Pairwise orthogonality of n-ary operations *

G. Belyavskaya

Abstract

The notions of hypercube and of the orthogonality of two hypercubes were arised in combinatorial analysis. In [11] a connection between n-dimensional hypercubes and algebraic n-ary operations was established. In this article we use an algebraic approach to the study of orthogonality of two hypercubes (pairwise orthogonality). We give a criterion of orthogonality of two finite k-invertible n-ary operations, which is used by the research of orthogonality and parastrophe-orthogonality of two n-ary T-quasigroups. Some examples are given and connection between admissibility and pairwise orthogonality of n-ary operations is established.

Mathematics subject classification: 20N05, 20N15.
Keywords and phrases: Hypercube, orthogonal hypercubes, n-ary operation, n-ary quasigroup, n-ary T-quasigroup, parastrophe, transversal, orthogonal n-ary operations.

1 Introduction

It is known that two binary operations A and B, given on a set Q, are called orthogonal if the system of equations $\{A(x, y)=a, B(x, y)=b\}$ has exactly one solution for any $a, b \in Q$ (see [1], where such operations are called compatible). Orthogonal binary operations, in particular, orthogonal quasigroups were considered in different works (see, for example, $[1-7]$).

In [6] H.B. Mann proved that if A, B, C are quasigroups, given on a set Q and satisfying the equality

$$
C(x, B(x, y))=A(x, y)
$$

for all $x, y \in Q$, then the quasigroups A and B are orthogonal.
V.D. Belousov in [3, Lemma 2] gave the following criterion of orthogonality of two binary quasigroups. Let A, B be binary quasigroups on a set Q. Then A and B are orthogonal if and only if the operation $A \cdot B^{-1}$ is a quasigroup, where $\left(A \cdot B^{-1}\right)(x, y)=A\left(x, B^{-1}(x, y)\right)$ and B^{-1} is the right inverse quasigroup for B $\left(B^{-1}(x, z)=y\right.$ if and only if $\left.B(x, y)=z\right)$.

In the case of n-ary operations there exist distinct versions of orthogonality (they are reflected in [11]) which correspond to different types of orthogonality of n-dimensional hypercubes.

[^0]In this article we consider the weakest (for $n>2$) case of orthogonality of n-ary operations, namely, pairwise orthogonality (see Definition 1). At first orthogonality of two finite k-invertible n-ary operations (pairwise orthogonality) is considered. Then, using the obtained criterion of orthogonality of finite n-ary operations, we give a definition of pairwise orthogonality for arbitrary k-invertible n-operations, in particular, for finite or infinite n-quasigroups. A connection between admissibility and pairwise orthogonality of k-invertible n-ary operations is established. In the last part of the article pairwise orthogonality of n-ary T-quasigroups ($n-T$-quasigroups), in particular, $n-T$-quasigroups which are orthogonal to some their parastrophes are studied. Some examples of such quasigroups are given.

2 Necessary notions and results

We recall some notations, concepts and results which are used in the article. At first remember the following designations and notes from [10]. By x_{i}^{j} we will denote the sequence $x_{i}, x_{i+1}, \ldots, x_{j}, i \leq j$. If $j<i$, then x_{i}^{j} is the empty sequence, $\overline{1, n}=\{1,2, \ldots, n\}$. Let Q be a finite or an infinite set, $n \geq 1$ be a positive integer and let Q^{n} denote the Cartesian power of the set Q.

A n-ary operation A (briefly, an n-operation) on a set Q is a mapping $A: Q^{n} \rightarrow$ Q defined by $A\left(x_{1}^{n}\right) \rightarrow x_{n+1}$, and in this case we write $A\left(x_{1}^{n}\right)=x_{n+1}$.

A finite n-groupoid (Q, A) of order m is a set Q with one n-ary operation A defined on Q, where $|Q|=m$.

A n-ary quasigroup is an n-groupoid such that in the equality

$$
A\left(x_{1}^{n}\right)=x_{n+1}
$$

each of n elements from x_{1}^{n+1} uniquely defines the $(n+1)$-th element. Usually itself quasigroup n-operation A is considered as a n-quasigroup.

The n-operation $E_{i}, 1 \leq i \leq n$, on Q with $E_{i}\left(x_{1}^{n}\right)=x_{i}$ is called the i-th identity operation (or the i-th selector) of arity n.

An n-operation A on Q is called i-invertible for some $i \in \overline{1, n}$ if the equation

$$
A\left(a_{1}^{i-1}, x_{i}, a_{i+1}^{n}\right)=a_{n+1}
$$

has a unique solution for each fixed n-tuple $\left(a_{1}^{i-1}, a_{i+1}^{n}, a_{n+1}\right) \in Q^{n}$.
For an i-invertible n-operation there exists the i-inverse n-operation ${ }^{(i)} A$ defined in the following way:

$$
{ }^{(i)} A\left(x_{1}^{i-1}, x_{n+1}, x_{i+1}^{n}\right)=x_{i} \Leftrightarrow A\left(x_{1}^{n}\right)=x_{n+1}
$$

for all $x_{1}^{n+1} \in Q^{n+1}$.
It is evident that

$$
A\left(x_{1}^{i-1},,^{(i)} A\left(x_{1}^{n}\right), x_{i+1}^{n}\right)={ }^{(i)} A\left(x_{1}^{i-1}, A\left(x_{1}^{n}\right), x_{i+1}^{n}\right)=x_{i}
$$

and ${ }^{(i)}\left[{ }^{(i)} A\right]=A$ for $i \in \overline{1, n}$.

Let Ω_{n} be the set of all n-ary operations on a finite or an infinite set Q. On Ω_{n} define a binary operation $\underset{i}{\oplus}$ (the i-multiplication) in the following way:

$$
(A \underset{i}{\oplus} B)\left(x_{1}^{n}\right)=A\left(x_{1}^{i-1}, B\left(x_{1}^{n}\right), x_{i+1}^{n}\right),
$$

$A, B \in \Omega_{n}, x_{1}^{n} \in Q^{n}$. Shortly this equality can be written as

$$
A \oplus_{i} B=A\left(E_{1}^{i-1}, B, E_{i+1}^{n}\right)
$$

where E_{i} is the i-th selector.
In [9] it was proved that $\left(\Omega_{n} ; \underset{i}{\oplus}\right)$ is a semigroup with the identity E_{i}. If Λ_{i} is the set of all i-invertible n-operations from Ω_{n} for some $i \in \overline{1, n}$, then $\left(\Lambda_{i} ; \underset{i}{\oplus}\right)$ is a group. In this group E_{i} is the identity, the inverse element of A is the operation ${ }^{(i)} A \in \Lambda_{i}$, since $A \underset{i}{\oplus} E_{i}=E_{i} \underset{i}{\oplus} A, A \underset{i}{{ }^{(i)}} A={ }^{(i)} A \underset{i}{\oplus} A=E_{i}$.

A n-ary quasigroup $(Q, A$) (or simply A), is an n-groupoid with an i-invertible n-operation for each $i \in \overline{1, n}$ [10].

