Pairwise orthogonality of n-ary operations

G. Belyavskaya

Abstract. The notions of hypercube and of the orthogonality of two hypercubes were arisen in combinatorial analysis. In [11] a connection between n-dimensional hypercubes and algebraic n-ary operations was established. In this article we use an algebraic approach to the study of orthogonality of two hypercubes (pairwise orthogonality). We give a criterion of orthogonality of two finite k-invertible n-ary operations, which is used by the research of orthogonality and parastrophe-orthogonality of two n-ary T-quasigroups. Some examples are given and connection between admissibility and pairwise orthogonality of n-ary operations is established.

Mathematics subject classification: 20N05, 20N15.

Keywords and phrases: Hypercube, orthogonal hypercubes, n-ary operation, n-ary quasigroup, n-ary T-quasigroup, parastrophe, transversal, orthogonal n-ary operations.

1 Introduction

It is known that two binary operations A and B, given on a set Q, are called orthogonal if the system of equations \(\{A(x, y) = a, B(x, y) = b\} \) has exactly one solution for any $a, b \in Q$ (see [1], where such operations are called compatible). Orthogonal binary operations, in particular, orthogonal quasigroups were considered in different works (see, for example, [1–7]).

In [6] H.B. Mann proved that if A, B, C are quasigroups, given on a set Q and satisfying the equality

\[
C(x, B(x, y)) = A(x, y)
\]

for all $x, y \in Q$, then the quasigroups A and B are orthogonal.

V.D. Belousov in [3, Lemma 2] gave the following criterion of orthogonality of two binary quasigroups. Let A, B be binary quasigroups on a set Q. Then A and B are orthogonal if and only if the operation $A \cdot B^{-1}$ is a quasigroup, where $(A \cdot B^{-1})(x, y) = A(x, B^{-1}(x, y))$ and B^{-1} is the right inverse quasigroup for B $(B^{-1}(x, z) = y$ if and only if $B(x, y) = z)$.

In the case of n-ary operations there exist distinct versions of orthogonality (they are reflected in [11]) which correspond to different types of orthogonality of n-dimensional hypercubes.

© G. Belyavskaya, 2005

Acknowledgment: The research described in this article was made possible in part by Award No. MM1-3040-CH-02 of the Moldovan Research and Development Association (MRDA) and the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF).
In this article we consider the weakest (for \(n > 2 \)) case of orthogonality of \(n \)-ary operations, namely, pairwise orthogonality (see Definition 1). At first orthogonality of two finite \(k \)-invertible \(n \)-ary operations (pairwise orthogonality) is considered. Then, using the obtained criterion of orthogonality of finite \(n \)-ary operations, we give a definition of pairwise orthogonality for arbitrary \(k \)-invertible \(n \)-operations, in particular, for finite or infinite \(n \)-quasigroups. A connection between admissibility and pairwise orthogonality of \(k \)-invertible \(n \)-ary operations is established. In the last part of the article pairwise orthogonality of \(n \)-ary \(T \)-quasigroups (\(n-T \)-quasigroups), in particular, \(n-T \)-quasigroups which are orthogonal to some their parastrophes are studied. Some examples of such quasigroups are given.

2 Necessary notions and results

We recall some notations, concepts and results which are used in the article. At first remember the following designations and notes from [10]. By \(x^i_1 \) we will denote the sequence \(x_1, x_{i+1}, \ldots, x_j, i \leq j \). If \(j < i \), then \(x^i_1 \) is the empty sequence, \(\overline{1,n} = \{1,2,\ldots,n\} \). Let \(Q \) be a finite or an infinite set, \(n \geq 1 \) be a positive integer and let \(Q^n \) denote the Cartesian power of the set \(Q \).

A \(n \)-ary operation \(A \) (briefly, an \(n \)-operation) on a set \(Q \) is a mapping \(A : Q^n \rightarrow Q \) defined by \(A(x^i_1) = x_{n+1} \), and in this case we write \(A(x^i_1) = x_{n+1} \).

A finite \(n \)-groupoid \((Q,A)\) of order \(m \) is a set \(Q \) with one \(n \)-ary operation \(A \) defined on \(Q \), where \(|Q| = m \).

A \(n \)-ary quasigroup is an \(n \)-groupoid such that in the equality

\[
A(x^i_1) = x_{n+1}
\]

each of \(n \) elements from \(x^{n+1}_1 \) uniquely defines the \((n+1)\)-th element. Usually itself quasigroup \(n \)-operation \(A \) is considered as a \(n \)-quasigroup.

The \(n \)-operation \(E_i, 1 \leq i \leq n \), on \(Q \) with \(E_i(x^i_1) = x_i \) is called the \(i \)-th identity operation (or the \(i \)-th selector) of arity \(n \).

An \(n \)-ary operation \(A \) on \(Q \) is called \(i \)-invertible for some \(i \in \overline{1,n} \) if the equation

\[
A(a^i_1, x_i, a^n_{i+1}) = a_{n+1}
\]

has a unique solution for each fixed \(n \)-tuple \((a^{i-1}_1, a^i_{i+1}, a_{n+1}) \in Q^n \).

For an \(i \)-invertible \(n \)-operation there exists the \(i \)-inverse \(n \)-operation \((^i)A\) defined in the following way:

\[
(^i)A(x^i_1, x_{n+1}, x^{n+1}_{i+1}) = x_i \Leftrightarrow A(x^i_1) = x_{n+1}
\]

for all \(x^{n+1}_1 \in Q^{n+1} \).

It is evident that

\[
A(x^i_1, (^i)A(x^i_1), x^{n+1}_{i+1}) = (^i)A(x^{i-1}_1, A(x^i_1), x^{n+1}_{i+1}) = x_i
\]

and \((^i)[(^i)A] = A\) for \(i \in \overline{1,n} \).
Let Ω_n be the set of all n-ary operations on a finite or an infinite set Q. On Ω_n define a binary operation \oplus_i (the i-multiplication) in the following way:

$$(A \oplus_i B)(x^n) = A(x^{i-1}_1, B(x^n_i), x^n_{i+1}),$$

$A, B \in \Omega_n, x^n_i \in Q^n$. Shortly this equality can be written as

$$A \oplus_i B = A(E^i_1, B, E^n_{i+1})$$

where E_i is the i-th selector.

