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1 Introduction

The notion of the Riemann extension of nonriemannian spaces was introduced
first in [1]. Main idea of this theory is application of the methods of Riemann
geometry for studying properties of nonriemaniann spaces.

For example the system of differential equations of the form

d?z* T dz' dz? 0 (1)
ds? “ds ds
with arbitrary coefficients Hfj (2') can be considered as a system of geodesic equations
of affinely connected space with local coordinates z*.

For n-dimensional Riemannian spaces with the metrics
"ds? = gijdx’da?

the system of geodesic equations looks similarly but the coefficients Hf}-(ml) now have
very special form and depend on the choice of the metric g;;;

‘ 1,
k= Ukt = 59" (9t + gtk = Iki,m)

In order that methods of Riemann geometry can be applied for studying prop-
erties of spaces with equations (1) the construction of 2n-dimensional extension of
the space with local coordinates x* was introduced .

The metric of extended space is constructed with the help of coefficients of equa-
tion (1) and looks as follows

ngs? = —2Hfj(:cl)\llkd:cidxj + 2dW;,dz® (2)
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where U, are the coordinates of additional space.
An important property of such type metric is that the geodesic equations of
metric (2) decompos into two parts

i +Thi'd =0, (3)
and 52
where ‘
(S\I/k d\I/k 1 dx?
— = — T, —.
ds ds k= 0s

The first part (3) of the full system is the system of equations for geodesics of
basic space with local coordinates z* and it does not contain coordinates Wy.
The second part (4) of system of geodesic equations has the form of linear 4 x 4
matrix system of second order ODE’s for coordinates Wy,
4> d¥ .
— + A(s)— + B(s)¥ =0 5
o+ As) S+ B(s) 5)

with the matrix ‘ ‘ ' ‘
A= A(x*(s),2'(s)), B = B(z'(s),z'(s)).

From this point of view we have the case of geodesic extension of the basic
space (x'). Tt is important to note that the geometry of extended space is connected
with geometry of basic space.

For example the property of the space to be a Ricci-flat

Rij =0, Ry + Rpij + Rjkyi = 0,

or symmetrical
Rijki;m =0
keeps also for the extended space.
This fact givs us the possibility to use the linear system of equation (5) for
studying properties of basic space.
In particular the invariants of 4 x 4 matrix-function

under change of coordinates ¥ can be used for that.
For example the condition

1dA 1
E=B—--— —-A%2=
2ds 4 0

for a given system means that it is equivalent to the simplest system
PRI

a2 =0
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and corresponding extended space is a flat space.

Other cases of integrability of the system (5) are connected with non-flat spaces
having special form of the curvature tensor.

Remark that for extended spaces all scalar invariants constructed with the help
of curvature tensor and its covariant derivatives are vanishing.

The first applications of the notion of extended spaces to the studying of non-
linear second order differential equations and the Einstein spaces were done in the
works of author [2-11]

Here we consider properties of the Godel space-time and its Riemann extension.

2 The Godel space-time metric

The line element of the metric of the Godel space-time in coordinates x,y, z,t
has the form

ds? = —dt® + da® — 2eadtdy — 1/2¢* ady® + d=>. (6)

Here the parameter a is the velocity of rotation [12].
The geodesic equations of the metric (6) are given by

2 (j—;x(S)) a+ (ezs)>2 (Ciii,y(s))2 +2ets (%HS)) %y(s) =0, (7)

(j—;t (.;)) e (%y (.;)) %x (s)+2 (d%t(s)> d%x (s)=0.  (10)

The first integral of geodesics satisfies the condition

- (%us))Q ¥ (dim) 20 (1) Gl - 12 (%ws)f ¥

The symbols of Christoffel of the metric (6) are

exp(z/a) exp(—x/a) 1 exp(2z/a)
Ify = T on i = T iy = pE T3y = T on
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To find solutions of the equations of geodesics (7)—(10) we present the metric
(6) in equivalent form [13]

2
ds® = —(dt + “\TFdx) y2 (dx? + dy®) + dz*>. (11)

The correspondence between the both forms of the metrics is given by the rela-
tions
y=av2exp(—z/a), = =1y.