Let A be an n-quasigroup and $\sigma \in S_{n+1}$, then the n-quasigroup ${ }^{\sigma} A$ defined by

$$
{ }^{\sigma} A\left(x_{\sigma 1}^{\sigma n}\right)=x_{\sigma(n+1)} \Leftrightarrow A\left(x_{1}^{n}\right)=x_{n+1}
$$

is called the σ-parastrophe (or simple, parastrophe) of $A[10]$.
For any n-operation A there exist the σ-parastrophes ${ }^{\sigma} A$, where $\sigma(n+1)=n+1$ (the principal parastrophes). The i-inverse operation ${ }^{(i)} A$ for $A, i \in \overline{1, n}$, is the σ-parastrophe defined by the cycle $(i, n+1)$.

Let $\left(x_{1}^{n}\right)_{k}$ denote the $(n-1)$-tuple $\left(x_{1}^{k-1}, x_{k+1}^{n}\right) \in Q^{n-1}$ and let A be an n operation, then the $(n-1)$-operation A_{a} :

$$
A_{a}\left(x_{1}^{n}\right)_{k}=A\left(x_{1}^{k-1}, a, x_{k+1}^{n}\right)
$$

is called the $(n-1)$-retract of A, defined by position $k, k \in \overline{1, n}$, with the element a in this position (with $x_{k}=a$) [10].

An n-ary operation A on Q is called complete if there exists a permutation $\bar{\varphi}$ on Q^{n} such that $A=E_{1} \bar{\varphi}$ (that is $A\left(x_{1}^{n}\right)=E_{1} \bar{\varphi}\left(x_{1}^{n}\right)$). If a complete n-operation A is finite and has order m, then the equation $A\left(x_{1}^{n}\right)=a$ has exactly m^{n-1} solutions for any $a \in Q[9]$.

Any i-invertible n-operation $A, i \in \overline{1, n}$, is complete, but there exist complete n-operations, which are not i-invertible for each $i \in \overline{1, n}[9]$.

3 Orthogonality of two n-ary operations

In the case of n-ary operations for $n>2$ it is possible to consider different versions of orthogonality. The weakest is the notion of the pairwise orthogonality.

Definition 1 [11]. Two n-ary operations $(n \geq 2) A$ and B given on a set Q of order m are called orthogonal (shortly, $A \perp B$) if the system $\left\{A\left(x_{1}^{n}\right)=a, B\left(x_{1}^{n}\right)=b\right\}$ has exactly m^{n-2} solutions for any $a, b \in Q$.

This concept corresponds to two orthogonal n-dimensional hypercubes [11, 13]. The following type of orthogonality is strongest.

Definition 2 [8]. An n-tuple $<A_{1}, A_{2}, \ldots, A_{n}>$ of n-operations on a set Q is called orthogonal if the system $\left\{A_{i}\left(x_{1}^{n}\right)=a_{i}\right\}_{i=1}^{n}$ has a unique solution for any $a_{1}^{n} \in Q^{n}$. A set $\Sigma=\left\{A_{1}^{t}\right\}, t \geq n$, of n-operations is called orthogonal if any n-tuple of distinct n-operations from Σ is orthogonal.

This concept corresponds to an orthogonal n-tuple of n-dimensional hypercubes [11-13]. Orthogonal n-operations and their sets in the sense of Definition 2 were considered in many articles (see, for example, [8, 11-17, 19, 20, 22]).

In [11] intermediate types of orthogonality of n-operations and their sets were studied.

Definition 3 [11]. A k-tuple $<A_{1}^{k}>, 2 \leq k \leq n$, of distinct n-operations on a set Q of order m is called orthogonal if the system $\left\{A_{i}\left(x_{1}^{n}\right)=a_{i}\right\}_{i=1}^{k}$ has exactly m^{n-k} solutions for any $a_{1}^{k} \in Q^{k}$. A set $\Sigma=\left\{A_{1}^{t}\right\}$, $t \geq k$, of n-operations is called k-wise orthogonal if any k-tuple of distinct n-operations from Σ is orthogonal.

The following connection exists between different considered types of orthogonality.

Theorem 1 [11]. If a set $\Sigma=\left\{A_{1}^{t}\right\}, t \geq k$, of finite n-operations is k-wise orthogonal, then Σ is l-wise orthogonal for any $l, 2 \leq l \leq k$.

Thus, every pair of different n-ary operations from an orthogonal n-tuple is orthogonal.

Let $A_{1}, A_{2}, \ldots, A_{n}$ be n-operations given on a set Q. In [14] it is proved that a n-tuple $<A_{1}^{n}>$ of n-operations is orthogonal if and only if the mapping $\bar{\theta}: x_{1}^{n} \rightarrow$ $\left(A_{1}\left(x_{1}^{n}\right), A_{2}\left(x_{1}^{n}\right), \ldots, A_{n}\left(x_{1}^{n}\right)\right)=\left(A_{1}, A_{2}, \ldots, A_{n}\right)\left(x_{1}^{n}\right)$ is a permutation on Q^{n}.

In [1] V.D. Belousov proved that a binary operation A has an operation which is orthogonal to A (an orthogonal mate) if and only if A is a complete operation. This is valid and for finite n-operations.

Proposition 1. A finite n-operation A has an orthogonal mate if and only if A is complete.

Proof. By Proposition 5 of [11] A is a complete n-operation if and only if it is a component of some permutation $\bar{\theta}=\left(A, B_{1}^{n-1}\right)$ on Q^{n}, where $<A, B_{1}^{n-1}>$ is an orthogonal n-tuple. By Theorem $1 A \perp B_{i}$ for any $i \in \overline{1, n-1}$.

Conversely, if B is an orthogonal mate for A, that is $A \perp B$, then by Corollary 4 of [11] the pair A, B can be embedded in an orthogonal n-tuple of n-operations and by Proposition 5 of [11] A is a complete n-operation.

Now we shall consider orthogonality of k-invertible n-operations for some fixed $k, 1 \leq k \leq n$. For them the following criterion is valid.

Theorem 2. Let k be a fixed number from $\overline{1, n}$. Two finite k-invertible n-operations A and B on a set Q are orthogonal if and only if the $(n-1)$-retract C_{a} of the n-operation $C=B \underset{k}{\oplus}{ }^{(k)} A$, defined by $x_{k}=a$, is complete for every $a \in Q$.

Proof. We shall prove this statement when $k=n$ for the sake of simplicity. For the rest $k \in \overline{1, n-1}$ the proof is similar.

