On a small quasi-compactness

Laurențiu Calmuțchi

Abstract. The notion of small quasi-compactness is introduced and studied. Let P be a small quasi-compactness. We prove that the classes of equivalence of P-compactifications of a given space X form a lattice with maximal and minimal elements. Some properties of maximal elements are studied.

Mathematics subject classification: 54D30, 54D40.

Keywords and phrases: Quasi-compactness, small quasi-compactness, lattice, compactifications.

1 Introduction

Compactness is one of the most important notions.

A quasi-compactness is a class of spaces which is multiplicative, hereditary with respect to closed subspaces and contains an infinite T_0 -space.

A g-extension of a space X is a pair (Y, f), where Y is a T_0 -space, $f : X \to Y$ is a continuous mapping and the set f(X) is dense in Y. If f is an embedding of X into Y, then (Y, f) is an extension of the space X.

Denote by E(X) the class of all extensions of a space X and by GE(X) the class of all g-extensions of the space X. If $e_X(x) = x$ for every $x \in X$, then $(X, e_X) \in E(X)$. Thus $\Phi \neq E(X) \subseteq GE(X)$.

In the family GE(X) there exists a binary relation $\leq : (Y_1, f_1) \leq (Y_2, f_2)$ if there exists a continuous mapping $\varphi : Y_2 \to Y_1$ such that $f_1 = \varphi \circ f_2$, i. e. $f_1(x) = \varphi(f_2(x))$ for each $x \in X$.

If $(Y_1, f_1) \leq (Y_2, f_2)$ and $(Y_2, f_2) \leq (Y_1, f_1)$ then we say that the *g*-extensions (Y_1, f_1) and (Y_2, f_2) are equivalent and we denote $(Y_1, f_1) \approx (Y_2, f_2)$.

We say that (Y, f) is a g-extension with a T_1 -remainder if for every point $x \in Y \setminus f(X)$ the set $\{x\}$ is closed in Y.

1.1. Example. Let X be an infinite T_0 -space, A and B be two non-empty sets, $Y_1 = X \cup A$, $Y_2 = X \cup B$, $f_1(x) = f_2(x) = x$ for every $x \in X$, X is an open subspace of Y_1 and Y_2 , the neighborhoods of the point $x \in A$ are of the form $Y_1 \setminus (F \cup \Phi)$, where F is a closed compact subset of X and Φ is a finite subset of A, the neighborhoods of the points $x \in B$ are of the form $Y_2 \setminus (F \cup \Phi)$, where F is a closed compact subset of X and Φ is a finite subset of B. The pairs (Y_1, f_1) and (Y_2, f_2) are equivalent compactifications of the space X. Let (Y, f) be a g-compactification of the space X with a T_1 -remainder and $Y \setminus f(X) \neq \emptyset$. Fix a non-empty set A. We put $Z = Y \cup A$. Consider some mapping $\varphi : A \to Y \setminus f(X)$. On Z we consider the

[©] Laurențiu Calmuțchi, 2005

topology with the base $\{U \subseteq Y : U \text{ is open in } Y\} \cup \{\varphi^{-1}(U) \setminus F\} \cup (U \setminus \Phi) : U \text{ is an open subset of } Y, F \text{ is a finite subset of } A \text{ and } \Phi \text{ is a finite subset of } Y \setminus f(X)\}.$ Then (Z, f) is a g-compactification of the space X with a T_1 -remainder and the g-compactifications (Y, f) and (Z, f) are equivalent. Thus the class of equivalence of some g-compactification of X is not a set.

For every g-extension (Y, f) of a space X by e(Y, f, X) we denote the class of all g-extensions of X equivalent to the g-extension (Y, f).

1.2. Definition. A class L of g-extensions of a space X is a lattice of g-extensions if the following conditions are fulfilled:

- there exists a set $e(L) \subseteq L$ such that $L \subseteq \bigcup \{ e(Y, f, X) : (Y, f) \in e(L) \};$

- there exists a g-extension $(m_L X, m_L) \in L$ such that $(m_L X, m_L) \leq (Y, f)$ for every $(Y, f) \in L$;

- for every non-empty set $A \subseteq L$ there exists a g-extension $(Z,g) \in L$ such that $(Z,g) = \lor A$ and $(Y,f) \leq (Z,g)$ for every $(Y,f) \in L$.

If L is a lattice of g-extensions of a space X, then by $(\beta_L X, \beta_L)$ we denote some maximal element of the class L.

1.3. Example. M. Hušec [6, 7] constructed an infinite non-compact T_1 - space X such that the class of all $T_1 - g$ -compactifications of X is not a lattice.