In [9] it was proved that $(\Omega_n; \oplus)$ is a semigroup with the identity E_i. If Λ_i is the set of all i-invertible n-operations from Ω_n for some $i \in \overline{1,n}$, then $(\Lambda_i; \oplus)$ is a group.

In this group E_i is the identity, the inverse element of A is the operation $\bigl(i\bigr) A$ for each $i \in \overline{1,n}$.

A n-ary quasigroup (Q, A) (or simply A), is an n-groupoid with an i-invertible n-operation for each $i \in \overline{1,n}$ [10].

Let A be an n-quasigroup and $\sigma \in S_{n+1}$, then the n-quasigroup σA defined by

$$\sigma A(x^n_{\sigma 1}) = x_{\sigma(n+1)} \Leftrightarrow A(x^n_1) = x_{n+1}$$

is called the σ-parastrophe (or simple, parastrophe) of A [10].

For any n-operation A there exist the σ-parastrophes of A, where $\sigma(n+1) = n + 1$ (the principal parastrophes). The i-inverse operation $\bigl(i\bigr) A$ for $A, i \in \overline{1,n}$, is the σ-parastrophe defined by the cycle $(i, n+1)$.

Let $(x^n_1)_k$ denote the $(n-1)$-tuple $(x^n_{k-1}, x^n_{k+1}) \in Q^{n-1}$ and let A be an n-operation, then the $(n-1)$-operation A_a:

$$A_a(x^n_1)_k = A(x^n_{k-1}, a, x^n_{k+1})$$

is called the $(n-1)$-retract of A, defined by position $k, k \in \overline{1,n}$, with the element a in this position (with $x_k = a$) [10].

An n-ary operation A on Q is called complete if there exists a permutation σ on Q^n such that $A = E_1 \sigma$ (that is $A(x^n_1) = E^n_1 \sigma(x^n_1))$. If a complete n-operation A is finite and has order m, then the equation $A(x^n_1) = a$ has exactly m^{n-1} solutions for any $a \in Q$ [9].

Any i-invertible n-operation $A, i \in \overline{1,n}$, is complete, but there exist complete n-operations, which are not i-invertible for each $i \in \overline{1,n}$ [9].

3 Orthogonality of two n-ary operations

In the case of n-ary operations for $n > 2$ it is possible to consider different versions of orthogonality. The weakest is the notion of the pairwise orthogonality.
Definition 1 [11]. Two n-ary operations ($n \geq 2$) A and B given on a set Q of order m are called orthogonal (shortly, $A \perp B$) if the system \{\(A(x^n_i) = a, B(x^n_i) = b\)\} has exactly m^{n-2} solutions for any $a, b \in Q$.

This concept corresponds to two orthogonal n-dimensional hypercubes [11, 13]. The following type of orthogonality is strongest.

Definition 2 [8]. An n-tuple $<A_1, A_2, \ldots, A_n>$ of n-operations on a set Q is called orthogonal if the system \{\(A_i(x^n_i) = a_i\)\} has a unique solution for any $a^n_i \in Q^n$. A set $\Sigma = \{A^t_i\}, t \geq n,$ of n-operations is called orthogonal if any n-tuple of distinct n-operations from Σ is orthogonal.

This concept corresponds to an orthogonal n-tuple of n-dimensional hypercubes [11–13]. Orthogonal n-operations and their sets in the sense of Definition 2 were considered in many articles (see, for example, [8, 11–17, 19, 20, 22]).

In [11] intermediate types of orthogonality of n-operations and their sets were studied.

Definition 3 [11]. A k-tuple $<A^k_1>$, $2 \leq k \leq n$, of distinct n-operations on a set Q of order m is called orthogonal if the system \{\(A_i(x^n_i) = a_i\)\} has exactly m^{n-k} solutions for any $a^n_i \in Q^k$. A set $\Sigma = \{A^t_i\}, t \geq k,$ of n-operations is called k-wise orthogonal if any k-tuple of distinct n-operations from Σ is orthogonal.

The following connection exists between different considered types of orthogonality.

Theorem 1 [11]. If a set $\Sigma = \{A^t_i\}, t \geq k,$ of finite n-operations is k-wise orthogonal, then Σ is l-wise orthogonal for any $l, 2 \leq l \leq k$.

Thus, every pair of different n-ary operations from an orthogonal n-tuple is orthogonal.

Let A_1, A_2, \ldots, A_n be n-operations given on a set Q. In [14] it is proved that a n-tuple $<A^t_i>$ of n-operations is orthogonal if and only if the mapping $\bar{\theta} : x^n_1 \rightarrow (A_1(x^n_1), A_2(x^n_1), \ldots, A_n(x^n_1)) = (A_1, A_2, \ldots, A_n)(x^n_1)$ is a permutation on Q^n.

In [1] V.D. Belousov proved that a binary operation A has an operation which is orthogonal to A (an orthogonal mate) if and only if A is a complete operation. This is valid and for finite n-operations.

Proposition 1. A finite n-operation A has an orthogonal mate if and only if A is complete.

Proof. By Proposition 5 of [11] A is a complete n-operation if and only if it is a component of some permutation $\bar{\mathcal{F}} = (A, B^n_1)$ on Q^n, where $<A, B^n_1>$ is an orthogonal n-tuple. By Theorem 1 $A \perp B_i$ for any $i \in \Gamma, n-1$.
Conversely, if B is an orthogonal mate for A, that is $A \perp B$, then by Corollary 4 of [11] the pair A,B can be embedded in an orthogonal n-tuple of n-operations and by Proposition 5 of [11] A is a complete n-operation. \hfill \square

Now we shall consider orthogonality of k-invertible n-operations for some fixed $k, 1 \leq k \leq n$. For them the following criterion is valid.