Let a be an arbitrary element of $Q,|Q|=m$ and the $(n-1)$-retract C_{a} by $x_{n}=a$ of n-operation $C=B \underset{n}{\oplus}{ }^{(n)} A$ is complete for any $a \in Q$. Then the equation

$$
C_{a}\left(x_{1}^{n-1}\right)=C\left(x_{1}^{n-1}, a\right)=(B \underset{n}{\oplus}(n) A)\left(x_{1}^{n-1}, a\right)=B\left(x_{1}^{n-1},{ }^{(n)} A\left(x_{1}^{n-1}, a\right)\right)=b
$$

has $m^{(n-1)-1}$ solutions for any $a, b \in Q$. From the last equation we have ${ }^{(n)} B\left(x_{1}^{n-1}, b\right)={ }^{(n)} A\left(x_{1}^{n-1}, a\right)=z$, whence it follows that the system $\left\{A\left(x_{1}^{n-1}, z\right)=\right.$ $\left.a, B\left(x_{1}^{n-1}, z\right)=b\right\}$ has m^{n-2} solutions. Thus, $A \perp B$.

Conversely, let $A \perp B$, that is the system $\left\{A\left(x_{1}^{n}\right)=a, B\left(x_{1}^{n}\right)=b\right\}$ has m^{n-2} solutions for any $a, b \in Q$. From the first equality we have $x_{n}={ }^{(n)} A\left(x_{1}^{n-1}, a\right)$ and then the equation $B\left(x_{1}^{n-1},{ }^{(n)} A\left(x_{1}^{n-1}, a\right)\right)=b$ or $C_{a}\left(x_{1}^{n-1}\right)=\left(B \underset{n}{\oplus}{ }^{(n)} A\right)\left(x_{1}^{n-1}, a\right)=b$ has m^{n-2} solutions for any $a, b \in Q$. Therefore, the ($n-1$)-retract of $B \underset{n}{\oplus}{ }^{(n)} A$, defined by any $a \in Q$, is complete.

For the binary case from Theorem 2 we have the following
Corollary 1. Two finite invertible from the right (that is 2-invertible) binary operations A, B on Q are orthogonal if and only if the operation $C(x, y)=\left(A \cdot B^{-1}\right)(x, y)=$ $A\left(x, B^{-1}(x, y)\right)$ is a quasigroup.

Proof. The operation $C=B \cdot A^{-1}\left(=B \underset{2}{\oplus}{ }^{(2)} A\right)$ is always invertible from the right. If the operation $C_{a} x=C(x, a)$ is complete for any $a \in Q$, that is the equation $C(x, a)=b$ has exactly $m^{2-2}=1$ solutions for any $a, b \in Q$, then the operation C is invertible from the left (that is 1 -invertible). Thus, C is a quasigroup.

Conversely, if C is a quasigroup, then any its (unary) retract is complete (that is a permutation).

From this corollary the criterion of V.D.Belousov [3, Lemma 2] for finite binary quasigroups follows.

Proposition 2. If A and B are k-invertible n-operations on a set Q for some $k \in \overline{1, n}$, then the following equalities are equivalent: $C=B \underset{k}{\oplus}{ }^{(k)} A, C \underset{k}{\oplus} A=B$,
$A={ }^{(k)} C \underset{k}{\oplus} B, C \underset{k}{\oplus} A \oplus_{k}{ }^{(k)} B=E_{k},{ }^{(k)} A \underset{k}{\oplus}{ }^{(k)} C \underset{k}{\oplus} B=E_{k}, A \underset{k}{\oplus}{ }^{(k)} B \underset{k}{\oplus} C=E_{k}$,
${ }^{(k)} C \underset{k}{\oplus} B \underset{k}{\oplus}{ }^{(k)} A=E_{k}$.
Proof. It is easy to see taking into account that all k-invertible n-operations on Q form a group with the identity E_{k} with the respect to the k-multiplication of n-operations.

Remark 1. If A and B are n-quasigroups, then they are k-invertible for any $k \in \overline{1, n}$, so $A \perp B$ if and only if for some $k \in \overline{1, n}$ the $(n-1)$-retract C_{a} of $C=B \underset{k}{\oplus}{ }^{(k)} A$, defined by $x_{k}=a$, is complete for any $a \in Q$. If that holds for some fixed $k \in \overline{1, n}$, then the $(n-1)$-retract of $C_{1}=B \underset{l}{\oplus}(l) A$, defined by $x_{l}=a$, is also complete for any $l \in \overline{1, n}$ and any $a \in Q$.

From Proposition 2 and Theorem 2 we have the following
Corollary 2. If A and B are finite n-quasigroups on $Q, C=B \underset{k}{\oplus}{ }^{(k)} A$ and $A \perp B$, then $C \perp{ }^{(k)} A,{ }^{(k)} C \perp{ }^{(k)} B$ for any $k \in \overline{1, n}$.

Proof. $C \perp{ }^{(k)} A\left({ }^{(k)} C \perp{ }^{(k)} B\right)$ follows from the second (from the third) equality of Proposition 2 and Theorem 2, since A and B are n-quasigroups and so any $(n-1)$ retract of $B(A)$ is an $(n-1)$-quasigroup which is always complete. Further use Remark 1.

Using the criterion of orthogonality of two finite n-operations from Theorem 2 we can define a pairwise orthogonality of arbitrary k-invertible n-operations (finite or infinite).

Definition 4. Two k-invertible n-operations A and B, given on an arbitrary set Q, are called orthogonal if the $(n-1)$-retract of the n-operation $B \underset{k}{\oplus}{ }^{(k)} A$, defined by $x_{k}=a$, is complete for each $a \in Q$.

As it was noted above, an n-operation A on Q is called complete if there exists a permutation (a bijection) $\bar{\varphi}$ on Q^{n} such that $A=E_{1} \bar{\varphi}$. In the case of Definition 4 each ($n-1$)-retract

$$
C_{a}\left(x_{1}^{n}\right)_{k}=C\left(x_{1}^{k-1}, a, x_{k+1}^{n}\right)=B\left(x_{1}^{k-1},{ }^{(k)} A\left(x_{1}^{k-1}, a, x_{k+1}^{n}\right), x_{k+1}^{n}\right)
$$

is complete, that is $C_{a}=E_{1} \bar{\psi}$ for some permutation $\bar{\psi}$ of Q^{n-1}.
Remark 2. Note that for binary case $(n=2)$ Definition 4 is equivalent to the usual definition of orthogonality of two 1- or 2-invertible operations.

Indeed, let A, B be 2-invertible binary operations on a set Q and $A \perp B$, that is the system $\{A(x, y)=a, B(x, y)=b\}$ has a unique solution for any $a, b \in Q$. Then $A^{-1}(x, a)=y$ and the equation $B\left(x, A^{-1}(x, a)\right)=b$ has a unique solution x for any
$a, b \in Q$, that is $C_{a}(x)=B\left(x, R_{a} x\right)=E \varphi_{a} x=\varphi_{a} x$ where $R_{a} x=A^{-1}(x, a), E$ is the selector in the 1-ary case $(E x=\varepsilon x=x)$ and so φ_{a} is a bijection Q on Q. Thus, $C_{a}=\varphi_{a}$ is a complete 1-ary (unary) operation for any $a \in Q$.

Conversely, if $C_{a}=\varphi_{a}$ is a bijection for any $a \in Q$, then the equation $B\left(x, A^{-1}(x, a)\right)=b$ has a unique solution for any $a, b \in Q$ and the system $\{A(x, y)=$ $a, B(x, y)=b\}$ has a unique solution.