Let P be a quasi-compactness.

A g-extension (Y, f) of a space X is called a g - P-extension of X if $Y \in P$. Let $PGE(X) = \{(Y, f) \in GE(X) : Y \in P\}$ be the class of all g - P-extensions and $PE(X) = E(X) \cap PGE(X)$ be the class of all P-extensions of the space X.

If PGE(X) is a lattice of g-extensions of the space X, then $(\beta_P X, \beta_P)$ is one of the maximal elements of the class PGE(X).

First General Problem. To find the methods of construction and of study of the P-extensions and of special P-extensions of a given space X.

Second General Problem. Under which conditions the class PGE(X) is a lattice?

Third General Problem. Let P be a compactness and K be a class of spaces. Under which conditions there exists a set valued functor $F: K \to P$ such that:

-F(X) is a non-empty lattice of g-P-extensions of the space X for every space X;

 $-F(X) \cap PE(X) \neq \emptyset$ for every $X \in K_B$ and the maximal element $(\beta_F X, \beta_F)$ of the lattice F(X) is an extension of X;

- for every closed continuous mapping $f : X \to Y$ of a space $X \in K$ onto a space $Y \in K$ there exists a continuous extension $g = \beta f : \beta_F X \to \beta_F Y$ such that f = g|X?

The functor F with these properties is called a functor of the Wallman type.

Fourth General Problem. Let P be a compactness and K be a class of spaces. Under which conditions there exists a set-valued functor $F: K \to P$ such that: $-F(X) \cap PE(X) \neq \emptyset$ and F(X) is a lattice of g – P-extensions of the space X for every space $X \in K$;

- for every continuous mapping $f: X \to Y$ of a space $X \in K$ into a space $Y \in K$ there exists a continuous extension $g = \beta f : \beta_F X \to \beta_F Y$ of the mapping f onto the maximal extensions?

A functor with these properties is called a functor of the Stone-Čech type. Every functor of the Stone-Čech type is a functor of the Wallman type.

1.4. Example. If P is a compactness, i.e. P is a quasi-compactness and every space $X \in P$ is a Hausdorff space, then for every space X the class PGE(X) is a set.

If $K = \{X : E(X) \cap PGE(X) \neq \emptyset\}$, then $F : K \to PGE(X)$, where F(X) = PG(X), is a functor of the Stone-Čech type.

1.5. Example. Let K be the class of all T_0 -spaces, ωX be the Wallman extension of the T_0 -space X (see [1]). A g-compactification (Y, f) of a space X is called a regular g-compactification of X if $\{cl_YA : A \subseteq f(X)\}$ is a closed base of Y and there exists a continuous mapping $g : \omega X \to Y$ such that g(x) = f(x) for every $x \in X$. If the mapping g is closed, then the g-compactification (Y, f) is called a $g - \omega \alpha$ -compactification of X (see [9]). Let $F(X) = \{(Y, f) : (Y, f) \text{ is a regular}$ g-compactification of X } and $\Phi(X) = \{(Y, f) : (Y, f) \text{ is a } g - \omega \alpha$ -compactification of X }. Then F and Φ are functors of the Wallman type.

1.6. Example. Let K be the class of all T_0 -spaces and PGE(X) be the set of all spectral g-compactifications of the T_0 -space X. Then the correspondence $X \to PGE(X)$ is a functor of the Stone-Čech type (see [1]).

1.7. Example. Let K be the class of all completely regular spaces and PGE(X) be the set of all Hausdorff g-compactifications of the space X. Then the correspondence $X \to PGE(X)$ is a functor of the Stone-Čech type.

The purpose of the present paper is to investigate the class of P-extensions of topological spaces.

In this article we shall use the following notations:

- we denote by $cl_X A$ or clA the closure of a set A in a space X;
- we denote by |A| the cardinality of a set A;
- we denote by w(X) the weight of a space X.
- -R is the space of reals, $N = \{1, 2, ...\}, I = [0, 1];$
- every space is considered to be a T_0 -space.

We use the terminology from [3, 1].

2 Small quasi-compactness

Let K be a class of T_0 -spaces and $2 \leq |X|$ for some $X \in K$. Then there exists a minimal quasi-compactness P(K) such that $K \subseteq P(K)$. We put KGE(X) = P(K)GE(X) for every non-empty T_0 -space X. **2.1. Definition.** A quasi-compactness P is called a small quasi-compactness if there exists a set K of spaces such that P = P(K).

2.2. Proposition. Let P be a small quasi-compactness and for every space $X \in P$ there exists a point $b_X \in X$ such that the set $\{a_X\}$ is closed in X. Then $P = P(\{E\})$ for some space $E \in P$.

