary operations the proof is similar.

Now we consider a connection between orthogonality of two n-operations and
their admissibility.

It is known that a binary quasigroup (Q, ·) is called admissible if it has a complete
permutation (a bijection) (or a transversal).

A permutation θ on Q is called complete for a quasigroup (Q, ·) if the mapping
θ′: θ′x = x · θx is a permutation on Q. All elements θ ′x, x ∈ Q, are different and
form a transversal which is defined by the permutation θ [5].

A binary quasigroup of orderm has an orthogonal mate if and only if it hasm dis-
joint transversals θ′1, θ

′

2, . . . , θ
′

m (or m disjoint complete permutations θ1, θ2, . . . , θm),
that is θ′ix 6= θ′jx, i 6= j, for any x ∈ Q [5].

Using the criterion of Corollary 4 of orthogonality of binary 2-invertible (or
1-invertible) operations A and B on Q of order m, it is easy to find in this case m
disjoint transversals.

Indeed, if A ⊥ B, then the operation A ·B−1 ((A ·B−1)(x, y) = A(x,B−1(x, y)))
is a quasigroup. By y = a we have A(x,B−1(x, a)) = A(x,Rax) = Cax and Ca is a
permutation where Ra : Rax = B−1(x, a) is also permutation. Thus, in A there exist
m disjoint complete permutations {Ra, a ∈ Q} which define m disjoint transversals
{Ca, a ∈ Q}.

In [20, 22] the admissibility of n-quasigroups and their connection with orthog-
onality were considered. By analogue with n-quasigroups (see [21]) the following
definition of admissible n-operations was given.

Definition 5. An n-operation B given on a set Q is called admissible if for some k,
1 ≤ k ≤ n, on Q there exists an (n− 1)-operation A such that the (n− 1)-operation
C:

C(xn
1 )k = B(xk−1

1 , A(xn
1 )k, x

n
k+1)

is complete. In this case the (n − 1)-operation C is called a k-transversal of the
n-operation B, defined by the (n− 1)-operation A.

The n-tuples (xk−1
1 , A(xn

1 )k, x
n
k+1) are positions of elements of a k-transversal C.

The values C(xn
1 )k, when (n − 1)-tuples (xn

1 )k run through Qn−1, are the elements
of the k-transversal C.

Two k-transversals of an n-operation B defined by (n−1)-operations A1 and A2

are called disjoint if A1(x
n
1 )k 6= A2(x

n
1 )k for all (xn

1 )k ∈ Qn−1.

From Theorem 2 it follows
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Proposition 3. Let A,B be finite k-invertible n-operations given on a set Q of
order m, A ⊥ B. Then the (n − 1)-operations (k)Aa(x

n
1 )k = (k)A(xk−1

1 , a, xn
k+1),

a ∈ Q, define m pairwise disjoint k-transversals in B.

Proof. By Theorem 2 A ⊥ B if and only if the (n− 1)-operation

Ca(x
n
1 )k = B(xk−1

1 , (k)A(xk−1
1 , a, xn

k+1), x
n
k+1) = B(xk−1

1 , (k)Aa(x
n
1 )k, x

n
k+1)

is complete for any a ∈ Q. Thus, by Definition 5 the operations (k)Aa, a ∈ Q, define
m transversals Ca, a ∈ Q. It is evident that (k)Aa(x

n
1 )k 6= (k)Ab(x

n
1 )k, if a 6= b, since

A is a k-invertible n-operation. Moreover, in this case we have Ca(x
n
1 )k 6= Cb(x

n
1 )k

by virtue of k-invertibility of the n-operation B. �

Let A,B be two n-operations on a set Q. Recall that an n-operation B is called
isotopic to an n-operation A if there exists an (n+ 1)-tuple T = (α1, α2, . . . , αn, γ)
of permutations (bijections) of Q such that B(xn

1 ) = γ−1A(α1x1, α2x2, . . . , αnxn)
for all xn

1 ∈ Qn (shortly, B = AT )[10].

It is easy to prove that the following statement is valid.

Proposition 4. Any n-operation B which is isotopic to a complete finite or infinite
n-operation A is also complete.