The equations of geodesics of the metric (11) are defined by

(o)) 0+ V2 (240 uts) =0, (12)

(13)
d? 9 d d d d
V2 | = _ -2 | = — = 14
(3 2t<s>) 0 = Vaa (o09)) a2 (550000 ) (009) ) o) =0, (1)
d2
The geodesic equations admit the first integral
dt _ (—c2/V2+ V2y) dr _ y(e2 —y)
ds co ’ ds acg
dy _ylr—c)  dz_c (16)
ds acy ds ¢

where ¢;, ag are parameters.

Remark 1. In the theory of varieties the Chern-Simons characteristic class is
constructed from a matrix gauge connection A;k as

1

W) =

/d3xeljkt7“ <§A28JA;€ + gAlAjAk> .

This term can be translated into a three-dimensional geometric quantity by re-
placing the matrix connection A’ with the Christoffel connection I‘;.k..
For the density of Chern-Simons invariant the expression can be obtained [14]

jk
CS(T) = k(I + 3rfqrgr -

For the metric (11) by the condition z = const

ds? = —az/yzde — 2\/§a/ydxdt + az/dey2 — dt?



ON GEOMETRICAL PROPERTIES OF THE GODEL SPACE-TIME METRIC 47

we find the quantity

V2
cs) = TR
For the spatial metric
3ds? = —Gap + 900905
goo
of the metric (11)
—ds® = %(dm + dy?) + dz2?

the quantity CS(I") =

3 The Riemann extension of the Godel metric

The Christofell symbols of the metric (11) are

1 1 2 2 2
I‘11___7 F22___7 F14__£ F54:£7 F12__%2_7 Z114:__'
Yy y 2a 2y y

2a’

Now with the help of the formulae (2) we construct eight-dimensional extension
of the metric (11).
It has the form

2 4 2
a\/—Vd:vdy + i@dazdt + = Qd + ( V- 2£P)dydt+
a

2
8ds? = ZQdx® +
Yy

+2dxdP + 2dydQ + 2dzdU + 2dtdV. (17)

where (P,Q,U, V) are additional coordinates.
The Ricci tensor of the four-dimensional Gédel space with the metric (11) or (6)
satisfies the condition
YRy + *Rii + * Ry = 0.

This property is valid for the eight-dimensional space in local coordinates
(x,y,2,t, P,Q,U, V) with the metric (11)

8 Ry + 8 Rii + %Ry = 0.

The full system of geodesic equations for the metric (7) decomposes into two
parts.

The first part coincides with the equations (12)—(15) on the coordinates (z, vy, z,t)
and second part forms the linear system of equations for coordinates P,Q,U, V.

They are defined as

£ (V) 42 () (o) va - VB2 (40)°) Vo
dSQP( ) ( )3a

<
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(2 (o) W°a + VI (D) 0)°) #Q()  Ba (LV(s) Ly

W’ ) 1
2 (-8 () v 2VE (L) () 0 (£9) va) Q)
ds2 Q(s) = 3 +
(y)"a
(20 () (F2)y+2 (£0) (£9) ) V2) Pls)
+ 3 +
(y) a
L (22 (1) (Ey) ya —2V2a? (y) o) Vis) | V2 (1) &P(s)
®)’a
, (Ly) LQ(s) . (—x/§a2 (Lz)y— 23(0%75) (1)? a) 4y (s (1)
Y (y) a
2
L3U(s) =0 (20)
& ((#2)*av2y +2 () () 0 + V2 ($y)" ay) P(s)
' 207 ’
(2R o)) - 20 ()" ) V) VB () Ps)
a? (y)? a
V2 (%xg =Q06) _, (&Y) g;%V(S) L5 Q0) (;%‘;st) =Y 21)

In result we have got a linear matrix-second order ODE for the coordinates
UV,P,Q
d*V AW
W :A("E,qb,Z?t)E+B($,¢,Z7t)\lj, (22)

where

and A, B are some 4 x 4 matrix-functions depending on the coordinates z(s), y(s),
z(s), t(s) and their derivatives.
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Now we shall investigate properties of the matrix system of equations
(18)—(21).