Proof. There exists a non-empty set $K \subseteq P$ of spaces such that P = P(K). Suppose that $K = \{X_{\alpha} : \alpha \in A\}$. For every $\alpha \in A$ there exists a point $b_{\alpha} \in X_{\alpha}$ such that the set $\{b_{\alpha}\}$ is closed in X_{α} . We put $E = \Pi\{X_{\alpha} : \alpha \in A\}$ and $E_{\beta} = \{(x_{\alpha} : \alpha \in A) \in E : x_{\alpha} = b_{\alpha} \text{ for every } \alpha \in A \setminus \{\beta\} \text{ and } x_{\beta} \in X_{\beta}\}$. Then E_{β} is a closed subspace of the space E. For every $\beta \in A$ the spaces E_{α} and X_{α} are homeomorphic. Thus $P(K) = P(\{E\})$.

2.3. Lemma. Let F be a non-empty compact subset of T_0 -space X. Then there exists a point $b \in F$ such that the set $\{b\}$ is closed in X.

Proof. Let ξ be a maximal family of closed subsets of the space X such that:

1. $\emptyset \notin \xi$ and $H \subseteq F$ for every $H \in \xi$;

2. If $H, M \in \xi$, then $H \cap M \in \xi$.

We put $\Phi = \cap \xi$. The set Φ is non-empty and closed in X. There exists a unique point $b \in F$ such that $\Phi = \{b\}$. Really, if $x_1, x_2 \in \Phi$ and $x_1 \neq x_2$, then there exists an open subset U of X such that $U \cap \{x_1, x_2\}$ is a singleton set. Then $\Phi \setminus U \in \xi$ and $\{x_1, x_2\} \setminus \Phi \neq \emptyset$, a contradiction. The proof is complete.

2.4. Corollary. Let P be a small quasi-compactness and every space $X \in P$ be a compact T_0 -space. Then $P = (\{E\})$ for some space $E \in P$.

Fix a quasi-compactness P and a non-empty space X. For every $Y \in P$ denote by C(X, Y) the set of all continuous mappings of the space X into the space Y. Let $\Phi = \{f_{\alpha} : X \to Y_{\alpha} : \alpha \in A\} \subseteq \cup \{C(X, Y) : Y \in P\}$ be a set of mappings. We put $f_{\Phi}(x) = \{f_{\alpha}(x) : \alpha \in A\} \in \Pi\{Y_{\alpha} : \alpha \in A\}$ for every $x \in X$. Denote by $e_{\Phi}X$ the closure of the set $f_{\Phi}(X)$ in the space $\Pi\{Y_{\alpha} : \alpha \in A\}$. Then $(e_{\Phi}X, f_{\Phi}) \in PGE(X)$.

2.5. Theorem. Let K be a class of T_0 -spaces and P = P(K). For every T_0 -space X and every g - P-extension $(Y, f) \in PGE(X)$ there exists a set $\Phi = \{f_\alpha : X \to Y_\alpha : \alpha \in A\} \subseteq \cup \{C(X, Z) : Z \in K\}$ such that the g - P-extensions (Y, f) and $(e_\Phi X, f_\Phi)$ are equivalent. Moreover, $f_\alpha \neq f_\beta$ for every $\alpha, \beta \in A$ and $\alpha \neq \beta$.

Proof. There exists a set $\{E_{\beta} : \beta \in B\} \subseteq K$ such that Y is homeomorphic to a closed subset of the space $E = \prod\{E_{\beta} : \beta \in B\}$. We assume that Y is a closed subspace of the space E. Let $p_{\beta} : E \to E_{\beta}$ be the continuous projections of E onto $E_{\beta} : p_{\beta}((x_{\mu} : \mu \in B)) = x_{\beta}$ for every point $(x_{\mu} \in E_{\mu} : \mu \in B) \in E$. For every $\beta \in B$ we put $g_{\beta} = p_{\beta} \circ f$. Then $g_{\beta} : X \to E_{\beta}$ is a continuous mapping. There exists a minimal set of mappings $\Phi = \{f_{\alpha} : X \to Y_{\alpha} : \alpha \in A\}$ such that:

- 1. For every $\alpha \in A$ there exists a $\beta \in B$ such that $f_{\alpha} = g_{\beta}$.
- 2. For every $\beta \in B$ there exists a unique $\alpha = i(\beta) \in A$ such that $f_{\alpha} = g_{\beta}$.