Theorem 2. Let k be a fixed number from $\overline{1,n}$. Two finite k-invertible n-operations A and B on a set Q are orthogonal if and only if the $(n-1)$-retract C_a of the n-operation $C = B \oplus \langle k \rangle A$, defined by $x_k = a$, is complete for every $a \in Q$.

Proof. We shall prove this statement when $k = n$ for the sake of simplicity. For the rest $k \in \overline{1,n-1}$ the proof is similar.

Let a be an arbitrary element of Q, $|Q| = m$ and the $(n-1)$-retract C_a by $x_n = a$ of n-operation $C = B \oplus \langle n \rangle A$ is complete for any $a \in Q$. Then the equation

\[
C_a(x_1^{n-1}) = C(x_1^{n-1}, a) = (B \oplus \langle n \rangle A)(x_1^{n-1}, a) = B(x_1^{n-1}, (n)A(x_1^{n-1}, a)) = b
\]

has $m^{(n-1)-1}$ solutions for any $a,b \in Q$. From the last equation we have

\[
(B(x_1^{n-1}, b) = (n)A(x_1^{n-1}, a) = z,
\]

whence it follows that the system \{\(A(x_1^{n-1}, z) = a, B(x_1^{n-1}, z) = b\)\} has m^{n-2} solutions. Thus, $A \perp B$.

Conversely, let $A \perp B$, that is the system \{\(A(x_1^n) = a, B(x_1^n) = b\)\} has m^{n-2} solutions for any $a,b \in Q$. From the first equality we have $x_n = (n)A(x_1^{n-1}, a)$ and then the equation $B(x_1^{n-1}, (n)A(x_1^{n-1}, a)) = b$ or $C_a(x_1^{n-1}) = (B \oplus \langle n \rangle A)(x_1^{n-1}, a) = b$ has m^{n-2} solutions for any $a,b \in Q$. Therefore, the $(n-1)$-retract of $B \oplus \langle n \rangle A$, defined by any $a \in Q$, is complete. \hfill \square

For the binary case from Theorem 2 we have the following

Corollary 1. Two finite invertible from the right (that is 2-invertible) binary operations A,B on Q are orthogonal if and only if the operation $C(x,y) = (A \cdot B^{-1})(x,y) = A(x,B^{-1}(x,y))$ is a quasigroup.

Proof. The operation $C = B \cdot A^{-1}(= B \oplus \langle 2 \rangle A)$ is always invertible from the right.

If the operation $C_a x = C(x,a)$ is complete for any $a \in Q$, that is the equation \(C(x,a) = b\) has exactly $m^{2-2} = 1$ solutions for any $a,b \in Q$, then the operation C is invertible from the left (that is 1-invertible). Thus, C is a quasigroup.

Conversely, if C is a quasigroup, then any its (unary) retract is complete (that is a permutation). \hfill \square

From this corollary the criterion of V.D.Belousov [3, Lemma 2] for finite binary quasigroups follows.

Proposition 2. If A and B are k-invertible n-operations on a set Q for some $k \in \overline{1,n}$, then the following equalities are equivalent: $C = B \oplus \langle k \rangle A$, $C \oplus A = B$, $C = B \oplus \langle k \rangle A$, $C \oplus A = B$, $C = B \oplus \langle k \rangle A$, $C \oplus A = B$, $C = B \oplus \langle k \rangle A$, $C \oplus A = B$, $C = B \oplus \langle k \rangle A$, $C \oplus A = B$, $C = B \oplus \langle k \rangle A$, $C \oplus A = B
\[A = (k) C \oplus B, \quad C \oplus A \oplus (k) B = E_k, \quad (k) A \oplus (k) C \oplus B = E_k, \quad A \oplus (k) B \oplus C = E_k, \]
\[(k) C \oplus B \oplus (k) A = E_k. \]

Proof. It is easy to see taking into account that all \(k \)-invertible \(n \)-operations on \(Q \) form a group with the identity \(E_k \) with the respect to the \(k \)-multiplication of \(n \)-operations.

Remark 1. If \(A \) and \(B \) are \(n \)-quasigroups, then they are \(k \)-invertible for any \(k \in \mathbb{N} \), so \(A \perp B \) if and only if for some \(k \in \mathbb{N} \), the \((n-1)\)-retract \(C_a \) of \(C = B \oplus (k) A \), defined by \(x_k = a \), is complete for any \(a \in Q \). If that holds for some fixed \(k \in \mathbb{N} \), then the \((n-1)\)-retract of \(C_1 = B \oplus (l) A \), defined by \(x_l = a \), is also complete for any \(l \in \mathbb{N} \) and any \(a \in Q \).

From Proposition 2 and Theorem 2 we have the following

Corollary 2. If \(A \) and \(B \) are finite \(n \)-quasigroups on \(Q \), \(C = B \oplus (k) A \) and \(A \perp B \), then \(C \perp (k) A \), \((k) C \perp (k) B \) for any \(k \in \mathbb{N} \).

Proof. \(C \perp (k) A \) \((k) C \perp (k) B \) follows from the second (from the third) equality of Proposition 2 and Theorem 2, since \(A \) and \(B \) are \(n \)-quasigroups and so any \((n-1)\)-retract of \(B \) \((A) \) is an \((n-1)\)-quasigroup which is always complete. Further use Remark 1.

Using the criterion of orthogonality of two finite \(n \)-operations from Theorem 2 we can define a pairwise orthogonality of arbitrary \(k \)-invertible \(n \)-operations (finite or infinite).

Definition 4. Two \(k \)-invertible \(n \)-operations \(A \) and \(B \), given on an arbitrary set \(Q \), are called orthogonal if the \((n-1)\)-retract of the \(n \)-operation \(B \oplus (k) A \), defined by \(x_k = a \), is complete for each \(a \in Q \).