To integrate this system we use the relation

#(5)P(s) +§(5)Q(s) + £(s)U(s) + E(s)V(s) = 5 = = 0, (23)

which is valid for every Riemann extensions of affinely connected space and which
is a consequence of the well known first integral of geodesic equations g;4'cF = v
of arbitrary Riemann space.

Using the expressions for the first integrals of geodesic (16) and U(s) = as + 3
from the equation (20) the system of equations (18)—(21) may be simplified.

In result we get the system of equations for additional coordinates

2 cpacy — coazx) LV (s
%P(s):(\/ﬁg 1 y\c/fzcj )dsv( )_|_
+<—\/§c2y— 2/2xcl + \/iczz+\/§(y)2 HVIEP)V(6) _@eWe o)
ycola Copa
2 2 (y)’ e1 =2 (y)°z) P(s)
@Q (s) = _< ya?cp? ) -

(y () — (y)° +yes® +yeo? — 2yw01) Q (s)

ya?cp?

2\ d
(2acoyzr —2acoycr) L£Q (s) (aCO yes —2acy (y) ) i T (s) B 2LV (s)

ya?co? ya?co? Co
V2¢s a0z — /2 14
A Epar o) V0, (29
pe ((9)2 V2es — () V2 + yv2(x)? - 2yv2ac; + yﬂc;z) P(s)
5V (s) = +
ds? co2a’
(—ﬂyxCQ +V2ycr e +2vV2 () —2V2(y)’ 01> Q (s)
+ - +
cp“a
(—\/iyac() co +V2(y)? aco) £Q () (V2yaco x — V2yacy ¢;) &P (s)
+ co?a’ + co2a® +
n (—2@200 xz+2a’cy 01) %V (s) N (‘2002 y+2a (y)2) 14 (5) (26)

co2a® co2a®
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The relation (23) in this case takes the form

12 (Cg \/ia—Qy\/ia)V(s)_

Cpa Cpa

—2acla+cpa)s

—1/2(

(2 Cy y—2xy)Q(3) B 1/2 (2 (y)2 —2cy y) P(S)

—-1/2
/ Cpa Cpa

—v=0 (27)

and the system from three equations (24)—(26) can be reduced to the system of two
coupled equations.
As example the substitution of the expression

(CQ V2a — 2y\/§a) \% (s)+

y(x—cyp)

(—2acga+cpa)s
y(x—cr)

Q(s)=1/2 +1/2
(2 (y)Q—QCQ?J)P(S) vega
y(x(s)—cy) y(r—cq)

into the equation for Q(s) give us the identity and in result our system takes the
form

+1/2

d
d_zp(s) _ (et ylea g P(s)
ds? coa(x—cp)

(2 () —dxe; —2coy+ co? +2012> \/5%‘/(5)
~1/2 —
co (x—cr)y

c2y ((9)2 +ee? —2c0y+ e’ —2wes + (1’)2) P(s)
- +L(s)V (s) —
a?cp? ((:U)2 —2xcr + 012)

(—2acgacs + cpacy) sy(s) (—coacs® +2acsacs?) s

~1/2 —1/2 -
a?cp? ((:U)2 —2xcr + 012> a?cp? ((m)2 —2xcs + 012)
((2& Cgacs—cpacy) (:c)2+(2 cicpacs—4acycy ac,g):c> s
~1/2 _
a’co?y ((m)2—2x01 + 012)
2aveg cilacs—cicpacs) s
_1/2( 3 C17acg—c1 ¢ 2)’ (28)
a’co?y ((m)2—2x01 + 012)
where
2 \/§<2(m)2—302—4mc +202>y
2¢ 2 1 1
L(s)= ()" V2es +1/2 +

acp? ((m)Q —2xcs + 012) acp? ((CL‘)Q —2xcs + 012)
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\/§<—2 o (.%')2 —2¢ci%co+ 2% +4cy ey x)

acp? ((m)2 —2xcs + 012>

+1/2 -

\/5(2 (2)* =8 (z)® ¢; + (022 +12 012) (x)* + (—2co?c; —8¢4?) x)