Thus there exists a mapping $i : B \to A$ of B onto A such that $f_{\alpha} = g_{\beta}$ for all $\alpha \in A$ and $\beta \in i^{-1}(\alpha)$. If $\alpha, \lambda \in A$ and $\alpha \neq \lambda$, then $f_{\alpha} \neq f_{\lambda}$.

We put $B_{\alpha} = i^{-1}(\alpha)$ for each $\alpha \in A$. By construction, $E_{\beta} = E_{\mu}$ for all $\alpha \in A$ and $\beta, \mu \in B_{\alpha}$. We may consider that $E_{\beta} = X_{\alpha}$ for all $\alpha \in A$ and $\beta \in B_{\alpha}$. For every $\beta \in B_{\alpha}$ we consider the mapping $\delta_{\alpha\beta} : X_{\alpha} \to E_{\beta}$ such that $\delta_{\alpha\beta}(x) = x$ for every $x \in X_{\alpha}$. We put $\delta_{\alpha}(x) = (\delta_{\alpha\beta}(x) : \beta \in B_{\alpha}) \in \Pi\{E_{\beta} : \beta \in B_{\alpha}\}$ for every $\alpha \in A$ and every $x \in X_{\alpha}$. Then $\delta_{\alpha} : X_{\alpha} \to \Pi\{E_{\beta} : \beta \in B_{\alpha}\}$ is an embedding. The set $\Delta_{\alpha}(X_{\alpha}) = \delta_{\alpha}(X_{\alpha})$ is the diagonal of the space X_{α} in $\Pi\{E_{\beta} : \beta \in B_{\alpha}\}$. Fix $\beta(\alpha) \in$ B_{α} . Let $h_{\alpha} : \Pi\{E_{\beta} : \beta \in B_{\alpha}\} \to X_{\alpha}$ be the projection $h_{\alpha}(x_{\beta} : \beta \in B_{\alpha}) = x_{\beta(\alpha)}$ for every point $(x_{\beta} : \beta \in B_{\alpha}) \in \Pi\{E_{\beta} : \beta \in B_{\alpha}\}$.

Now we consider the continuous mapping $h : \Pi\{E_{\beta} : \beta \in B\} = \Pi\{\Pi\{E_{\beta} : \beta \in B_{\alpha}\} : \alpha \in A\} \to \Pi\{X_{\alpha} : \alpha \in A\}$, where $h(x_{\beta} : \beta \in B) = (h_{\alpha}(x_{\beta} : \beta \in B_{\alpha}) : \alpha \in A)$ for every point $(x_{\beta} : \beta \in B) \in \Pi\{E_{\beta} : \beta \in B\}$. The mapping $\delta : \Pi\{X_{\alpha} : \alpha \in A\} \to \Pi\{\Delta_{\alpha}(X_{\alpha}) : \alpha \in A\}$, where $\delta(x_{\alpha} : \alpha \in A) = (\delta_{\alpha}(x_{\alpha}) : \alpha \in A)$ for every $(x_{\alpha} : \alpha \in A) \in \Pi\{X_{\alpha} : \alpha \in A\}$, is a homeomorphism of the space $\Pi\{X_{\alpha} : \alpha \in A\}$ onto the subspace $\Pi\{\Delta_{\alpha}(X_{\alpha}) : \alpha \in A\}$ of the space $\Pi\{E_{\beta} : \beta \in B\}$.

Let $f_{\Phi}(x) = (f_{\alpha}(x) : \alpha \in A)$ for every $x \in X$ and $e_{\Phi}X$ be the closure of the subspace $f_{\Phi}(X)$ in $\Pi\{X_{\alpha} : \alpha \in A\}$. Let $\varphi = \delta|e_{\Phi}X : e_{\Phi}X \to \Pi\{E_{\beta} : \beta \in B\}$. Then $\varphi(f_{\Phi}(x)) = (g_{\beta}(x) : \beta \in B) = f(x)$ for every $x \in X$. Thus $(Y, f) \leq (e_{\Phi}X, f_{\Phi})$. Let $\Psi = h | Y$. Then $\Psi(f(x)) = f_{\Phi}(x)$ for every $x \in X$. Thus $(e_{\Phi}X, f_{\Phi}) \leq (Y, f)$. The proof is complete.

2.6. Remark. By construction, $\varphi : e_{\Phi}X \to Y$ is an embedding and $\Psi : Y \to e_{\Phi}X$ is a retract, i.e. $\varphi(\Psi(y)) = y$ for every $y \in \varphi(e_{\Phi}X)$.