For 1-invertible binary operations the proof is similar.
Now we consider a connection between orthogonality of two n-operations and their admissibility.

It is known that a binary quasigroup (Q, \cdot) is called admissible if it has a complete permutation (a bijection) (or a transversal).

A permutation θ on Q is called complete for a quasigroup ($Q, \cdot)$ if the mapping $\theta^{\prime}: \theta^{\prime} x=x \cdot \theta x$ is a permutation on Q. All elements $\theta^{\prime} x, x \in Q$, are different and form a transversal which is defined by the permutation θ [5].

A binary quasigroup of order m has an orthogonal mate if and only if it has m disjoint transversals $\theta_{1}^{\prime}, \theta_{2}^{\prime}, \ldots, \theta_{m}^{\prime}$ (or m disjoint complete permutations $\theta_{1}, \theta_{2}, \ldots, \theta_{m}$), that is $\theta_{i}^{\prime} x \neq \theta_{j}^{\prime} x, i \neq j$, for any $x \in Q[5]$.

Using the criterion of Corollary 4 of orthogonality of binary 2-invertible (or 1-invertible) operations A and B on Q of order m, it is easy to find in this case m disjoint transversals.

Indeed, if $A \perp B$, then the operation $A \cdot B^{-1}\left(\left(A \cdot B^{-1}\right)(x, y)=A\left(x, B^{-1}(x, y)\right)\right)$ is a quasigroup. By $y=a$ we have $A\left(x, B^{-1}(x, a)\right)=A\left(x, R_{a} x\right)=C_{a} x$ and C_{a} is a permutation where $R_{a}: R_{a} x=B^{-1}(x, a)$ is also permutation. Thus, in A there exist m disjoint complete permutations $\left\{R_{a}, a \in Q\right\}$ which define m disjoint transversals $\left\{C_{a}, a \in Q\right\}$.

In $[20,22]$ the admissibility of n-quasigroups and their connection with orthogonality were considered. By analogue with n-quasigroups (see [21]) the following definition of admissible n-operations was given.

Definition 5. An n-operation B given on a set Q is called admissible if for some k, $1 \leq k \leq n$, on Q there exists an $(n-1)$-operation A such that the $(n-1)$-operation C :

$$
C\left(x_{1}^{n}\right)_{k}=B\left(x_{1}^{k-1}, A\left(x_{1}^{n}\right)_{k}, x_{k+1}^{n}\right)
$$

is complete. In this case the $(n-1)$-operation C is called a k-transversal of the n-operation B, defined by the $(n-1)$-operation A.

The n-tuples $\left(x_{1}^{k-1}, A\left(x_{1}^{n}\right)_{k}, x_{k+1}^{n}\right)$ are positions of elements of a k-transversal C. The values $C\left(x_{1}^{n}\right)_{k}$, when $(n-1)$-tuples $\left(x_{1}^{n}\right)_{k}$ run through Q^{n-1}, are the elements of the k-transversal C.

Two k-transversals of an n-operation B defined by $(n-1)$-operations A_{1} and A_{2} are called disjoint if $A_{1}\left(x_{1}^{n}\right)_{k} \neq A_{2}\left(x_{1}^{n}\right)_{k}$ for all $\left(x_{1}^{n}\right)_{k} \in Q^{n-1}$.

From Theorem 2 it follows

Proposition 3. Let A, B be finite k-invertible n-operations given on a set Q of order $m, A \perp B$. Then the $(n-1)$-operations ${ }^{(k)} A_{a}\left(x_{1}^{n}\right)_{k}={ }^{(k)} A\left(x_{1}^{k-1}, a, x_{k+1}^{n}\right)$, $a \in Q$, define m pairwise disjoint k-transversals in B.

Proof. By Theorem $2 A \perp B$ if and only if the $(n-1)$-operation

$$
C_{a}\left(x_{1}^{n}\right)_{k}=B\left(x_{1}^{k-1},{ }^{(k)} A\left(x_{1}^{k-1}, a, x_{k+1}^{n}\right), x_{k+1}^{n}\right)=B\left(x_{1}^{k-1},{ }^{(k)} A_{a}\left(x_{1}^{n}\right)_{k}, x_{k+1}^{n}\right)
$$

is complete for any $a \in Q$. Thus, by Definition 5 the operations ${ }^{(k)} A_{a}, a \in Q$, define m transversals $C_{a}, a \in Q$. It is evident that ${ }^{(k)} A_{a}\left(x_{1}^{n}\right)_{k} \neq{ }^{(k)} A_{b}\left(x_{1}^{n}\right)_{k}$, if $a \neq b$, since A is a k-invertible n-operation. Moreover, in this case we have $C_{a}\left(x_{1}^{n}\right)_{k} \neq C_{b}\left(x_{1}^{n}\right)_{k}$ by virtue of k-invertibility of the n-operation B.

Let A, B be two n-operations on a set Q. Recall that an n-operation B is called isotopic to an n-operation A if there exists an $(n+1)$-tuple $T=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \gamma\right)$ of permutations (bijections) of Q such that $B\left(x_{1}^{n}\right)=\gamma^{-1} A\left(\alpha_{1} x_{1}, \alpha_{2} x_{2}, \ldots, \alpha_{n} x_{n}\right)$ for all $x_{1}^{n} \in Q^{n}$ (shortly, $B=A^{T}$)[10].

It is easy to prove that the following statement is valid.

Proposition 4. Any n-operation B which is isotopic to a complete finite or infinite n-operation A is also complete.

Proof. Let A be a complete n-operation on a set $Q, B=A^{T}, T=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \gamma\right)$, then $A=E_{1} \bar{\varphi}$ for some permutation $\bar{\varphi}=\left(C_{1}, C_{2}, \ldots, C_{n}\right)$ (where the n-tuple $<C_{1}, C_{2}, \ldots, C_{n}>$ of n-operations is orthogonal) and

$$
\begin{gathered}
B\left(x_{1}^{n}\right)=\gamma^{-1} A\left(\alpha_{1} x_{1}, \alpha_{2} x_{2}, \ldots, \alpha_{n} x_{n}\right)= \\
\gamma^{-1} E_{1} \bar{\varphi}\left(\alpha_{1} x_{1}, \alpha_{2} x_{2}, \ldots, \alpha_{n} x_{n}\right)=\gamma^{-1} E_{1}\left(C_{1}, C_{2}, \ldots, C_{n}\right)\left(\alpha_{1} x_{1}, \alpha_{2} x_{2}, \ldots, \alpha_{n} x_{n}\right)= \\
E_{1}\left(\gamma^{-1} \bar{C}_{1}, \bar{C}_{2}, \ldots, \bar{C}_{n}\right)\left(x_{1}^{n}\right)
\end{gathered}
$$

where $\bar{C}_{i}\left(x_{1}^{n}\right)=C_{i}\left(\alpha_{1} x_{1}, \alpha_{2} x_{2}, \ldots, \alpha_{n} x_{n}\right)$. It is easy to see that the n-tuple $<\gamma^{-1} \bar{C}_{1}, \bar{C}_{2}, \ldots, \bar{C}_{n}>$ is also orthogonal. Thus, $B=E_{1} \bar{\psi}$, where

$$
\bar{\psi}=\left(\gamma^{-1} \bar{C}_{1}, \bar{C}_{2}, \ldots, \bar{C}_{n}\right) .
$$

From Proposition 1 and Proposition 3 we obtain the following

Corollary 3. If a finite n-operation A has an orthogonal mate and $B=A^{T}, T=$ $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \gamma\right)$, then B has an orthogonal mate too.