+1/2 +
aco®y ((x(s))” —2xc; + 012)
2 2
+1/2 \/_(Cz 62 +2cy ) ’
acp y(( —21‘01 +612)
and
d? V(s) (2 () —4zc; —3coy+2 (y)2—|—2012+022> %V(s)—i_
- S) = —
ds? acy (x — cyp)
(W +e® —2coy+e® —2wes + (w>2) V2y P (s)
+ 5 4
cpa?(x —cy)
V2(co —2acy) s (y)°
M(s)V N(s)P 1/2
M)V () + NP () +1/2 2 20
_ 2
+1/2\/§( QCg 022+4a 03202)5(9) I
a’cp? (x — c1?)
/2 \/5(—204 c3 co®+co’cpterlep+a(cop —2acy) —2acs 012) sy+
a’cp? (x — ¢q?)
V2(@acse; —2¢q cq) x) sy
1/2 29
1/ a?cp?(x — ¢q?) ’ (29)
where
4 3
M (s) = -2 (y) +5 (y)” c2 B

a?cp? ((m)2 —2x(s) e + 012> a2cp? ((m)2 —2z(s)er + 012)

(—43001 +2 (ac)2 + 4242 012> (y)2 (—02 (.%')2 —ci2co+2co ey — 023) Y

a?cp? ((x)2—2x01 +012) a?cp? ((m)2—2m01 —|—cl2>

)

\/5(21)5 _3 \/5(9)4 C2

N (s) =
adcp? ((m)2—2x01 —1—012) adcp? ((m)2—2m01 —|—012>

+

\/5(2 () +3cs2 +2¢42 —43001) (y)?

+
adcp? ((ac)2 —2xzcy + cﬂ)

+
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V2 (—3 Co (.%')2 — 9% —3¢ci%co+6¢9cy x) (y)2

adcp? ((m)2 —2xcs + 012>

+ +

V2 ((:c)4 —4 (2)% el + (6c1? + c2?) (z)* + (—2¢2%c1 —4c13) :c)
a3c0? ((m)2 —2zcl + 012>

V2 (1t + c1?c2?)y
adc0? ((m)2 —2xcl + cl 2) .

_l’_

_l’_

The expressions for functions z(s) and y(s) are dependent on the choice of pa-
rameters and can be defined from the equations (16).

The integration of the equations (28)—(29) for the additional coordinates P(s),
Q(s) is reduced to investigation of a 2 x 2 system of second order ODE’s with variable
coefficients.

Remark that the matrix E and its properties play important role in the analysis
of such type of system of equations.

In result we get the correspondence between the geodesic in the x,y, x, t-space
and the geodesic in the space with local coordinates P,Q, U,V (partner space).

The studying of such type of correspondence may be useful from various points
of view.

4 Translation surfaces of the Godel spaces

Now we discuss some properties of translation surfaces of the Godel spaces.

According with definition ([15]) translation surfaces in arbitrary Riemannian
space are defined by the systems of equations for local coordinates x*(u,v) of the
space

0z (u, ) i 027 (u,v) 0 (u, v)
oudv J k@) ou v

where F;'- ;. are the Christoffel coefficients.