2.7. Theorem. Let $\Phi = \{f_{\alpha} : X \to Y_{\alpha} : \alpha \in A\} \subseteq \cup \{C(X,Y) : Y \in P\}$ and $G = \{g_{\beta} : X \to Z_{\beta} : \beta \in B\} \subseteq \cup \{C(X,Y) : Y \in P\}$ be two sets of mappings, $A \subseteq B$ and $Y_{\alpha} = Z_{\alpha}$, $f_{\alpha} = g_{\alpha}$ for each $\alpha \in A$. Then $(e_{\Phi}X, f_{\Phi}) \leq (e_{G}X, f_{G})$.

Proof. Consider the projection $p: \Pi\{Z_{\beta} : \beta \in B\} \to \Pi\{Y_{\alpha} : \alpha \in A\} = \Pi\{Z_{\alpha} : \alpha \in A\}$, where $p(z_{\beta} : \beta \in B) = (z_{\beta} : \beta \in A)$. Then $p(f_G(x)) = f_{\Phi}(x)$ for every $x \in X$. Thus $p(e_G X) \subseteq e_{\Phi} X$ and $(e_{\Phi} X, f_{\Phi}) \leq (e_G X, f_G)$. The proof is complete.

2.8. Corollary. Let A be a set, $\Phi_{\alpha} = \{g_{\beta} : X \to Z_{\beta} : \beta \in B_{\alpha}\} \subseteq \cup \{C(X,Y) : Y \in P\}$ be a set of continuous mappings for every $\alpha \in A$, $B = \cup \{B_{\alpha} : \alpha \in A\}$ and $\Phi = \{g_{\beta} : X \to Z_{\beta} : \beta \in B\}$. Then $(e_{\Phi}X, f_{\Phi}) = \vee \{(e_{\Phi_{\alpha}}X, f_{\Phi_{\alpha}}) : \alpha \in A\}$.

2.9. Corollary. Let P be a small quasi-compactness. Then there exists a set $K \subseteq P$ of spaces such that:

1. For every $(Y, f) \in PGE(X)$ there exist a set $\Phi \subseteq \bigcup \{C(X, Y) : Y \in K\}$, an embedding $\varphi : e_{\Phi}X \to Y$ and a retraction $\Psi : Y \to e_{\Phi}X$ such that $\varphi(\Psi(y)) = y$ for every $y \in \varphi(e_{\Phi}X)$ and $(Y, f) \sim (e_{\Phi}X, f_{\Phi})$.

2. The class PGE(X) is a lattice provided $PE(X) \neq \emptyset$.

3. For every space X there exists a maximal element $(\beta_p X, \beta_p)$, where $(\beta_p X, \beta_p) = (e_{\Phi} X, f_{\Phi})$ for $\Phi = \cup \{C(X, Y) : Y \in K\}$.

2.10. Definition. A quasi-compactness P is called a virtual small quasicompactness if for every space X the class PGE(X) is a lattice. Every small quasi-compactness is a virtual small quasi-compactness

2.11. Corollary. Let P be a virtual small quasi-compactness. Then:

1. For every space X there exists some maximal element $(\beta_P X, \beta_P)$ in PGE(X).

2. For every continuous mapping $f: X \to Y$ there exists a continuous mapping $\beta f: \beta_P X \to \beta_P Y$ such that $\beta f(\beta_P(x)) = \beta_P(f(x))$ for every $x \in X$.

3. For every continuous mapping $f : X \to Y$ into a space there exists a continuous mapping $\beta f : \beta_P X \to Y$ such that $\beta f(\beta_P(x)) \to f(x)$ for every $x \in X$.

2.12. Remark. If $Y \in P$ and $i_{\varphi} : Y \to Y$ is the identical mapping, then $(Y, i_{\varphi}) = (\beta_P Y, \beta_P)$ is one of the maximal elements from PGE(X) and $PE(X) \neq \emptyset$.

3 On E-compact spaces

Let E be a space and $|E| \ge 2$. Consider the small compactness $P = P(E) = P(\{E\})$. We put EGE(X) = P(E)GE(X) and EE(X) = P(E)E(X). If $(Y, f) \in EGE(X)$, then (Y, f) is called a g – E-compactification of the space X. If $(Y, f) \in EE(X)$, then (Y, f) or Y is called a E-compactification of the space.

The notion of *E*-compactification was introduced by S. Mrovka [7,4]. From Theorems 2.5, 2.7, 2.10 and Corollary 2.9 follow the next assertions.