4 Pairwise orthogonal n-T-quasigroups

Below we shall consider in more detail orthogonality of two n-ary T-quasigroups (briefly, $n-T$-quasigroups) which are closely connected with finite or infinite abelian groups and generalize the known binary T-quasigroups.

Definition 6 [18]. An n-quasigroup (Q, A) is called an $n-T$-quasigroup if there exist a binary abelian group $(Q,+)$, its automorphisms $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and an element $a \in Q$ such that

$$
\begin{equation*}
A\left(x_{1}^{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}+a \tag{1}
\end{equation*}
$$

for all $x_{1}^{n} \in Q^{n}$.
Let $k \in \overline{1, n}$, then the k-inverse n-operation ${ }^{(k)} A$ for an $n-T$-quasigroup A of (1) has the form
${ }^{(k)} A\left(x_{1}^{n}\right)=\alpha_{k}^{-1}\left(-\alpha_{1} x_{1}-\alpha_{2} x_{2}-\cdots-\alpha_{k-1} x_{k-1}+x_{k}-\alpha_{k+1} x_{k+1}-\cdots-\alpha_{n} x_{n}-a\right)$
and is also $n-T$-quasigroup, since the mapping $I: I x=-x$ is an automorphism in an abelian group.

Proposition 5. Let (Q, A) and (Q, B) be two finite $n-T$-quasigroups over a group $(Q,+)$ of odd order,

$$
\begin{aligned}
& A\left(x_{1}^{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{k-1} x_{k-1}+x_{k}+\alpha_{k+1} x_{k+1}+\cdots+\alpha_{n} x_{n} \\
& B\left(x_{1}^{n}\right)=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k-1} x_{k-1}+x_{k}+\beta_{k+1} x_{k+1}+\cdots+\beta_{n} x_{n}
\end{aligned}
$$

where $\beta_{i}=2 \alpha_{i}$ for each $i \in \overline{1, n}, i \neq k$, then $C=B \underset{k}{\oplus}{ }^{(k)} A=A, B=A \underset{k}{\oplus} A$ and $A \perp(A \underset{k}{\oplus} A), A \perp{ }^{(k)} A,{ }^{(k)}(A \underset{k}{\oplus} A) \perp{ }^{(k)} A$.

Proof. In this case $\beta_{i}=2 \alpha_{i}$ is an automorphism for any $i \in \overline{1, n}, i \neq k$, since in a group $(Q,+)$ of odd order the mapping $x \rightarrow 2 x$ is a permutation. Find the form of the n-operation C using $(2): C\left(x_{1}^{n}\right)=\left(B \underset{k}{\oplus}{ }^{(k)} A\right)\left(x_{1}^{n}\right)=B\left(x_{1}^{k-1},{ }^{(k)} A\left(x_{1}^{n}\right), x_{k+1}^{n}\right)=$ $2 \alpha_{1} x_{1}+2 \alpha_{2} x_{2}+\cdots+2 \alpha_{k-1} x_{k-1}-\alpha_{1} x_{1}-\alpha_{2} x_{2}-\cdots-\alpha_{k-1} x_{k-1}+x_{k}-\alpha_{k+1} x_{k+1}-$ $\cdots-\alpha_{n} x_{n}+2 \alpha_{k+1} x_{k+1}+\cdots+2 \alpha_{n} x_{n}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{k-1} x_{k-1}+x_{k}+$ $\cdots+\alpha_{k+1} x_{k+1}+\cdots+\alpha_{n} x_{n}=A\left(x_{1}^{n}\right)$. Any $(n-1)$-retract of $C=A$ is a $(n-1)$ quasigroup, so is complete and $A \perp B$ by Definition 4 (or by Theorem 2). Since $C=B \underset{k}{\oplus}{ }^{(k)} A=A$, then $B=A \underset{k}{\oplus} A$. Orthogonality of the rest n-operations pointed in the proposition follows from Corollary 2.

The following useful criterion of orthogonality of two $n-T$-quasigroups is valid.

Theorem 3. Two $n-T$-quasigroups (Q, A) and (Q, B) where

$$
A\left(x_{1}^{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}+a, B\left(x_{1}^{n}\right)=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}+b
$$

are orthogonal if and only if the $(n-1)$-operation \bar{C} :

$$
\begin{equation*}
\bar{C}\left(x_{1}^{n}\right)_{k}=\gamma_{1} x_{1}+\gamma_{2} x_{2}+\cdots+\gamma_{k-1} x_{k-1}+\gamma_{k+1} x_{k+1}+\cdots+\gamma_{n} x_{n} \tag{3}
\end{equation*}
$$

is complete, where

$$
\gamma_{i} x_{i}=\beta_{i} x_{i}-\beta_{k} \alpha_{k}^{-1} \alpha_{i} x_{i}=\left(\beta_{i}-\beta_{k} \alpha_{k}^{-1} \alpha_{i}\right) x_{i}, \quad i \in \overline{1, n}, i \neq k .
$$

Proof. By Remark 1 and Definition 4 we need to prove that \bar{C} is complete if and only if the $(n-1)$-retract C_{c} of $C=B \underset{k}{\oplus}{ }^{(k)} A$ defined by $x_{k}=c$, for some $k \in \overline{1, n}$ and $c \in Q$, is complete. Using (2) we have $C\left(x_{1}^{n}\right)=\left(B \underset{k}{\oplus}{ }^{(k)} A\right)\left(x_{1}^{n}\right)=$ $B\left(x_{1}^{k-1},{ }^{(k)} A\left(x_{1}^{n}\right), x_{k+1}^{n}\right)=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k-1} x_{k-1}+\beta_{k} \alpha_{k}^{-1}\left(-\alpha_{1} x_{1}-\alpha_{2} x_{2}-\right.$ $\left.\cdots-\alpha_{k-1} x_{k-1}+x_{k}-\alpha_{k+1} x_{k+1}-\cdots-\alpha_{n} x_{n}-a\right)+\beta_{k+1} x_{k+1}+\cdots+\beta_{n} x_{n}+b=$ $\left(\beta_{1}-\beta_{k} \alpha_{k}^{-1} \alpha_{1}\right) x_{1}+\left(\beta_{2}-\beta_{k} \alpha_{k}^{-1} \alpha_{2}\right) x_{2}+\cdots+\left(\beta_{k-1}-\beta_{k} \alpha_{k}^{-1} \alpha_{k-1}\right) x_{k-1}+\beta_{k} \alpha_{k}^{-1} x_{k}+$ $\left(\beta_{k+1}-\beta_{k} \alpha_{k}^{-1} \alpha_{k+1}\right) x_{k+1}+. .+\left(\beta_{n}-\beta_{k} \alpha_{k}^{-1} \alpha_{n}\right) x_{n}-\beta_{k} \alpha_{k}^{-1} a+b=\bar{C}\left(x_{1}^{n}\right)_{k}+\beta_{k} \alpha_{k}^{-1} x_{k}-$ $\beta_{k} \alpha_{k}^{-1} a+b($ see (3)).