In the case of the Godel metric (6) we get the equations

=0, (30)

0? V2 Oy (u,v) Ot(u,v) n Q Ot(u,v) 0y(u,v)

auavx(u,v) + —

2a Ou ov 2a Ou o 0, (31)

0? (u, v) — an(u,v) Ot(u,v) @875(%1)) Oz (u,v)
dudv”’ " 2a  Ov ou 2a  Ov ou

_ 1 8.17(16, U) 856(“7 U) _ 1 ay(uv U) 8y(u7 U) -0 (32)
y(u,v)  Ou v y(u,v)  Ou ov
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0?2 ) 1 Oy(u,v) Ot(u,v) 1 Ot(u,v) Oy(u,v)
dudv y(u,v) Ou ov y(u,v) Ou ov
B V2a  0x(u,v) dy(u,v) B V2a  0x(u,v) dy(u,v) 0 (33)
2y(u,v)?  Ou v 2y(u,v)?2 v ou
82
Sudn” (u,v) =0. (34)

Full integration of this nonlinear system of equations is a difficult problem.
Give one example.
With this aim we present our system of equations in new coordinates
U=7r-—+S8v=1r—=S.
It takes the form
2

2
2 <1/4 %x(r, s)—1/4 %x(r, s)> at
+/2 (1/2 %y(r, s)+1/2 %y(r, s)) (1/2 %t(r, s)—1/2 %t(r, s)> +

+/2 <1/2 %t(r, s)+1/2 %t(r, s)> <1/2% (r,5)=1/2 0 —y(r, s)) =0,

—2 (1 /4 66—;y(r, s)—1/4 aa—;y(r, 3)) y(r, s)a+
) <1/2 %x(r,s) +1/2 %x(r, 3)> <1/2 %x(r, $—1/2 %x(r, s)> ot
+v2 <1/2 %x(r, s)+1/2 %x(r, 3)> (1/2 %t( —1/2 ﬁt(r 3)> y(r,s)+
2 (1/2 %y(r, s)+1/2 %y(r, s)) (1/2 %y(r, s)—1/2 %y(r, s)) a+t

+v2 <1/2 %t(r, 5)+1/2 %t(r, s)> <1/2 %x(r, s)—1/2 %x(r, s)> y(r,s) =0,

2 2
-2 (1/4 %t(r s) —1/4 §2t(r 8)> (y(r,5))* +
2 (112 5 a(r5) +1/2 5ra(r,s) ) 1249 +

(125
+v2a (1/2 5 u(r.s) +1/2 —y r,s ) (1/2 —x(r,s) —1/2 %x(r,s)) +
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+2 <1/2 %y(r, ) +1/2 %y(r, 3)> <1/2 %t(r, 9 —1/2 %t(r, 3)> y(r, s)+

0 0 0 0
+2 <1/2 Et(r, 5)+1/2 &t(r, s)) <1/2 Ey(r, s)—1/2 &y(r, s)) y(r,s) = 0.
A solution of this system of equations we shall seek in the form
y(r,s) = B(r), t(r,s)=C(r)—s, z(r,s)=s+ A(r),

where B(r),C(r), A(r) are some unknown functions.
In result our system takes the form

<;—;C(7‘)) (B(r)? — v3a (%B(@) %A(T) ) <

=
SN
—
=
SN—
N———
SN
—
=
SN—
—
=
N~—
I
o

(j—;B(r)) B(r)a—a <%A(T)>2+a —V3B(r) <%A(r)) %C(T)—ﬁB(ry

(o) oo

(d—QA(r)) 0+ VE(5B(0)) 40l =o.

dr?

Using the first integral

d \/ia%A(r)
%C(T’) = —W + a,

the system can be written in the form

(%B(r)) B(r)a+a (%A(@)z fa—3 (%A(T)) o B(r) — VZB(r)-

d 2
- <%B(r)> a=0,
(%A(@) aB(r) — 2 (%B(@) 0 A(r) + V2 (%B(@) o B(r) = 0.

Integration of the last equation gives us the expression for the function A(r)

A(r) = /B(T) (\/ia ;— B(r)C; a)

dr + Cg

with parameters C1,Cy and «.
After substitution of the expression for A(r) in the first equation we get the
equation

(%B(r)) B(r)a+ (B(r))* V2a C; + (B(r))* C1%a +a — V2B(r)—
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d 2
- (%B (T)) a=20
for the function B(r).
Remark that this equation can be written in the form

2 —FE(r E(r
& ) = V2eEO o apey _ V20 C1 e apg
dr a a

after the change of variable B(r) = exp(E(r)).