As it was noted above, an \(n \)-operation \(A \) on \(Q \) is called complete if there exists a permutation (a bijection) \(\varphi \) on \(Q^n \) such that \(A = E_1 \varphi \). In the case of Definition 4 each \((n-1)\)-retract

\[C_a(x^n_1) = C(x^{n-1}_1, a, x^n_{k+1}) = B(x^{n-1}_1, (k) A(x^{n-1}_1, a, x^n_{k+1}), x^n_{k+1}) \]

is complete, that is \(C_a = E_1 \varphi \) for some permutation \(\varphi \) of \(Q^{n-1} \).

Remark 2. Note that for binary case \((n=2)\) Definition 4 is equivalent to the usual definition of orthogonality of two 1- or 2-invertible operations.

Indeed, let \(A, B \) be 2-invertible binary operations on a set \(Q \) and \(A \perp B \), that is the system \(\{ A(x, y) = a, B(x, y) = b \} \) has a unique solution for any \(a, b \in Q \). Then \(A^{-1}(x, a) = y \) and the equation \(B(x, A^{-1}(x, a)) = b \) has a unique solution \(x \) for any
a, b ∈ Q, that is \(C_a(x) = B(x, R_a x) = E \varphi_a x = \varphi_a x \) where \(R_a x = A^{-1}(x, a) \), \(E \) is the selector in the 1-ary case \((E x = x x = x) \) and so \(\varphi_a \) is a bijection \(Q \) on \(Q \). Thus, \(C_a = \varphi_a \) is a complete 1-ary (unary) operation for any \(a \in Q \).

Conversely, if \(C_a = \varphi_a \) is a bijection for any \(a \in Q \), then the equation \(B(x, A^{-1}(x, a)) = b \) has a unique solution for any \(a, b \in Q \) and the system \(\{ A(x, y) = a, B(x, y) = b \} \) has a unique solution.

For 1-invertible binary operations the proof is similar.

Now we consider a connection between orthogonality of two \(n \)-operations and their admissibility.

It is known that a binary quasigroup \((Q, \cdot) \) is called admissible if it has a complete permutation (a bijection) (or a transversal).

A permutation \(\theta \) on \(Q \) is called complete for a quasigroup \((Q, \cdot) \) if the mapping \(\theta': \theta' x = x \cdot \theta x \) is a permutation on \(Q \). All elements \(\theta' x, x \in Q \), are different and form a transversal which is defined by the permutation \(\theta \) [5].

A binary quasigroup of order \(m \) has an orthogonal mate if and only if it has \(m \) disjoint transversals \(\theta'_1, \theta'_2, \ldots, \theta'_m \) (or \(m \) disjoint complete permutations \(\theta_1, \theta_2, \ldots, \theta_m \), that is \(\theta'_i x \neq \theta'_j x, i \neq j \), for any \(x \in Q \) [5].

Using the criterion of Corollary 4 of orthogonality of binary 2-invertible (or 1-invertible) operations \(A \) and \(B \) on \(Q \) of order \(m \), it is easy to find in this case \(m \) disjoint transversals.

Indeed, if \(A \perp B \), then the operation \(A \cdot B^{-1} ((A \cdot B^{-1})(x, y) = A(x, B^{-1}(x, y))) \) is a quasigroup. By \(y = a \) we have \(A(x, B^{-1}(x, a)) = A(x, R_a x) = C_a x \) and \(C_a \) is a permutation where \(R_a : R_a x = B^{-1}(x, a) \) is also permutation. Thus, in \(A \) there exist \(m \) disjoint complete permutations \(\{ R_a, a \in Q \} \) which define \(m \) disjoint transversals \(\{ C_a, a \in Q \} \).

In [20, 22] the admissibility of \(n \)-quasigroups and their connection with orthogonality were considered. By analogue with \(n \)-quasigroups (see [21]) the following definition of admissible \(n \)-operations was given.

Definition 5. An \(n \)-operation \(B \) given on a set \(Q \) is called admissible if for some \(k \), \(1 \leq k \leq n \), on \(Q \) there exists an \((n - 1)\)-operation \(A \) such that the \((n - 1)\)-operation \(C \):

\[
C(x_1^n)_k = B(x_1^{k-1}, A(x_1^n)_k, x_{k+1}^n)
\]

is complete. In this case the \((n - 1)\)-operation \(C \) is called a \(k \)-transversal of the \(n \)-operation \(B \), defined by the \((n - 1)\)-operation \(A \).

The \(n \)-tuples \((x_1^{k-1}, A(x_1^n)_k, x_{k+1}^n)\) are positions of elements of a \(k \)-transversal \(C \). The values \(C(x_1^n)_k \), when \((n - 1)\)-tuples \((x_1^n)_k \) run through \(Q^{n-1} \), are the elements of the \(k \)-transversal \(C \).

Two \(k \)-transversals of an \(n \)-operation \(B \) defined by \((n - 1)\)-operations \(A_1 \) and \(A_2 \) are called disjoint if \(A_1(x_1^n)_k \neq A_2(x_1^n)_k \) for all \((x_1^n)_k \in Q^{n-1} \).

From Theorem 2 it follows
Proposition 3. Let A, B be finite k-invertible n-operations given on a set Q of order m, $A \perp B$. Then the $(n-1)$-operations $(k)A_a(x_1^n) = (k)A(x_1^{k-1}, a, x_n^{k+1}), a \in Q$, define m pairwise disjoint k-transversals in B.

Proof. By Theorem 2 $A \perp B$ if and only if the $(n-1)$-operation

$$C_a(x_1^n)_k = B(x_1^{k-1}, (k)A(x_1^{k-1}, a, x_n^{k+1}), x_n^{k+1}) = B(x_1^{k-1}, (k)A_a(x_1^n)_k, x_n^{k+1})$$

is complete for any $a \in Q$. Thus, by Definition 5 the operations $(k)A_a, a \in Q$, define m transversals $C_a, a \in Q$. It is evident that $(k)A_a(x_1^n)_k \neq (k)A_b(x_1^n)_k$, if $a \neq b$, since A is a k-invertible n-operation. Moreover, in this case we have $C_a(x_1^n)_k \neq C_b(x_1^n)_k$ by virtue of k-invertibility of the n-operation B.