Proof. Let A be a complete n-operation on a setQ, B = AT , T = (α1, α2, . . . , αn, γ),
then A = E1ϕ for some permutation ϕ = (C1, C2, . . . , Cn) (where the n-tuple
< C1, C2, . . . , Cn > of n-operations is orthogonal) and

B(xn
1 ) = γ−1A(α1x1, α2x2, . . . , αnxn) =

γ−1E1ϕ(α1x1, α2x2, . . . , αnxn) = γ−1E1(C1, C2, . . . , Cn)(α1x1, α2x2, . . . , αnxn) =

E1(γ
−1C1, C2, . . . , Cn)(xn

1 )

where C i(x
n
1 ) = Ci(α1x1, α2x2, . . . , αnxn). It is easy to see that the n-tuple

< γ−1C1, C2, . . . , Cn > is also orthogonal. Thus, B = E1ψ, where

ψ = (γ−1C1, C2, . . . , Cn). �

From Proposition 1 and Proposition 3 we obtain the following

Corollary 3. If a finite n-operation A has an orthogonal mate and B = AT , T =
(α1, α2, . . . , αn, γ), then B has an orthogonal mate too.
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4 Pairwise orthogonal n − T-quasigroups

Below we shall consider in more detail orthogonality of two n-ary T -quasigroups
(briefly, n−T -quasigroups) which are closely connected with finite or infinite abelian
groups and generalize the known binary T -quasigroups.

Definition 6 [18]. An n-quasigroup (Q,A) is called an n − T -quasigroup if there
exist a binary abelian group (Q,+), its automorphisms α1, α2, . . . , αn and an element
a ∈ Q such that

A(xn
1 ) = α1x1 + α2x2 + · · · + αnxn + a (1)

for all xn
1 ∈ Qn.

Let k ∈ 1, n, then the k-inverse n-operation (k)A for an n − T -quasigroup A of
(1) has the form

(k)A(xn
1 ) = α−1

k
(−α1x1−α2x2−· · ·−αk−1xk−1+xk−αk+1xk+1−· · ·−αnxn−a) (2)

and is also n − T -quasigroup, since the mapping I : Ix = −x is an automorphism
in an abelian group.

Proposition 5. Let (Q,A) and (Q,B) be two finite n−T -quasigroups over a group
(Q,+) of odd order,

A(xn
1 ) = α1x1 + α2x2 + · · · + αk−1xk−1 + xk + αk+1xk+1 + · · · + αnxn,

B(xn
1 ) = β1x1 + β2x2 + · · · + βk−1xk−1 + xk + βk+1xk+1 + · · · + βnxn,

where βi = 2αi for each i ∈ 1, n, i 6= k, then C = B ⊕
k

(k)A = A, B = A ⊕
k
A and

A ⊥ (A⊕
k
A), A ⊥(k) A, (k)(A⊕

k
A) ⊥(k) A.

Proof. In this case βi = 2αi is an automorphism for any i ∈ 1, n, i 6= k, since in a
group (Q,+) of odd order the mapping x→ 2x is a permutation. Find the form of
the n-operation C using (2): C(xn

1 ) = (B ⊕
k

(k)A)(xn
1 ) = B(xk−1

1 , (k)A(xn
1 ), xn

k+1) =

2α1x1 +2α2x2 + · · ·+2αk−1xk−1 −α1x1 −α2x2 −· · ·−αk−1xk−1 +xk −αk+1xk+1 −
· · · − αnxn + 2αk+1xk+1 + · · · + 2αnxn = α1x1 + α2x2 + · · · + αk−1xk−1 + xk +
· · · + αk+1xk+1 + · · · + αnxn = A(xn

1 ). Any (n − 1)-retract of C = A is a (n − 1)-
quasigroup, so is complete and A ⊥ B by Definition 4 (or by Theorem 2). Since
C = B⊕

k

(k)A = A, then B = A⊕
k
A. Orthogonality of the rest n-operations pointed

in the proposition follows from Corollary 2. �

The following useful criterion of orthogonality of two n−T -quasigroups is valid.