With the help of its solutions the examples of the translation surfaces of the
Godel space (6) can be constructed.

They can be presented in form

t+x=A(r)+C(r), y=B(r),

or t(x,y) =x+ ¢(y) with some function ¢(y).

Detailed consideration of properties of this type of translation surfaces, their
intrinsic geometry and characteristic lines will be done in following publications of
author.

Remark that with the help of the translation surfaces the properties of closed
trajectories of the Godel space can be investigated.

Let us consider the eight-dimensional extension of the Goédel space with the
metric (17).

Translation surfaces in this case are determined by the equations (28)—(31) for
coordinates x, vy, z,t and by the linear system of equations in coordinates P,Q,U,V

82
8u8vp (u,0) =
1 Oz Oz Oz Ot Oy Jy ot Ox
_ T L 902227 Yd
mf( Ve T W5, T2V S 88>wa+
1 20z 30t 0Q(u,v) 1 20z 3 0L\ 9Q(u,v)
+2ay3 <2a ou " vy 8u> v T 2ay3 20 o " V2y v ou
a\/i@a‘/(u,v) aﬁ@@V(u,v) _o (35)
2y%2 Ou  Ov 292 ov ou
82
auan (U,U) +
1 Oz Ox Oz Ot Oz Ot Oy Jy
— — 12/ 2—— 2 2—— 2a
T 5a? (6 aa+\f +2v2y - 88)Q(uv)+

1 Oz Oy 28y 8t 28y 675 Oy Ox
| —2ayZ= I I ay ) p
+2ay3 < Youou 2v2y 2v2y “You o (v, )+
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1 Oy ot 263/ 8x 28y 6m Oy Ot

—(2a 2 222 2L = 4 20y =L —
+2ay3< ay 5 oo+ 22y S o+ 2V SR 2ay s o )V (u,0)+
;@@&Q}@%&ﬂ_ﬁﬁwww V20t OP(uv)

you Ov yov Ou 2a Ou Qv 2a Qv Ou

+ 1 2aya——|—\/—2 Ox 8V(uv)+
ou ou ov

1 ot dz\ OV (u,v)
(20290 4 Ba2y 08 ) O Y)
+2ay3 ( Wgy Tt V2 y@v) ou 0 (36)

0? 1 [0y dt Oy ot
udv

9 Viwv)+ —— Jude T Do )Q(U,U)—
1 Oz Ot Oz Ox Oy Oy ot Ox
L il g It ot 2 P
a’y <y6u v +m/76u v +a\/_8u6 MR ) (u,0)+
1 Ox Oz Ox Ot ot Ox
(a2 gt & D
+ay2 ( “Bu v +y\/_8u a0 TV 0 6’0) Viu, )+

V20x0Q V20x0Q 10yovV  10ydoV

2a Ou Ov 2a8118u+y8u8@+y8@8u
V20yoP /20y 0P

" 9a v 0u  2adudw "V (37)
82
5ude U (u,v) = 0. (38)

The system of linear equations (32)—(35) is the matrix analog of the Laplace
equation

0% (u,v) OV (u,v) OV (u,v) B
~Budy A(U’U)T + B(u,v)T + C(u,v)¥(u,v) =0, (39)
where
P(u,v)
v = | g
V(u,v)

is a vector-function, and A(u,v), B(u,v),C(u,v) are matrices depending on the vari-
ables (u,v).

For integration of such type of equation the matrix generalization of the Darboux
Invariants [16] can be used.

Remark 2. We remind basic facts on the integration of the matrix Laplace-
equation.
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The system (39) can be presented in the form
(Ou+ B)(0y + A)¥ — HY =0,

or

@y + A)(y + B)U — KU = 0,

where
H:%—I—BA—C, Kza—B+AB—C,
ou ov
are the Darboux invariants of the system.
In the case K =0 or H = 0 the system can be integrated.
If K # 0 and H # 0 the system may be presented in a similar form for the

functions

ov

v =20 4 Aw.
1 ay +
or o
V_y=—+BV.
ox
In the first case one gets
2\1, N o
8811175‘)%1}) * Al(u’v)w T Bl(uav)&s,v) + C1(u, v) ¥y (u,v) =0,
where

Ay=HAH'-H,H' B, =B, Ci,=B,-H+ (HAH'-H,H ")B.
The invariants H; and K for this equation are
Hy=H-B,+(HAH '-H,H '), +B(HAH '-H,H ")~ (HAH '-H,H B,
K, =H.