Let A, B be two n-operations on a set Q. Recall that an n-operation B is called isotopic to an n-operation A if there exists an $(n+1)$-tuple $T = (\alpha_1, \alpha_2, \ldots, \alpha_n, \gamma)$ of permutations (bijects) of Q such that $B(x_1^n) = \gamma^{-1}A(\alpha_1, x_1, \alpha_2x_2, \ldots, \alpha_n x_n)$ for all $x_1^n \in Q^n$ (shortly, $B = A^T[10]$).

It is easy to prove that the following statement is valid.

Proposition 4. Any n-operation B which is isotopic to a complete finite or infinite n-operation A is also complete.

Proof. Let A be a complete n-operation on a set Q, $B = A^T, T = (\alpha_1, \alpha_2, \ldots, \alpha_n, \gamma)$, then $A = E_1:\psi$ for some permutation $\psi = (C_1, C_2, \ldots, C_n)$ (where the n-tuple $< C_1, C_2, \ldots, C_n >$ of n-operations is orthogonal) and

$$B(x_1^n) = \gamma^{-1}A(\alpha_1, \alpha_2x_2, \ldots, \alpha_n x_n) =$$

$$\gamma^{-1}E_1\psi(\alpha_1, \alpha_2x_2, \ldots, \alpha_n x_n) = \gamma^{-1}E_1(C_1, C_2, \ldots, C_n)(\alpha_1, \alpha_2x_2, \ldots, \alpha_n x_n) =$$

$$E_1(\gamma^{-1}\bar{C}_1, \bar{C}_2, \ldots, \bar{C}_n)(x_1^n)$$

where $\bar{C}_i(x_1^n) = C_i(\alpha_1, \alpha_2x_2, \ldots, \alpha_n x_n)$. It is easy to see that the n-tuple $< \gamma^{-1}\bar{C}_1, \bar{C}_2, \ldots, \bar{C}_n >$ is also orthogonal. Thus, $B = E_1:\bar{\psi}$, where

$$\bar{\psi} = (\gamma^{-1}\bar{C}_1, \bar{C}_2, \ldots, \bar{C}_n).$$

From Proposition 1 and Proposition 3 we obtain the following

Corollary 3. If a finite n-operation A has an orthogonal mate and $B = A^T, T = (\alpha_1, \alpha_2, \ldots, \alpha_n, \gamma)$, then B has an orthogonal mate too.
4 Pairwise orthogonal n – T-quasigroups

Below we shall consider in more detail orthogonality of two \(n \)-ary \(T \)-quasigroups (briefly, \(n - T \)-quasigroups) which are closely connected with finite or infinite abelian groups and generalize the known binary \(T \)-quasigroups.

Definition 6 [18]. An \(n \)-quasigroup \((Q, A) \) is called an \(n - T \)-quasigroup if there exist a binary abelian group \((Q, +) \), its automorphisms \(\alpha_1, \alpha_2, \ldots, \alpha_n \) and an element \(a \in Q \) such that

\[
A(x^n_1) = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n + a
\]

for all \(x^n_1 \in Q^n \).

Let \(k \in \mathbb{I}, n \), then the \(k \)-inverse \(n \)-operation \((k) A \) for an \(n - T \)-quasigroup \(A \) of (1) has the form

\[
(k) A(x^n_i) = \alpha_k^{-1} (-\alpha_1 x_1 - \alpha_2 x_2 - \cdots - \alpha_{k-1} x_{k-1} + x_k - \alpha_{k+1} x_{k+1} - \cdots - \alpha_n x_n - a)
\]

and is also \(n - T \)-quasigroup, since the mapping \(I : Ix = -x \) is an automorphism in an abelian group.

Proposition 5. Let \((Q, A) \) and \((Q, B) \) be two finite \(n - T \)-quasigroups over a group \((Q, +) \) of odd order, \(A(x^n_1) = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k + \alpha_{k+1} x_{k+1} + \cdots + \alpha_n x_n, \\ B(x^n_1) = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \beta_{k+1} x_{k+1} + \cdots + \beta_n x_n, \)

where \(\beta_i = 2\alpha_i \) for each \(i \in \mathbb{I}, n \), \(i \neq k \), then \(C = B \oplus (k) A = A, B = A \oplus A \) and \(A \perp (A \oplus A), A \perp (k) A, (k) (A \oplus A) \perp (k) A \).

Proof. In this case \(\beta_i = 2\alpha_i \) is an automorphism for any \(i \in \mathbb{I}, n \), \(i \neq k \), since in a group \((Q, +) \) of odd order the mapping \(x \rightarrow 2x \) is a permutation. Find the form of the \(n \)-operation \(C \) using (2): \(C(x^n_1) = (B \oplus (k) A)(x^n_1) = B(x^{k-1}_1 \oplus (k) A(x^n_1), x^n_{k+1} = 2\alpha_1 x_1 + 2\alpha_2 x_2 + \cdots + 2\alpha_k x_k - \alpha_1 x_1 - \alpha_2 x_2 - \cdots - \alpha_{k-1} x_k - x_k - \alpha_{k+1} x_{k+1} - \cdots - \alpha_n x_n + 2\alpha_{k+1} x_{k+1} + \cdots + 2\alpha_n x_n = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_{k-1} x_{k-1} + x_k + \cdots + \alpha_{k+1} x_{k+1} + \cdots + \alpha_n x_n = A(x^n_k) \). Any \((n - 1) \)-retract of \(C = A \) is a \((n - 1) \)-quasigroup, so is complete and \(A \perp B \) by Definition 4 (or by Theorem 2). Since \(C = B \oplus (k) A = A \), then \(B = A \oplus A \). Orthogonality of the rest \(n \)-operations pointed in the proposition follows from Corollary 2.