3.1. Corollary. For every space X the class EGE(X) is a lattice with the maximal element $(\beta_E X, \beta_E) = (e_{C(X,E)}X, f_{C(X,E)}).$

3.2. Corollary. For every $(Y, f) \in EGE(X)$ there exists a set $\Phi \subseteq C(X, E)$ such that:

1. $(e_{\Phi}X, f_{\Phi}) \approx (Y, f).$

2. There exist a continuous mapping $\varphi : Y \to e_{\Phi}X$ and an embedding $\Psi : e_{\Phi}X \to Y$ such that $\Psi(f_{\Phi}(x)) = \varphi(f(x))$ and $\varphi(\Psi(y)) = y$ for all $x \in X$ and $y \in e_{\Phi}X$.

3.3. Corollary. For every continuous mapping $\varphi : X \to Y$ there exists a continuous mapping $\beta \varphi : \beta_E X \to \beta_E Y$ such that the diagram

is commutative.

3.4. Corollary. If Ind X = 0, then $EE(X) \neq \emptyset$ and $(\beta_E X, \beta_E) \in EE(X)$.

3.5. Corollary. If E is a T_1 -space, then there exists a regular space X such that $EE(X) = \emptyset$.

3.6. Corollary. If E is a T_0 -space and E is not a T_1 -space, then $EE(X) \neq \emptyset$ and $(\beta_E X, \beta_E) \subseteq EE(X)$ for every T_0 -space X.

4 Examples

4.1. Example. Let $F = \{0, 1\}$ with the topology $\{\emptyset, \{0\}, \{0, 1\}\}$. Then F is a T_0 -space and F is not a T_1 -space. In this case $FE(X) \neq \emptyset$ for every T_0 -space X. The class FE(X) is not a set and the class FGE(X) is a lattice. The assertions of the preceding section are true for FGE(X).

The space F^m is called the Alexandroff cube (see [3]).

Denote by (maX, m_X) the maximal element of the lattice FGE(X) of a space X. We may suppose that $maX = e_{C(X,F)}X$. We identify $x \in X$ and $m_X(x) \in maX$. In this case X is a dense subspace of the T_0 -compact space maX. If $\varphi : X \to Y$ is a continuous mapping, then there exists a continuous mapping $m\varphi : maX \to maY$ such that $\varphi = m\varphi|X$.

4.2. Example. Let $D = \{0, 1\}$ with the discrete topology $\{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$. In this case:

- -EGE(X) is a set for every space X;
- -EGE(X) is a lattice for every space X;
- $-EE(X) \neq \emptyset$ if and only if ind X=0.
- **4.3. Example.** Let I = [0, 1] be a subspace of reals. In this case:
 - -EGE(X) is a set for every space X;
 - EGE(X) is a lattice for every space X;
 - $EE(X) \neq \emptyset$ if and only if X is a completely regular space;

- for every completely regular space the compactification $\beta_E \in X$ is the Stone-Čech compactification βE of the space X.

4.4. Example. Let τ be an infinite cardinal and E be a space of cardinality τ with the topology $\{\emptyset, E\} \cup \{E \setminus F : F \text{ is a finite subset}\}$. The space E is a compact T_1 -space and E is not a Hausdorff space. In this case:

- -EGE(X) is not a set for some T_1 -space;
- -EGE(X) is a lattice for every space X;
- If X is a T₁-space and $|X| \leq \tau$, then $EE(X) \neq \emptyset$;
- If $c \leq \tau$, then $EE(X) \neq \emptyset$ for every completely regular space X.

4.5. Example. A class P of topological T_0 -spaces is called a double compactness if the following conditions are fulfilled:

1. There exists a space $X \in D$ such that $|X| \ge 2$.

2. If Γ is the topology of the space $X \in P$, then there is determined the Hausdorff topology $d\Gamma$ on X such that $(X, d\Gamma) \in P$, $\Gamma \subseteq d\Gamma$ and $dd\Gamma = d\Gamma$. We say that $d\Gamma$ is the strong topology and Γ is the weak topology on X.

3. If $\{(X_{\alpha}, \Gamma_{\alpha}) \in P : \alpha \in A\}$ is a non-empty set of spaces, $X = \Pi\{X_{\alpha} : \alpha \in A\}$, Γ is the product of topologies Γ_{α} on X and Γ' is the product of topologies $d\Gamma_{\alpha}$ on X, then $\Gamma' \subseteq d\Gamma$.

4. If $(X, \Gamma) \in P$, $Y \subseteq X$ and Y is a closed subset of the space $(X, d\Gamma)$, then $(Y, \Gamma) \in P$ and $d\Gamma | Y \subseteq d(\Gamma | Y)$, where $\Gamma | Y = \{U \cap Y : U \in \Gamma\}$ for the topology Γ on X.

Every double compactness is a quasi-compactness.

Let P be a double compactness. Then PGE(X) is a set for every space X. Moreover, for every non-empty subset $L \subseteq PGE(X)$ there exists the supremum $\forall L \in PGE(X)$. In particular, there exists the maximal element $(\beta_p X, \beta_P)$.