In the case H; = 0 the system can be integrated.
In the second case we get the equation for the function ¥_;

0?W_q(u,v) oV _1(u,v) OV _1(u,v)
TELD) A a) Py ) D 0wy (u0) = 0
where

B, =KBK'-K,K' A,=A C,=A,-K+(KBK'-K,K 1A,
The invariants H_1 and K _ for this equation are
K, =K-A+KBK'-K,K ", +AKBK '-K,K )~ (KBK'-K,K ')A,
H, =K

and by the condition K_; = 0 the system is also integrable.

To integrate the system of equations (39) in explicit form it is necessary to use
the expressions for coordinates z(u,v),y(u,v), z(u,v), t(u,v) of translation surfaces
of the basic space.

The properties of the invariants H and K also may be important for classifica-
tions of translation surfaces of the basic and extended Go6del space.
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5 On the spectrum of the Godel space-time metric
In this section the spectrum A of de Rham operator
A = ¢""V;V; — Ricci,
defined on a four-dimensional Riemannian manifold and acting on 1-forms
w= Ai(x,y, 2)dz’ = u(z,y,z,t)dr +v(z,y, 2, t)dy + p(z,y, z,t)dz + q(z,y, 2, t)dt

will be calculated.
The problem is reduced to the solution of the system of equations

g7V V Ay — RLA — 2 Ay, = 0, (40)

where Vj, is a symbol of covariant derivative and Ré» is the Ricci tensor of the metric
g% of the Godel space-time.

We use the Godel space-time metric in form (11) and for simplicity sake the
components of the 1-form w will be presented as

Ak = [07 U(ya t)u 0, Q(y; t)]
As this takes place the system (40) looks as

0

0
atv(y, )+ ay(J(y, ) =0,

2 2v( 1))y + a—Zv( t) ) y* + a?a—Qv( t) — p2o(y,t)a® = 0
ay y? y ayQ y7 y 8t2 y? /’[’ y7 - Y
0 0 02 , [0 )
2 (a—yq(y,t)) y—2 (av(y,t)) Y+ <a—yQCJ(y,t)) ye+ <@Q(y,t)> a”—

—i?q(y, t)a® = 0.

It is equivalent to the following non-homogeneous equation

9? 2 0? 2 2 2
- (52000 7 - (G000 + et re =0, ()
where 00y, 1) o8(y.1)
— y7t _ y7t
Q(y,t) - at ,’U(y,t) - ay

and € is a parameter.
The simplest solution of homogeneous equation can be presented in the form

(I)(yvt) = Fy (y)FQ(t)v (42>
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where ) 0
d Cng t
) =——5"+ P2 Fs(t),
&? aFi(y)
el 7 —
dy2 1 (y) y2 b

and c; is a parameter.
The second equation from (43) has the form

d? aFi(y)
dy2 1 (y) y2
and its solutions are defined by the relations
£ . ) 1
= Cycos(bln(y)) + Cosin(bln(y)), b =—c; — = >0,
7 (bIn(y)) (bIn(y)) 1

F
Bl Clxb + ng_b, b2 =—4c >0,
VY

F 1
7% =C1+Coln(y), o = vk

which depend on the parameter c;.
The solutions of the first equation of the system (43) are

Fa(t) = Cy sin(1/4 V2ve ~ 8i2a’t,

+ €} cos( -

1/4 V241 —8,uza2t).
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(43)

In result the general solution of the equation (41) can be constructed with the

help of solutions Fj(y) and Fs(t).

So in dependence depend upon the choice of ¢; the spectrum of manifold and

the solutions of the equation (41) will be various.