The following useful criterion of orthogonality of two \(n - T \)-quasigroups is valid.

Theorem 3. Two \(n - T \)-quasigroups \((Q, A) \) and \((Q, B) \) where

\[
A(x^n_1) = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n + a, B(x^n_1) = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n + b
\]
are orthogonal if and only if the \((n-1)\)-operation \(\overline{C}\):
\[
\overline{C}(x^n_i)_k = \gamma_1 x_1 + \gamma_2 x_2 + \cdots + \gamma_{k-1} x_{k-1} + \gamma_{k+1} x_{k+1} + \cdots + \gamma_n x_n
\]
is complete, where
\[
\gamma_i x_i = \beta_i x_i - \beta_k \alpha_k^{-1} \alpha_i x_i = (\beta_i - \beta_k \alpha_k^{-1} \alpha_i) x_i, \quad i \in \overline{1,n}, i \neq k.
\]

Proof. By Remark 1 and Definition 4 we need to prove that \(\overline{C}\) is complete if and only if the \((n-1)\)-retract \(C\) of \(C = B \oplus (k)A\) defined by \(x_k = c\), for some \(k \in \overline{1,n}\) and \(c \in Q\), is complete. Using (2) we have \(C(x^n_i) = (B \oplus (k)A)(x^n_i) = B(x_1^{k-1}, (k)A(x^n_i), x^n_{k+1}) = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_{k-1} x_{k-1} + \beta_k \alpha_k^{-1}(-\alpha_1 x_1 - \alpha_2 x_2 - \cdots - \alpha_k x_k + \cdots - \alpha_{k+1} x_{k+1} - \cdots - \alpha_n x_n) + \beta_{k+1} x_{k+1} + \cdots + \beta_n x_n + b = (\beta_1 - \beta_k \alpha_k^{-1} \alpha_1)x_1 + (\beta_2 - \beta_k \alpha_k^{-1} \alpha_2)x_2 + \cdots + (\beta_k - \beta_k \alpha_k^{-1} \alpha_k) x_k + \cdots + (\beta_n - \beta_k \alpha_k^{-1} \alpha_n)x_n + \beta_k \alpha_k^{-1} a + b = (\overline{C}(x^n_i)_k + \beta_k \alpha_k^{-1} x_k - \beta_k \alpha_k^{-1} a + b) \ (\text{see (3)}).

Let \(x_k = c\) be an arbitrary element of \(Q\), then we have
\[
C(x_1^{k-1}, c, x^n_{k+1}) = C_c(x^n_i)_k = \overline{C}(x^n_i)_k + d = R_d \overline{C}(x^n_i)_k,
\]
where \(d = \beta_k \alpha_k^{-1} c - \beta_k \alpha_k^{-1} a + b\), \(R_d x = x + d\). Thus, the \((n-1)\)-retract \(C(x^n_i)_k\) of \(C\), defined by \(x_k = c\), is isotopic to the \((n-1)\)-ary operation \(\overline{C}\): \(C_c = \overline{C}^T\), \(T = (\varepsilon, \varepsilon, \ldots, \varepsilon, R_d^{-1})\) (\(\varepsilon\) denotes the identity permutation on \(Q\)) and by Proposition 4 \(C_c\) is complete if and only if \(\overline{C}\) is complete. \(\Box\)

Remark 3. Note that if the conditions of Theorem 3 hold for some \(k \in \overline{1,n}\), then they hold for any \(k \in \overline{1,n}\) (see Remark 1 for \(n\)-quasigroups).

Corollary 4. If in Theorem 3 \(\gamma_i = \beta_i - \beta_k \alpha_k^{-1} \alpha_i\) is a permutation for some \(i_0 \in \overline{1,n}\), \(i_0 \neq k\), then \(A \perp B\).

Proof. In this case the \((n-1)\)-operation \(\overline{C}\) of (3) is \(i_0\)-invertible, so it is complete. \(\square\)

From Theorem 3 and Corollary 4 a number of useful statements follow.

Corollary 5. Let in Theorem 3 \(\alpha_k = \beta_k\) for some \(k \in \overline{1,n}\). Then
\[
\begin{align*}
\text{(i)} \ &\text{if } \beta_i - \alpha_i \text{ is a permutation for some } i_0 \in \overline{1,n}, \ i_0 \neq k, \text{ then } A \perp B; \\
\text{(ii)} \ &\text{if } (Q, +) \text{ is an (abelian) group of odd order and } \beta_i = 2\alpha_i \text{ for some } i_0 \in \overline{1,n}, \ i_0 \neq k, \text{ then } A \perp B.
\end{align*}
\]

Proof. By \(\alpha_k = \beta_k\) we have \(\beta_k \alpha_k^{-1} = \varepsilon\) and \(\gamma_i = \beta_i - \alpha_i\) for all \(i \in \overline{1,n}\), \(i \neq k\). In (i) use Corollary 4. Item (ii) is a particular case of (i), since \(\beta_i = 2\alpha_i\) is a permutation (and so an automorphism) in a group of odd order. \(\square\)
Corollary 6. Let $\Sigma = \{A_1^1\}$ be a set of $n-T$-quasigroups on a set Q over the same group $(Q, +)$:

$$A_i(x_i^a) = \alpha_{i1}x_1 + \alpha_{i2}x_2 + \cdots + \alpha_{in}x_n, i \in \overline{1, l},$$

(4)

where $\alpha_{ik} = \alpha_{2k} = \cdots = \alpha_{lk}$ for some $k \in \overline{1, n}$. If for all $i, j \in \overline{1, l}$, $i \neq j$ there exists one number $s \in \overline{1, n}$, $s \neq k$ such that $\alpha_{is} - \alpha_{js}$ is a permutation, then the set Σ is pairwise orthogonal.