Theorem 3. Two n− T -quasigroups (Q,A) and (Q,B) where

A(xn
1 ) = α1x1 + α2x2 + · · · + αnxn + a,B(xn

1 ) = β1x1 + β2x2 + · · · + βnxn + b
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are orthogonal if and only if the (n− 1)-operation C:

C(xn
1 )k = γ1x1 + γ2x2 + · · · + γk−1xk−1 + γk+1xk+1 + · · · + γnxn (3)

is complete, where

γixi = βixi − βkα
−1
k αixi = (βi − βkα

−1
k αi)xi, i ∈ 1, n, i 6= k.

Proof. By Remark 1 and Definition 4 we need to prove that C is complete if
and only if the (n − 1)-retract Cc of C = B ⊕

k

(k)A defined by xk = c, for some

k ∈ 1, n and c ∈ Q, is complete. Using (2) we have C(xn
1 ) = (B ⊕

k

(k)A)(xn
1 ) =

B(xk−1
1 , (k)A(xn

1 ), xn
k+1) = β1x1 + β2x2 + · · · + βk−1xk−1 + βkα

−1
k

(−α1x1 − α2x2 −
· · · − αk−1xk−1 + xk − αk+1xk+1 − · · · − αnxn − a) + βk+1xk+1 + · · · + βnxn + b =
(β1 −βkα

−1
k α1)x1 +(β2 −βkα

−1
k α2)x2 + · · ·+(βk−1 −βkα

−1
k αk−1)xk−1 +βkα

−1
k xk +

(βk+1−βkα
−1
k αk+1)xk+1+ ..+(βn−βkα

−1
k αn)xn−βkα

−1
k a+b = C(xn

1 )k +βkα
−1
k xk−

βkα
−1
k a+ b (see (3)).
Let xk = c be an arbitrary element of Q, then we have

C(xk−1
1 , c, xn

k+1) = Cc(x
n
1 )k = C(xn

1 )k + d = RdC(xn
1 )k,

where d = βkα
−1
k c − βkα

−1
k a + b, Rdx = x + d. Thus, the (n − 1)-retract Cc(x

n
1 )k

of C, defined by xk = c, is isotopic to the (n − 1)-ary operation C: Cc = C
T
,

T = (ε, ε, . . . , ε, R−1
d ) (ε denotes the identity permutation on Q) and by Proposition

4 Cc is complete if and only if C is complete. �

Remark 3. Note that if the conditions of Theorem 3 hold for some k ∈ 1, n, then
they hold for any k ∈ 1, n (see Remark 1 for n-quasigroups).

Corollary 4. If in Theorem 3 γi0 = βi0 − βkα
−1
k αi0 is a permutation for some

i0 ∈ 1, n, i0 6= k, then A ⊥ B.

Proof. In this case the (n − 1)-operation C of (3) is i0-invertible, so it is
complete. �

From Theorem 3 and Corollary 4 a number of useful statements follow.

Corollary 5. Let in Theorem 3 αk = βk for some k ∈ 1, n. Then
(i) if βi0 − αi0 is a permutation for some i0 ∈ 1, n, i0 6= k, then A ⊥ B;
(ii) if (Q,+) is an (abelian) group of odd order and βi0 = 2αi0 for some i0 ∈ 1, n,

i 6= k, then A ⊥ B.

Proof. By αk = βk we have βkα
−1
k

= ε and γi = βi −αi for all i ∈ 1, n, i 6= k. In (i)
use Corollary 4. Item (ii) is a particular case of (i), since βi0 = 2αi0 is a permutation
(and so an automorphism) in a group of odd order. �
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Corollary 6. Let Σ = {At
1} be a set of n−T -quasigroups on a set Q over the same

group (Q,+):
Ai(x

n
1 ) = αi1x1 + αi2x2 + · · · + αinxn, i ∈ 1, t, (4)

where α1k = α2k = · · · = αtk for some k ∈ 1, n. If for all i, j ∈ 1, t, i 6= j there
exists one number s ∈ 1, n, s 6= k such that αis − αjs is a permutation, then the set
Σ is pairwise orthogonal.