The problem of solutions of the system (40) in more general case of the 1-form

w = A;(z,y,2)dx" requires more detailed consideration.

Remark 3. For determination of the spectrum A of Laplace operator

A =giV,V;

acting on the 0— form- function ¢ (z,y, z,t) defined on the manifold with the metric

gij, it is necessary to solve the equation
9V = X

In the case of Gddel space-time metric (6) we get

" bt e +20 (Lvynt) + ( Loty &
a awa x? y? Z’ e a 6y2w x? y? Z’ ax m7 y7 Z7 e
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[ 0% 0? 20 0? 2
—4daea <at—ayw(x7yvzvt)> +a (@1#(‘%,3/72’25)) e« +a <@w<x7ywzvt>> €a —

2z
—aAY(x,y,z, t)ea =0.

The substitution here the function ¢ (x,y, z,t) in form
U(z,y, 2,t) = V() exp(—x/(2a)) exp(my + nz + kt),
where m,n, k are the parameters lead to the equation

d2

EV(@’) - (—Qm2 e % +dkme s —n?— k% + 1/4a72 + )\) V(z)=0.

having the form of one dimensional Schrédinger equation for the spectrum of the
particle in the field with the Morse potential.

In such type of potential a finite number of stationary states A, at the some
relations between the parameters m,n, k, a may be existed.

This fact is important for understanding of the properties of the Godel space-time
metric.

6 Spatial metric of the four-dimensional Godel space-time
The spatial metric of any four-dimensional metric
4ds% = gaﬂdxo‘d:cﬁ + 2g0adz’dz® + gooda®dz®

has the form
3d1? = vopdrda”,
where
YaB = —YGaB + M
goo

is a three-dimensional tensor determining the properties of the space.

In the case of the Godel space-time the spatial three-dimensional metric has the
form

2
312 = %(daﬂ +dy?) + dz2. (44)

Three-dimensional space with the metric (44) belongs to one of the eight types
of W.Thurston geometries and has diverse global properties.

In particular it admits the surfaces bundle.

As example we consider the translation surfaces of the space (44).

They defined by the system of equations for coordinates z(u,v),y(u,v) and
z(u, v)

(62;;96(“””)) y(u,v) - <(%x(uv”)> 6%2/(“7“) - <§uy(u,v)> %x(u,v) =0,
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(5§;Uy(u’v)> v o) + <%x(“’”)> 3%5“(“’”) - <a%y(u,v)) a%y(u,v) =0,

(45)
82

8uavz

The simplest solutions of these equations are of the form

y(u,v) = 1/2 (1 + ((%)CY (eC2 Cf)_2> e¥2 C1 ((%)C>l cr Y

z(u,v) = In(u) + In(v),

(u,v) = 0.

and
z(u,v) = A(u) + B(v),
where A(v) and B(v) are arbitrary functions and C1,Cy are parameters.

In particular case Cy =1, Cy = 0 one get

2 4,2
y(u,v) =1/2 Wty , x(u,v) = In(uw).
uv

From here we find

v:\/yex—l—ez\/yQ—l, U= ©
\/yex—l—em\/gﬂ—l

T

and

xT

z(m,y):A(\/yem—i—ex\/y?—l)—i—B ¢

( )
\/ye“ +ex\/y2——1

with arbitrary functions A(u), B(v).
The properties of surfaces are dependent on the choice of the functions A
and B.

Remark 4. From the system (45) we find the relations

o 2 e2#(u,v) o 2 )
i _c 7 i 2(uv)
(avx(u,v)> 5— + (avz(u,v)> e 0,

v

b 2 e2#(u,v) o 2 )
— _ i z(u,w)
(8ux(u,v)> 3 + <auz(u,v)> e 0,

where z(u,v) = In(y(u,v)).
This fact allows us to get one equation in variable y(u,v) only.

o= () e () () e (20) ) s
+\/(y(u7v))2— (6%@/)2 v2v (a%y> y—\/(y)Z— ((%y)Q w?u ((%y) y = 0.
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