Proof. In this case $A_i \perp A_j$ for each $i, j \in \overline{1, l}$, $i \neq j$ by virtue of item (i) of Corollary 5 since $\alpha_{ik} = \alpha_{jk}$ for all $i, j \in \overline{1, l}$, $i \neq j$. □

Example 1. Let $\Sigma = \{A_p^{p-1}\}$ be a set of $n-T$-quasigroups over a group $(Q, +)$ (with the identity 0) of a prime order p, where $n-T$-quasigroups of (4) have the form

$$A_1(x_1^a) = a_1x_1 + a_2x_2 + \cdots + a_{n-1}x_{n-1} + ax_n,$$

$$A_2(x_1^a) = a_2x_1 + a_2x_2 + \cdots + a_{n-1}x_{n-1} + ax_n,$$

$$\ldots$$

$$A_{p-1}(x_1^a) = a_{p-1}x_1 + a_{p-2}x_2 + \cdots + a_{n-1}x_n + ax_n,$$

$\alpha_{i1}x = a_1x, \alpha_{ij} \neq a_j$ if $i \neq j, i, j \in \overline{1, p-1}, \alpha_{ik}x = a_{ik}x$, if $k \neq 1$ and $k \neq n, \alpha_{in} = a, i \in \overline{1, p-1}, a, a_1, a_{ik} \in Q \setminus 0$ for all $i \in \overline{1, p-1}$.

By Corollary 6 the set Σ is pairwise orthogonal by $s = 1$ since $a_1 - a_{j_1} = a_j$, $a_j \neq 0$, so the mapping $x \rightarrow (a_i - a_j)x$ is a permutation by $i \neq j$ and by $\alpha_{1n}x = \alpha_{2n}x = \cdots = a_{p-1,n}x = ax$ (here $k = n$).

Further we shall establish some conditions for orthogonality of an $n-T$-quasigroup to some its parastrophes, using Theorem 3. Parastrophe-orthogonality of binary quasigroups and minimal identities connected with such orthogonality were in detail studied by V.D. Belousov in [4].

At first we recall that an automorphism α of a group $(Q, +)$ is called complete if the mapping $x \rightarrow x + \alpha x$ is a permutation of Q, that is if α is a complete permutation [5].

Proposition 6. If an $n-T$-quasigroup (Q, A), $A(x_i^a) = \alpha_1x_1 + \alpha_2x_2 + \cdots + \alpha_nx_n + a$ where α_l is a complete automorphism of the group $(Q, +)$ for some $l \in \overline{1, n}$, then $A \perp (l)A$.

Proof. Using expression (2) for $(l)A$ and taking in Theorem 3 $k \neq l$, $B = (l)A$ we obtain $\beta_l = \alpha_l^{-1}$ and $\beta_k = -\alpha_l^{-1} \alpha_k$. Then $\gamma_l = \beta_l - \beta_k \alpha^{-1}_k \alpha_l = \alpha_l^{-1} + \alpha_l^{-1} \alpha_k \alpha^{-1}_k \alpha_l = \alpha_l^{-1}(\varepsilon + \alpha_l)$ is a permutation and so $A \perp (l)A$ by Corollary 4. □

Corollary 7. An $n-T$-quasigroup (Q, A) over a group $(Q, +)$ with $A(x_i^a) = ax_1 + \alpha x_2 + \cdots + \alpha x_n + a$, where α is a complete automorphism of $(Q, +)$, is orthogonal to $(l)A$ for each $l \in \overline{1, n}$. Moreover, if, in addition, $n \geq 3$, then the set $\Sigma = \{A, (1)A, \ldots, (n)A\}$ is pairwise orthogonal.
Proof. The first statement follows immediately from Proposition 6. Prove that

\((i) A \perp (j) A \) for each \(i, j \in \overline{1, n}, i \neq j \). By (2) we have

\[
(i) A(x^n_i) = \alpha^{-1}(-\alpha x_1 - \alpha x_2 - \cdots - \alpha x_{i-1} + x_i - \alpha x_{i+1} - \cdots - \alpha x_n - a) = \\
-x_1 - x_2 - \cdots - x_{i-1} + \alpha^{-1}x_i - x_{i+1} - \cdots - x_n - \alpha^{-1}a = \\
x_1 + x_2 + \cdots + nx_{i-1} + \alpha^{-1}x_i + x_{i+1} + \cdots + nx_n + b = \\
\alpha_1x_1 + \alpha_2x_2 + \cdots + \alpha_nx_n + b, b = -\alpha^{-1}a,
\]

\[
(j) A(x^n_i) = Ix_1 + Ix_2 + \cdots + Ix_{j-1} + \alpha^{-1}x_j + Ix_{j+1} + \cdots + Ix_n + b = \\
\beta_1x_1 + \beta_2x_2 + \cdots + \beta_nx_n + b.
\]

Since \(i \neq j \) and \(n \geq 3 \) then there exists \(k \in \overline{1, n} \) such that \(\alpha_k = \beta_k \) (\(k \neq i, j \)). In this case we have \(\alpha^{-1}x_j - (Ix_j) = (\alpha^{-1} + \varepsilon)x_j \), so the map \(\beta_j - \alpha_j = \alpha^{-1} + \varepsilon \) is a permutation since \(\alpha \) is a complete automorphism. By item (i) of Corollary 5 (if \(i_0 = j \)) \((i) A \perp (j) A \). Taking into account that \(A \perp (i) A \) for any \(l \in \overline{1, n} \), we obtain that \(\Sigma \) is a pairwise orthogonal set.

From Corollary 7, in particular, it follows that if \(A \) is an \(n - T \)-quasigroup \((n \geq 3) \) \((Q, A)\): \(A(x^n_1) = x_1 + x_2 + \cdots + x_n + a \) over a group of odd order, then \(\Sigma = \{A, (1)A, \ldots, (n)A\} \) is pairwise orthogonal set, since the identity automorphism \(\varepsilon \) in such group is complete.