Proof. In this case Ai ⊥ Aj for each i, j ∈ 1, t, i 6= j by virtue of item (i) of
Corollary 5 since αik = αjk for all i, j ∈ 1, t, i 6= j. �

Example 1. Let Σ = {Ap−1
1 } be a set of n − T -quasigroups over a group (Q,+)

(with the identity 0) of a prime order p, where n − T -quasigroups of (4) have the
form

A1(x
n
1 ) = a1x1 + a12x2 + · · · + a1,n−1xn−1 + axn,

A2(x
n
1 ) = a2x1 + a22x2 + · · · + a2,n−1xn−1 + axn,

. . .

Ap−1(x
n
1 ) = ap−1x1 + ap−1,2x2 + · · · + ap−1,n−1xn−1 + axn,

αi1x = aix, ai 6= aj , if i 6= j, i, j ∈ 1, p− 1, αikx = aikx, if k 6= 1 and k 6= n,ain = a,

i ∈ 1, p− 1, a, ai, aik ∈ Q \ 0 for all i ∈ 1, p− 1.
By Corollary 6 the set Σ is pairwise orthogonal by s = 1 since ai1 − aj1 =

ai − aj 6= 0, so the mapping x → (ai − aj)x is a permutation by i 6= j and by
α1nx = α2nx = · · · = αp−1,nx = ax (here k = n).

Further we shall establish some conditions for orthogonality of an n − T -
quasigroup to some its parastrophes, using Theorem 3. Parastrophe-orthogonality of
binary quasigroups and minimal identities connected with such orthogonality were
in detail studied by V.D.Belousov in [4].

At first we recall that an automorphism α of a group (Q,+) is called complete
if the mapping x → x + αx is a permutation of Q, that is if α is a complete per-
mutation [5].

Proposition 6. If an n−T -quasigroup (Q,A), A(xn
1 ) = α1x1+α2x2+· · ·+αnxn+a

where αl is a complete automorphism of the group (Q,+) for some l ∈ 1, n, then
A ⊥ (l)A.

Proof. Using expression (2) for (l)A and taking in Theorem 3 k 6= l, B = (l)A we
obtain βl = α−1

l and βk = −α−1
l αk. Then γl = βl−βkα

−1
k αl = α−1

l +α−1
l αkα

−1
k αl =

α−1
l (ε+ αl) is a permutation and so A ⊥ (l)A by Corollary 4. �

Corollary 7. An n−T -quasigroup (Q,A) over a group (Q,+) with A(xn
1 ) = αx1 +

αx2 + · · · + αxn + a, where α is a complete automorphism of (Q,+), is orthogonal
to (l)A for each l ∈ 1, n. Moreover, if, in addition, n ≥ 3, then the set Σ =
{A, (1)A, . . . , (n)A} is pairwise orthogonal.
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Proof. The first statement follows immediately from Proposition 6. Prove that
(i)A ⊥ (j)A for each i, j ∈ 1, n, i 6= j. By (2) we have

(i)A(xn
1 ) = α−1(−αx1 − αx2 − · · · − αxi−1 + xi − αxi+1 − · · · − αxn − a) =

−x1 − x2 − · · · − xi−1 + α−1xi − xi+1 − · · · − xn − α−1a =

Ix1 + Ix2 + · · · + Ixi−1 + α−1xi + Ixi+1 + · · · + Ixn + b =

α1x1 + α2x2 + · · · + αnxn + b, b = −α−1a,

(j)A(xn
1 ) = Ix1 + Ix2 + · · · + Ixj−1 + α−1xj + Ixj+1 + · · · + Ixn + b =

β1x1 + β2x2 + · · · + βnxn + b.

Since i 6= j and n ≥ 3 then there exists k ∈ 1, n such that αk = βk (k 6= i, j). In
this case we have α−1xj − (Ixj) = (α−1 + ε)xj , so the map βj − αj = α−1 + ε is
a permutation since α is a complete automorphism. By item (i) of Corollary 5 (if
i0 = j)) (i)A ⊥ (j)A. Taking into account that A ⊥ (l)A for any l ∈ 1, n, we obtain
that Σ is a pairwise orthogonal set. �

From Corollary 7, in particular, it follows that if A is an n − T -quasigroup
(n ≥ 3) (Q,A): A(xn

1 ) = x1 + x2 + · · · + xn + a over a group of odd order, then
Σ = {A, (1)A, . . . , (n)A} is pairwise orthogonal set, since the identity automorphism
ε in such group is complete.