A mapping $f: X \to Y$ of a space $(X, \Gamma) \in P$ into a space $(Y, \Gamma') \in P$ is double continuous if $f^{-1}\Gamma' \subseteq \Gamma$ and $f^{-1}d\Gamma' \subseteq d\Gamma$. For every continuous mapping $f: X \to Y$ of a space X into a space $Y \in P$ there exists a unique double continuous mapping $\beta f: \beta_p X \to P$ such that $f(x) = \beta f(\beta_P(x))$ for every point $x \in X$. In particular, for every continuous mapping $f: X \to Y$ there exists a unique double continuous mapping $\beta f: \beta_p X \to \beta_p Y$ such that $\beta_p(f(x)) = \beta f(\beta_P(x))$ for every $x \in X$.

4.6. Example. Let K be a class of triples (X, T_X, T'_X) , where X is a non-empty set, T_X and T'_X are topologies on $X, T_X \subseteq T'_X$ and T'_X is a Hausdorff topology. Then there exists a minimal double compactness P such that $(X, T_X) \in P$ and $T'_X = dT_X$ for every triple $(X, T_X, T'_X) \in K$. We say that the double compactness is generated by the class K. If P' is the quasi-compactness generated by the class $\{(X, T_X), (X, T'_X) : (X, T_X, T'_X) \in K\}$, then $P' \subseteq P$.

4.7. Example. Let $X_0 = \{0, 1\}, T_{X_0} = \{\emptyset, \{0\}, \{0, 1\}\}, T'_{X_0} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\},$ then there exists the minimal double compactness S such that $(X_0, T_{X_0}) \in S$ and $dT_{X_0} = T'_{X_0}$. The class S is the class of all spectral spaces (see [1]).

The class S satisfies the following properties:

1. For every T_0 -space X the class SGE(X) is a set, is a lattice, $SE(X) \neq \emptyset$ and the maximal element $(\beta_S X, \beta_S)$ is a compactification of X. We may consider that X is a subspace of $\beta_S X$ and X is dense in $\beta_S X$ in the strong topology on $\beta_S X$.

- 2. The class S is a virtual small quasi-compactness.
- 3. The class S is not a small quasi-compactness.

5 Non-existence of universal compactification

5.1. Definition. A compactification (bX, φ) of a space X is called a universal compactification of a space X if $(Y, f) \leq (bX, \varphi)$ for every compactification (Y, f) of X.

5.2. Definition. Let $i \in \{0, 1, 2\}$ and X be a T_i -space. A compactification (bX, φ) of the space X is called a universal T_i -compactification of X if bX is a T_i -space and $(Y, f) \leq (bX, \varphi)$ for every $T_i - g$ -compactification (Y, f) of the space X.

If X is a completely regular space, then the Stone-Cech compactification βX of X is a universal T_2 -compactification of the space X.

5.3.Theorem. Let X be a T_1 -space. The following assertions are equivalent:

- 1. For a space X there exists a universal compactification.
- 2. For a space X there exists a universal T_0 -compactification.
- 3. For a space X there exists a universal T_1 -compactification.

Proof. Part 1. Let Z be a space with the topology T. Denote by nT the topology on Z generated by the open base $\{U \setminus H : U \in T, H \text{ is finite subset of } Z\}$. The

topology nT is called the T_1 -modification of the topology T. Denote by nZ the set Z with the topology nT. The space Z is compact if and only if the space nZ is compact.

<u>Part 2</u>. Let (Y, f) be a compactification of the T_1 -space X. Then $f : X \to Y$ is an embedding. It is obvious that the mapping $f : X \to nY$ is an embedding too. Thus (nY, f) is a T_1 -compactification of the space X. By construction, $(Y, f) \leq (nY, f)$.

<u>Part 3.</u> For every g-compactification (Y, f) of the space X there exists a T_1 compactification (Z, g) of X such that $(Y, f) \leq (Z, g)$.

Let (Y_1, f_1) be some compactification of X. Consider the mapping $g : X \to Y \times Y_1$, where $g(x) = (f(x), f_1(x))$ for every $x \in X$. Then g is an embedding. Denote by Y_2 the closure of the set g(X) in the space $Y \times Y_1$. Then (Y_2, g) is a compactification of X. We put $Z = nY_2$. Then (Z, g) is a T_1 -compactification of X and $(Y, f) \leq (Y_2, g) \leq (Z, g)$.