A direct corollary of Theorem 3 for an \(n - T \)-quasigroup which is orthogonal to some its principal \(\sigma \)-parastrophe is the following

Proposition 7. Let \((Q, A) \) be an \(n - T \)-quasigroup over a group \((Q, +) \): \(A(x^n_1) = \alpha_1x_1 + \alpha_2x_2 + \cdots + \alpha_nx_n + a, \sigma(n + 1) = n + 1 \). Then \(A \perp \sigma A \) if and only if for some \(k \in \overline{1, n} \) the \((n-1)\)-operation \(\overline{C} \):

\[
\overline{C}(x^n_1)_k = (\alpha_1 - \alpha_2\alpha_k^{-1}\alpha_1)x_1 + (\alpha_2 - \alpha_3\alpha_k^{-1}\alpha_2)x_2 + \cdots + (\alpha_{\sigma(k-1)} - \alpha_{\sigma(k-1)}\alpha_k^{-1}\alpha_{k-1})x_{k-1} + \\
(\alpha_{\sigma(k+1)} - \alpha_{\sigma(k+1)}\alpha_k^{-1}\alpha_{k+1})x_{k+1} + \cdots + (\alpha_{\sigma n} - \alpha_{\sigma n}\alpha_k^{-1}\alpha_n)x_n
\]

is complete.

Proof. By the definition of a principal parastrophe \(\sigma A \) (\(\sigma(n + 1) = n + 1 \)) of \(A \)

\[
\sigma A(x^n_1) = A(x^{n-1}_{\sigma^{-1}1}) = \alpha_1x_{\sigma^{-1}1} + \alpha_2x_{\sigma^{-1}2} + \cdots + \alpha_nx_{\sigma^{-1}n} + a = \\
\beta_1x_1 + \beta_2x_2 + \cdots + \beta_nx_n + a,
\]

where \(\beta_ix_i = \alpha_{\sigma i}x_i, i \in \overline{1, n} \). Further use Theorem 3 with \(\gamma_i = \beta_i - \beta_k\alpha_k^{-1}\alpha_i = \alpha_{\sigma i} - \alpha_{\sigma k}\alpha_k^{-1}\alpha_i \).

Corollary 8. If \((Q, A) \) is an \(n - T \)-quasigroup, \(n \geq 3 \), \(A(x^n_1) = \alpha_1x_1 + \alpha_2x_2 + \\
\cdots + \alpha_nx_n + a, \sigma(n + 1) = n + 1, \sigma k = k \) for some \(k \in \overline{1, n} \) and \(\alpha_{\sigma i_0} - \alpha_{i_0} \) is a
permutation for some \(i_0 \in \overline{1,n}, i_0 \neq k \), then \(A \perp \sigma A \). If, in addition, \((Q,+)\) has odd order and \(\alpha_{i_0} = 2\alpha_{i_0} \), then \(A \perp \sigma A \).

Proof. We have \(\sigma A(x^n) = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_{k-1}x_{k-1} + \alpha_k x_k + \beta_{k+1} x_{k+1} + \cdots + \beta_n x_n + a \), where \(\beta_i = \alpha_{\sigma i} \), so \(\beta_k = \alpha_k \), as \(\sigma k = k \) and we can use items (i) and (ii) of Corollary 5, respectively.

Note that for \(n = 2 \) we have \(\sigma = \varepsilon \) (that is \(\sigma A = A \)) by the conditions of this corollary (if \(\sigma = 3, \sigma 1 = 1 \), then \(\sigma = 1, \sigma 2, 3 \Rightarrow \sigma 2 = 2 \)).

Example 2. Let \((Q,A)\) be an \(n-T \)-quasigroup, \(n \geq 3 \), over a group of odd order with \(A(x^n) = \alpha_1 x_1 + 2\alpha_1 x_2 + \cdots + \alpha_n x_n + a \), \(i_0 = 1 \), \(\sigma(n + 1) = n + 1, \sigma 1 = 2 \) and \(\sigma k = k \) for some \(k \in \overline{1,n}, k \neq 1 \). Then \(\alpha_{i_1} - \alpha_1 = \alpha_2 - \alpha_1 = 2\alpha_1 - \alpha_1 = \alpha_1 \). By Corollary 8 \(A \perp \sigma A \) for any \(\alpha_i \neq 0, i \in \overline{1,n}, i \neq 2 \).

Corollary 9. If \((Q,A)\) is an \(n-T \)-quasigroup, \(n \geq 3 \), over a group of a prime order, \(A(x^n) = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n + a \), \(a \neq 0 \), \(a_i \neq a_j \), \(i \neq j \), \(\sigma(n + 1) = n + 1, \sigma k = k \) for some \(k \in \overline{1,n} \), \(n \neq 0 \neq i_0 \) for some \(i_0 \neq k \), then \(A \perp \sigma A \).

Proof. In a group of a prime order all mappings \(x \rightarrow ax \), where \(a \neq 0 \) are automorphisms. If \(\sigma a_i \neq a_i \), then the mapping \(x \rightarrow (a_{i_0} - a_i)x \) is a permutation (an automorphism), so by Corollary 8 \(A \perp \sigma A \).

Example 3. Let \((Q,+) = (Z_p,+)\) be a group of a prime order \(p \geq 7, Q = \{0,1,2,\ldots,p-1\} \), \(A(x^3) = 3x_1 + 5x_2 + x_3 + 2x_4 + x_5 \) and \(\sigma = (2,3) \), then \(\sigma 3 = 2 \neq 3, \sigma 4 = 4 (k = 4, i_0 = 3) \), \(\sigma A(x^5) = A(x^{\sigma -1}) = 3x_1 + 5x_3 + 4x_2 + 2x_4 + x_5 = 3x_1 + 4x_2 + 5x_3 + 2x_4 + x_5 \). By Corollary 9 \(A \perp \sigma A \).

References

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei str. 5, MD-2028 Chisinau
Moldova
E-mail: gbel@math.md

Received November 9, 2005