A direct corollary of Theorem 3 for an n− T -quasigroup which is orthogonal to
some its principal σ-parastrophe is the following

Proposition 7. Let (Q,A) be an n− T -quasigroup over a group (Q,+): A(xn
1 ) =

α1x1 + α2x2 + · · · + αnxn + a, σ(n + 1) = n + 1. Then A ⊥ σA if and only if for
some k ∈ 1, n the (n− 1)-operation C:

C(xn
1 )k = (ασ1−ασkα

−1
k α1)x1+(ασ2−ασkα

−1
k α2)x2+· · ·+(ασ(k−1)−ασkα

−1
k αk−1)xk−1+

(ασ(k+1) − ασkα
−1
k αk+1)xk+1 + · · · + (ασn − ασkα

−1
k αn)xn

is complete.

Proof. By the definition of a principal parastrophe σA (σ(n+ 1) = n+ 1) of A

σA(xn
1 ) = A(xσ−1n

σ−11 ) = α1xσ−11 + α2xσ−12 + · · · + αnxσ−1n + a =

β1x1 + β2x2 + · · · + βnxn + a,

where βixi = ασixi, i ∈ 1, n. Further use Theorem 3 with γi = βi − βkα
−1
k
αi =

ασi − ασkα
−1
k αi. �

Corollary 8. If (Q,A) is an n − T -quasigroup, n ≥ 3 , A(xn
1 ) = α1x1 + α2x2 +

· · · + αnxn + a, σ(n + 1) = n + 1, σk = k for some k ∈ 1, n and ασi0 − αi0 is a
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permutation for some i0 ∈ 1, n, i0 6= k, then A ⊥ σA. If, in addition, (Q,+) has
odd order and ασi0 = 2αi0 , then A ⊥ σA.

Proof. We have σA(xn
1 ) = β1x1 + β2x2 + · · ·+ βk−1xk−1 +αkxk + βk+1xk+1 + · · ·+

βnxn + a, where βi = ασi, so βk = αk, as σk = k and we can use items (i) and (ii)
of Corollary 5, respectively. �

Note that for n = 2 we have σ = ε (that is σA = A) by the conditions of this
corollary (if σ3 = 3, σ1 = 1, then σ = (1, σ2, 3) ⇒ σ2 = 2).

Example 2. Let (Q,A) be an n− T -quasigroup, n ≥ 3, over a group of odd order
with A(xn

1 ) = α1x1 + 2α1x2 + · · · + αnxn + a, i0 = 1, σ(n+ 1) = n+ 1, σ1 = 2 and
σk = k for some k ∈ 1, n, k 6= 1. Then ασ1 − α1 = α2 − α1 = 2α1 − α1 = α1. By
Corollary 8 A ⊥ σA for any αi 6= 0, i ∈ 1, n, i 6= 2.

Corollary 9. If (Q,A) is an n − T -quasigroup , n ≥ 3, over a group of a prime
order, A(xn

1 ) = a1x1+a2x2+· · ·+anxn+a, ai 6= 0, ai 6= aj, if i 6= j, σ(n+1) = n+1,
σk = k for some k ∈ 1, n and σi0 6= i0 for some i0 6= k, then A ⊥ σA.

Proof. In a group of a prime order all mappings x → ax, where a 6= 0 are auto-
morphisms. If σi0 6= i0, then the mapping x → (aσi0 − ai0)x is a permutation (an
automorphism), so by Corollary 8 A ⊥ σA. �

Example 3. Let (Q,+) = (Zp,+) be a group of a prime order p ≥ 7, Q =
{0, 1, 2, . . . , p−1}, A(x5

1) = 3x1+5x2+4x3+2x4+x5 and σ = (2, 3), then σ3 = 2 6= 3,
σ4 = 4 (k = 4, i0 = 3), σA(x5

1) = A(xσ−15
σ−11) = 3x1 + 5x3 + 4x2 + 2x4 + x5 =

3x1 + 4x2 + 5x3 + 2x4 + x5. By Corollary 9 A ⊥ σA.
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