<u>Part 4.</u> Let (Z, φ) be a universal compactification of the space X. Then (mZ, φ) is a universal compactification, a universal T_0 -compactification and a universal T_1 compactification. The implications $1 \to 2$ and $1 \to 3$ are proved.

<u>Part 5.</u> Let (Z, φ) be a universal T_0 -compactification. Then $(Z, g) \leq (Z, \varphi) \leq (nZ, \varphi)$ for every $T_1 - g$ -compactification of X. Thus (nZ, φ) is a universal T_0 -compactification, universal T_1 -compactification. From Part 3 it follows that (nZ, φ) is a universal compactification. The implications $2 \to 1$ and $2 \to 3$ are proved.

<u>Part 6.</u> Let (Z, φ) be a universal T_1 -compactification. From Part 3 it follows that (Z, φ) is a universal compactification and a universal T_0 -compactification, too. The implications $3 \to 1$ and $3 \to 2$ and the theorem are proved.

5.4. Corollary. There exists a T_1 -space X such that:

- 1. For X a universal T_1 -compactification does not exist.
- 2. For X a universal T_0 -compactification does not exist.
- 3. For X a universal compactification does not exist.

Proof. The existence of T_1 -space X without universal T_1 -compactification was proved by M. Hušec [5, 6]. Theorem 5.2. completes the proof.

6 The minimality of the compactification maX

Fix a T_0 -space X. Let F be the space from Example 4.1.

6.1. Theorem. Let P be a quasi-compactness and F be a subspace of some space from P. Then:

1. There exists a compactification $(Y, f) \in PE(X)$ such that $(maX, m_X) \leq (Y, f)$.

2. If P is a small quasi-compactness then $(maX, m_X) \leq (\beta_p X, \beta_p)$.

Proof. Let $E \in P$ and F be a subspace of the space E. There exists an open subset U of E such that $0 \in U$ and $1 \notin U$. Consider the mapping $r : E \to F$, where $r^{-1}(0) = U$ and $r^{-1}(1) = E \setminus U$. The mapping r is a continuous retraction. By construction, $C(X, F) \subseteq C(X, E)$. We put $\Phi = C(X, F)$. Consider the mapping $f_{\Phi}: X \to F^{\Phi} \subseteq E^{\Phi}$. By construction, maX is the closure of the set $f_{\Phi}(X)$ in the space F^{Φ} . Let Y be the closure of the set $f_{\Phi}(X)$ in the space E^{Φ} . Then $(Y, f_{\Phi}) \in P(E)E(P) \subseteq PE(X)$. Consider the continuous mapping $h: E^{\Phi} \to F^{\Phi}$, where $h(x_f: f \in \Phi) = (r(x_f): f \in \Phi)$ for every point $x = (x_f: f \in \Phi) \in E^{\Phi}$. The mapping h is a retraction and $maX \subseteq h(Y)$. Thus maX is a subspace of the space Y and $(maX, m_X) = (maX, f_{\Phi}) \leq (Y, f_{\Phi})$. The assertion 1 is proved. If P is a small quasi-compactness, then we may consider that P = P(E). In this case $(Y, f_{\Phi}) \leq (\beta_p X, \beta_p)$. The proof is complete.

References

- CALMUŢCHI L.I., CHOBAN M.M. Extensions and mappings of topological spaces. Buletin Ştiinţific. Universitatea din Piteşti, Matematica şi Informatica, 2005, 11, 2005, p. 50.
- CHOBAN M.M., CALMUTCHI L.I. On universal properties. Analele Univer. din Oradea, Fascicole Matematica, 1999–2000, VII, p. 67–72.
- [3] ENGELKING R. General Topology. Warsawa, PWN, 1997.
- [4] ENGELKING R., MROWKA S. On E-compact spaces. Bulletin Acad. Polon. Sci., Mathematica, 1958, 6, p. 429–436.
- [5] HERRLICH H. Compact T₀-spaces and T₀-compactifications. Applied Categorial Structures 1, 1993, p. 111–132.
- [6] HUŠEC M. Čech-Stone-like compactifications for general topological spaces. Coment. Math. Univ. Carolinae, 1992, 33:1, p. 159–163.
- [7] MROWKA S. Compactness and product spaces. Colloq. Math., 1959–1960, 7, p. 19–22.
- [8] KOVAR M.M. Which topological spaces have a weak reflection in compact spaces. Comment. Math. Univ. Carolinae, 1995, 36:3, p. 529–536.
- [9] OSMOTESCU T.C. "ωα-extensions". Vestnic Moscow. Univ., Matematica, 1963, 6, p. 45–54.

Department of Mathematics Tiraspol State University 5 Gh. Iablocichin str. Chişinău, MD-2069, Moldova