Let $x_{k}=c$ be an arbitrary element of Q, then we have

$$
C\left(x_{1}^{k-1}, c, x_{k+1}^{n}\right)=C_{c}\left(x_{1}^{n}\right)_{k}=\bar{C}\left(x_{1}^{n}\right)_{k}+d=R_{d} \bar{C}\left(x_{1}^{n}\right)_{k}
$$

where $d=\beta_{k} \alpha_{k}^{-1} c-\beta_{k} \alpha_{k}^{-1} a+b, R_{d} x=x+d$. Thus, the $(n-1)$-retract $C_{c}\left(x_{1}^{n}\right)_{k}$ of C, defined by $x_{k}=c$, is isotopic to the ($n-1$)-ary operation $\bar{C}: C_{c}=\bar{C}^{T}$, $T=\left(\varepsilon, \varepsilon, \ldots, \varepsilon, R_{d}^{-1}\right)(\varepsilon$ denotes the identity permutation on $Q)$ and by Proposition $4 C_{c}$ is complete if and only if \bar{C} is complete.

Remark 3. Note that if the conditions of Theorem 3 hold for some $k \in \overline{1, n}$, then they hold for any $k \in \overline{1, n}$ (see Remark 1 for n-quasigroups).

Corollary 4. If in Theorem $3 \gamma_{i_{0}}=\beta_{i_{0}}-\beta_{k} \alpha_{k}^{-1} \alpha_{i_{0}}$ is a permutation for some $i_{0} \in \overline{1, n}, i_{0} \neq k$, then $A \perp B$.

Proof. In this case the $(n-1)$-operation \bar{C} of (3) is i_{0}-invertible, so it is complete.

From Theorem 3 and Corollary 4 a number of useful statements follow.
Corollary 5. Let in Theorem $3 \alpha_{k}=\beta_{k}$ for some $k \in \overline{1, n}$. Then
(i) if $\beta_{i_{0}}-\alpha_{i_{0}}$ is a permutation for some $i_{0} \in \overline{1, n}, i_{0} \neq k$, then $A \perp B$;
(ii) if $(Q,+)$ is an (abelian) group of odd order and $\beta_{i_{0}}=2 \alpha_{i_{0}}$ for some $i_{0} \in \overline{1, n}$, $i \neq k$, then $A \perp B$.

Proof. By $\alpha_{k}=\beta_{k}$ we have $\beta_{k} \alpha_{k}^{-1}=\varepsilon$ and $\gamma_{i}=\beta_{i}-\alpha_{i}$ for all $i \in \overline{1, n}, i \neq k$. In (i) use Corollary 4. Item (ii) is a particular case of (i), since $\beta_{i_{0}}=2 \alpha_{i_{0}}$ is a permutation (and so an automorphism) in a group of odd order.

Corollary 6. Let $\Sigma=\left\{A_{1}^{t}\right\}$ be a set of $n-T$-quasigroups on a set Q over the same group $(Q,+)$:

$$
\begin{equation*}
A_{i}\left(x_{1}^{n}\right)=\alpha_{i 1} x_{1}+\alpha_{i 2} x_{2}+\cdots+\alpha_{i n} x_{n}, i \in \overline{1, t} \tag{4}
\end{equation*}
$$

where $\alpha_{1 k}=\alpha_{2 k}=\cdots=\alpha_{t k}$ for some $k \in \overline{1, n}$. If for all $i, j \in \overline{1, t}, i \neq j$ there exists one number $s \in \overline{1, n}, s \neq k$ such that $\alpha_{i s}-\alpha_{j s}$ is a permutation, then the set Σ is pairwise orthogonal.

Proof. In this case $A_{i} \perp A_{j}$ for each $i, j \in \overline{1, t}, i \neq j$ by virtue of item (i) of Corollary 5 since $\alpha_{i k}=\alpha_{j k}$ for all $i, j \in \overline{1, t}, i \neq j$.

Example 1. Let $\Sigma=\left\{A_{1}^{p-1}\right\}$ be a set of $n-T$-quasigroups over a group $(Q,+)$ (with the identity 0) of a prime order p, where $n-T$-quasigroups of (4) have the form

$$
\begin{gathered}
A_{1}\left(x_{1}^{n}\right)=a_{1} x_{1}+a_{12} x_{2}+\cdots+a_{1, n-1} x_{n-1}+a x_{n} \\
A_{2}\left(x_{1}^{n}\right)=a_{2} x_{1}+a_{22} x_{2}+\cdots+a_{2, n-1} x_{n-1}+a x_{n} \\
\cdots \\
A_{p-1}\left(x_{1}^{n}\right)=a_{p-1} x_{1}+a_{p-1,2} x_{2}+\cdots+a_{p-1, n-1} x_{n-1}+a x_{n}
\end{gathered}
$$

$\alpha_{i 1} x=a_{i} x, a_{i} \neq a_{j}$, if $i \neq j, i, j \in \overline{1, p-1}, \alpha_{i k} x=a_{i k} x$, if $k \neq 1$ and $k \neq n, a_{i n}=a$, $i \in \overline{1, p-1}, a, a_{i}, a_{i k} \in Q \backslash 0$ for all $i \in \overline{1, p-1}$.

By Corollary 6 the set Σ is pairwise orthogonal by $s=1$ since $a_{i 1}-a_{j 1}=$ $a_{i}-a_{j} \neq 0$, so the mapping $x \rightarrow\left(a_{i}-a_{j}\right) x$ is a permutation by $i \neq j$ and by $\alpha_{1 n} x=\alpha_{2 n} x=\cdots=\alpha_{p-1, n} x=a x($ here $k=n)$.

Further we shall establish some conditions for orthogonality of an $n-T$ quasigroup to some its parastrophes, using Theorem 3. Parastrophe-orthogonality of binary quasigroups and minimal identities connected with such orthogonality were in detail studied by V.D.Belousov in [4].

At first we recall that an automorphism α of a group $(Q,+)$ is called complete if the mapping $x \rightarrow x+\alpha x$ is a permutation of Q, that is if α is a complete permutation [5].

Proposition 6. If an $n-T$-quasigroup $(Q, A), A\left(x_{1}^{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}+a$ where α_{l} is a complete automorphism of the group $(Q,+)$ for some $l \in \overline{1, n}$, then $A \perp{ }^{(l)} A$.

Proof. Using expression (2) for ${ }^{(l)} A$ and taking in Theorem $3 k \neq l, B={ }^{(l)} A$ we obtain $\beta_{l}=\alpha_{l}^{-1}$ and $\beta_{k}=-\alpha_{l}^{-1} \alpha_{k}$. Then $\gamma_{l}=\beta_{l}-\beta_{k} \alpha_{k}^{-1} \alpha_{l}=\alpha_{l}^{-1}+\alpha_{l}^{-1} \alpha_{k} \alpha_{k}^{-1} \alpha_{l}=$ $\alpha_{l}^{-1}\left(\varepsilon+\alpha_{l}\right)$ is a permutation and so $A \perp^{(l)} A$ by Corollary 4 .

Corollary 7. An $n-T$-quasigroup (Q, A) over a group $(Q,+)$ with $A\left(x_{1}^{n}\right)=\alpha x_{1}+$ $\alpha x_{2}+\cdots+\alpha x_{n}+a$, where α is a complete automorphism of $(Q,+)$, is orthogonal to ${ }^{(l)}$ A for each $l \in \overline{1, n}$. Moreover, if, in addition, $n \geq 3$, then the set $\Sigma=$ $\left\{A,{ }^{(1)} A, \ldots,{ }^{(n)} A\right\}$ is pairwise orthogonal.

Proof. The first statement follows immediately from Proposition 6. Prove that ${ }^{(i)} A \perp{ }^{(j)} A$ for each $i, j \in \overline{1, n}, i \neq j$. By (2) we have

$$
\begin{gathered}
{ }^{(i)} A\left(x_{1}^{n}\right)=\alpha^{-1}\left(-\alpha x_{1}-\alpha x_{2}-\cdots-\alpha x_{i-1}+x_{i}-\alpha x_{i+1}-\cdots-\alpha x_{n}-a\right)= \\
-x_{1}-x_{2}-\cdots-x_{i-1}+\alpha^{-1} x_{i}-x_{i+1}-\cdots-x_{n}-\alpha^{-1} a= \\
I x_{1}+I x_{2}+\cdots+I x_{i-1}+\alpha^{-1} x_{i}+I x_{i+1}+\cdots+I x_{n}+b= \\
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}+b, b=-\alpha^{-1} a \\
{ }^{(j)} A\left(x_{1}^{n}\right)=I x_{1}+I x_{2}+\cdots+I x_{j-1}+\alpha^{-1} x_{j}+I x_{j+1}+\cdots+I x_{n}+b= \\
\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}+b .
\end{gathered}
$$

Since $i \neq j$ and $n \geq 3$ then there exists $k \in \overline{1, n}$ such that $\alpha_{k}=\beta_{k}(k \neq i, j)$. In this case we have $\alpha^{-1} x_{j}-\left(I x_{j}\right)=\left(\alpha^{-1}+\varepsilon\right) x_{j}$, so the map $\beta_{j}-\alpha_{j}=\alpha^{-1}+\varepsilon$ is a permutation since α is a complete automorphism. By item (i) of Corollary 5 (if $\left.\left.i_{0}=j\right)\right)^{(i)} A \perp{ }^{(j)} A$. Taking into account that $A \perp{ }^{(l)} A$ for any $l \in \overline{1, n}$, we obtain that Σ is a pairwise orthogonal set.

From Corollary 7, in particular, it follows that if A is an $n-T$-quasigroup $(n \geq 3)(Q, A): A\left(x_{1}^{n}\right)=x_{1}+x_{2}+\cdots+x_{n}+a$ over a group of odd order, then $\Sigma=\left\{A,{ }^{(1)} A, \ldots,{ }^{(n)} A\right\}$ is pairwise orthogonal set, since the identity automorphism ε in such group is complete.

A direct corollary of Theorem 3 for an $n-T$-quasigroup which is orthogonal to some its principal σ-parastrophe is the following

Proposition 7. Let (Q, A) be an $n-T$-quasigroup over a group $(Q,+): A\left(x_{1}^{n}\right)=$ $\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}+a, \sigma(n+1)=n+1$. Then $A \perp{ }^{\sigma} A$ if and only if for some $k \in \overline{1, n}$ the $(n-1)$-operation \bar{C} :

$$
\begin{gathered}
\bar{C}\left(x_{1}^{n}\right)_{k}=\left(\alpha_{\sigma 1}-\alpha_{\sigma k} \alpha_{k}^{-1} \alpha_{1}\right) x_{1}+\left(\alpha_{\sigma 2}-\alpha_{\sigma k} \alpha_{k}^{-1} \alpha_{2}\right) x_{2}+\cdots+\left(\alpha_{\sigma(k-1)}-\alpha_{\sigma k} \alpha_{k}^{-1} \alpha_{k-1}\right) x_{k-1}+ \\
\left(\alpha_{\sigma(k+1)}-\alpha_{\sigma k} \alpha_{k}^{-1} \alpha_{k+1}\right) x_{k+1}+\cdots+\left(\alpha_{\sigma n}-\alpha_{\sigma k} \alpha_{k}^{-1} \alpha_{n}\right) x_{n}
\end{gathered}
$$

is complete.
Proof. By the definition of a principal parastrophe ${ }^{\sigma} A(\sigma(n+1)=n+1)$ of A

$$
\begin{gathered}
{ }^{\sigma} A\left(x_{1}^{n}\right)=A\left(x_{\sigma^{-1} 1}^{\sigma^{-1} n}\right)=\alpha_{1} x_{\sigma^{-1} 1}+\alpha_{2} x_{\sigma^{-1}}+\cdots+\alpha_{n} x_{\sigma^{-1} n}+a= \\
\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}+a
\end{gathered}
$$

where $\beta_{i} x_{i}=\alpha_{\sigma i} x_{i}, i \in \overline{1, n}$. Further use Theorem 3 with $\gamma_{i}=\beta_{i}-\beta_{k} \alpha_{k}^{-1} \alpha_{i}=$ $\alpha_{\sigma i}-\alpha_{\sigma k} \alpha_{k}^{-1} \alpha_{i}$.

Corollary 8. If (Q, A) is an $n-T$-quasigroup, $n \geq 3, A\left(x_{1}^{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+$ $\cdots+\alpha_{n} x_{n}+a, \sigma(n+1)=n+1, \sigma k=k$ for some $k \in \overline{1, n}$ and $\alpha_{\sigma i_{0}}-\alpha_{i_{0}}$ is a
permutation for some $i_{0} \in \overline{1, n}, i_{0} \neq k$, then $A \perp{ }^{\sigma} A$. If, in addition, $(Q,+)$ has odd order and $\alpha_{\sigma i_{0}}=2 \alpha_{i_{0}}$, then $A \perp{ }^{\sigma} A$.

Proof. We have ${ }^{\sigma} A\left(x_{1}^{n}\right)=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k-1} x_{k-1}+\alpha_{k} x_{k}+\beta_{k+1} x_{k+1}+\cdots+$ $\beta_{n} x_{n}+a$, where $\beta_{i}=\alpha_{\sigma i}$, so $\beta_{k}=\alpha_{k}$, as $\sigma k=k$ and we can use items (i) and (ii) of Corollary 5 , respectively.

Note that for $n=2$ we have $\sigma=\varepsilon$ (that is ${ }^{\sigma} A=A$) by the conditions of this corollary (if $\sigma 3=3, \sigma 1=1$, then $\sigma=(1, \sigma 2,3) \Rightarrow \sigma 2=2$).

Example 2. Let (Q, A) be an $n-T$-quasigroup, $n \geq 3$, over a group of odd order with $A\left(x_{1}^{n}\right)=\alpha_{1} x_{1}+2 \alpha_{1} x_{2}+\cdots+\alpha_{n} x_{n}+a, i_{0}=1, \sigma(n+1)=n+1, \sigma 1=2$ and $\sigma k=k$ for some $k \in \overline{1, n}, k \neq 1$. Then $\alpha_{\sigma 1}-\alpha_{1}=\alpha_{2}-\alpha_{1}=2 \alpha_{1}-\alpha_{1}=\alpha_{1}$. By Corollary $8 A \perp{ }^{\sigma} A$ for any $\alpha_{i} \neq 0, i \in \overline{1, n}, \quad i \neq 2$.

Corollary 9. If (Q, A) is an $n-T$-quasigroup, $n \geq 3$, over a group of a prime order, $A\left(x_{1}^{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+a, a_{i} \neq 0, a_{i} \neq a_{j}$, if $i \neq j, \sigma(n+1)=n+1$, $\sigma k=k$ for some $k \in \overline{1, n}$ and $\sigma i_{0} \neq i_{0}$ for some $i_{0} \neq k$, then $A \perp{ }^{\sigma} A$.

Proof. In a group of a prime order all mappings $x \rightarrow a x$, where $a \neq 0$ are automorphisms. If $\sigma i_{0} \neq i_{0}$, then the mapping $x \rightarrow\left(a_{\sigma i_{0}}-a_{i_{0}}\right) x$ is a permutation (an automorphism), so by Corollary $8 A \perp{ }^{\sigma} A$.

Example 3. Let $(Q,+)=\left(Z_{p},+\right)$ be a group of a prime order $p \geq 7, Q=$ $\{0,1,2, \ldots, p-1\}, A\left(x_{1}^{5}\right)=3 x_{1}+5 x_{2}+4 x_{3}+2 x_{4}+x_{5}$ and $\sigma=(2,3)$, then $\sigma 3=2 \neq 3$, $\sigma 4=4 \quad\left(k=4, i_{0}=3\right), \quad{ }^{\sigma} A\left(x_{1}^{5}\right)=A\left(x_{\sigma^{-1}}^{\sigma_{1}^{-1}}\right)=3 x_{1}+5 x_{3}+4 x_{2}+2 x_{4}+x_{5}=$ $3 x_{1}+4 x_{2}+5 x_{3}+2 x_{4}+x_{5}$. By Corollary $9 A \perp{ }^{\sigma} A$.

References

[1] Belousov V.D. On properties of binary operations. Uchenye zapiski Bel'tskogo pedinstituta, 1960, vyp. 5, p. 9-28 (in Russian).
[2] Belousov V.D. Systems of quasigroups with generalized identities. Uspehi mat. nauk, 1965, XX, N 1(121), p. 75-146 (in Russian).
[3] Belousov V.D. Systems of orthogonal operations. Mat. sbornic, 1968, 77(119):1, p. 38-58 (in Russian).
[4] Belousov V.D. Parastrophe-orthogonal quasigroups. Preprint, Kishinev, Shtiintsa, 1983 (in Russian); see also Quasigroups and related systems, vol. 13,2005,25-72.
[5] Denes J., Keedwell A.D. Latin squares and their applications. Budapest, Academiai Kiado, 1974.
[6] Mann H.B. On orthogonal latin squares. Bull. Amer. Math. Soc., 1944, 50, p. 249-257.
[7] Sade A. Groupoides orthogonaux. Publ. Math. Debrecen, 1958, 5, p. 229-240.
[8] Belousov V.D., Yacubov T. On orthogonal n-ary operations. Combinatornaya matematica. Moscow, 1974, p. 3-17 (in Russian).
[9] Yacubov T. On (2,n)-semigroup of n-ary operations. Izvestiya AN MSSR., Ser. fiz.-teh. i mat. nauk, 1974, N 1, p. 29-46 (in Russian).
[10] Belousov V.D. n-Ary quasigroups. Kishinev, Shtiintsa, 1972 (in Russian).
[11] Belyavskaya G., Mullen Gary L. Orthogonal hypercubes and n-ary operations. Quasigroups and related systems, vol. 13, 2005, 73-86.
[12] Kishen K. On the construction of latin and hyper-graceo-latin cubes and hypercubes. J. Ind. Soc. Agric. Statist., 1950, 2, p. 20-48.
[13] Laywine C.F., Mullen G.L., Whittle G. D-Dimensional hypercubes and the Euler and MacNeish conjectures. Monatsh. Math., 1995, 111, p. 223-238.
[14] Bektenov A.S., Yacubov T. Systems of orthogonal n-ary operations. Izvestiya AN MSSR, Ser. fiz.-teh. i mat. nauk, 1974, N 3, p. 7-14 (in Russian).
[15] Evans T. Latin cubes orthogonal to their transposes - a ternary analogue of Stein quasigroups. Aequat. Math., 1973, 9, N 2/3, p. 296-297.
[16] Evans T. The construction of orthogonal k-skeins and Latin k-cubes. Aequat. Math., 1976, 14, N 3, p.485-491.
[17] Stojacović Z. Medial cyclic n-quasigroups. Novi Sad J. Math., 1998, 28, N 1, p. 47-54.
[18] Syrbu P.N. On congruences of n-ary T-quasigroups. Quasigroups and related systems, 1999, 6, p. 71-80.
[19] Syrbu P.N. On orthogonality and self-orthogonality of n-ary operations. Mat. Issled., vyp. 95. Kishinev, Shtiintsa, 1987, p. 121-130 (in Russian).
[20] Belyavskaya G., Murathudjaev S. About admissibility of n-ary quasigroups. Colloquia Mathematica Societatis Janos Bolyai. Combinatorics, Keszthely (Hungary), 1976, p. 101-119.
[21] Belyavskaya G., Murathudjaev S. Admissibility and orthogonality of many-placed operations. Abstracts of the Second Conf. of Math. Soc. of Republic of Moldova. Chishinau, 2004, p. 40-41.
[22] Murathudjaev S. Admissible n-quasigroups. Connection of admissibility with orthogonality. Mat. Issled., vyp. 83, Kishinev, Shtiintsa, 1985, p. 77-86 (in Russian).

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei str. 5, MD-2028 Chisinau
Moldova
E-mail: gbel@math.md

[^0]: G. Belyavskaya, 2005
 *Acknowledgment: The research described in this article was made possible in part by Award No. MM1-3040-CH-02 of the Moldovan Research and Development Association (MRDA) and the U.S. Civilian Research \& Development Foundation for the Independent States of the Former Soviet Union (CRDF).

