BULETINUL ACADEMIEI DE STIINTE

A REPUBLICII MOLDOVA. MATEMATICA
Number 3(49), 2005, Pages 33-42

ISSN 1024-7696

On a small quasi-compactness

Laurentiu Calmutchi

Abstract. The notion of small quasi-compactness is introduced and studied.
Let P be a small quasi-compactness. We prove that the classes of equivalence of
P-compactifications of a given space X form a lattice with maximal and minimal
elements. Some properties of maximal elements are studied.
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1 Introduction

Compactness is one of the most important notions.

A quasi-compactness is a class of spaces which is multiplicative, hereditary with
respect to closed subspaces and contains an infinite Ty-space.

A g-extension of a space X is a pair (Y, f), where Y is a Ty-space, f: X — Y is
a continuous mapping and the set f(X) is dense in Y. If f is an embedding of X
into Y, then (Y, f) is an extension of the space X.

Denote by E(X) the class of all extensions of a space X and by GE(X) the
class of all g-extensions of the space X. If ex(x) = z for every x € X, then
(X,ex) € E(X). Thus ® # E(X) C GE(X).

In the family GE(X) there exists a binary relation <: (Y1, f1) < (Y2, f2) if there
exists a continuous mapping ¢ : Y2 — Y7 such that f; = o fy, 1. e. fi(z) = o(f2(z))
for each = € X.

If (Y1, f1) < (Yo, f2) and (Y3, fo) < (Y7, f1) then we say that the g-extensions
(Y1, f1) and (Y3, f2) are equivalent and we denote (Y71, f1) = (Y2, f2).

We say that (Y,f) is a g-extension with a Tj-remainder if for every point
x € Y\f(X) the set {z} is closed in Y.

1.1. Example. Let X be an infinite Ty-space, A and B be two non-empty sets,
Y1 =XUA, Yo =XUB, fi(x)= folr) =z for every x € X, X is an open
subspace of Y7 and Y5, the neighborhoods of the point x € A are of the form
Y1\(F U ®), where F is a closed compact subset of X and @ is a finite subset of A,
the neighborhoods of the points « € B are of the form Y3\ (FU®), where F'is a closed
compact subset of X and ® is a finite subset of B. The pairs (Y7, f1) and (Y2, f2)
are equivalent compactifications of the space X. Let (Y, f) be a g-compactification
of the space X with a Tj-remainder and Y\ f(X) # (. Fix a non-empty set A. We
put Z =Y U A. Consider some mapping ¢ : A — Y\ f(X). On Z we consider the
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topology with the base {U C Y : U is open in Y }U{p }(U)\F) U (U\®) : U is an
open subset of Y, F is a finite subset of A and ® is a finite subset of Y\ f(X)}.
Then (Z, f) is a g-compactification of the space X with a Tj-remainder and the
g-compactifications (Y, f) and (Z, f) are equivalent. Thus the class of equivalence
of some g-compactification of X is not a set.

For every g-extension (Y, f) of a space X by e(Y, f, X) we denote the class of all
g-extensions of X equivalent to the g-extension (Y f) .

1.2. Definition. A class L of g-extensions of a space X 1is a lattice of g-extensions
if the following conditions are fulfilled:

— there exists a set e(L) C L such that L C U{e(Y, f,X) : (Y, f) € e(L)};

— there exists a g-extension (mpX,mr) € L such that (mpX,mp) < (Y, f) for
every (Y, f) € L;

— for every non-empty set A C L there exists a g-extension (Z,g) € L such that
(Z,9) =VA and (Y, f) < (Z,g) for every (Y, f) € L.

If L is a lattice of g-extensions of a space X, then by (51X, 1) we denote some
maximal element of the class L.

1.3. Example. M. Husec [6, 7] constructed an infinite non-compact 13- space X
such that the class of all T7 — g-compactifications of X is not a lattice.

Let P be a quasi-compactness.

A g-extension (Y, f) of a space X is called a g — P-extension of X if Y € P.
Let PGE(X) ={(Y,f) € GE(X) :Y € P} be the class of all g — P-extensions and
PE(X) = E(X)NPGE(X) be the class of all P-extensions of the space X.

If PGE(X) is a lattice of g-extensions of the space X, then (6pX, Bp) is one of
the maximal elements of the class PGE(X).

First General Problem. To find the methods of construction and of study of
the P-extensions and of special P-extensions of a given space X.

Second General Problem. Under which conditions the class PGE(X) is a
lattice?

Third General Problem. Let P be a compactness and K be a class of spaces.
Under which conditions there exists a set valued functor F': K — P such that:

— F(X) is a non-empty lattice of g — P-extensions of the space X for every space
X

~ F(X)NPE(X) # 0 for every X € Kp and the maximal element (8rpX, BF) of
the lattice F'(X) is an extension of X;

— for every closed continuous mapping f : X — Y of a space X € K onto a
space Y € K there exists a continuous extension ¢ = Gf : BpX — [BrY such that
f=9glX7?

The functor F' with these properties is called a functor of the Wallman type.

Fourth General Problem. Let P be a compactness and K be a class of spaces.
Under which conditions there exists a set-valued functor F': K — P such that:
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~ F(X)NPE(X) # () and F(X) is a lattice of g — P-extensions of the space X
for every space X € K;

— for every continuous mapping f : X — Y of a space X € K into a space Y € K
there exists a continuous extension g = Gf : fpX — [BrY of the mapping f onto
the maximal extensions?

A functor with these properties is called a functor of the Stone-Cech type. Every
functor of the Stone-Cech type is a functor of the Wallman type.

1.4. Example. If P is a compactness, i.e. P is a quasi-compactness and every
space X € P is a Hausdorff space, then for every space X the class PGE(X)
is a set.

If K ={X:EX)NPGE(X) # (0}, then FF: K — PGE(X), where F(X) =
PG(X), is a functor of the Stone-Cech type.

1.5. Example. Let K be the class of all Ty-spaces, wX be the Wallman extension
of the Tp-space X (see [1]). A g-compactification (Y, f) of a space X is called a
regular g-compactification of X if {clyA : A C f(X)} is a closed base of Y and
there exists a continuous mapping g : wX — Y such that g(z) = f(x) for every
x € X. If the mapping g is closed, then the g-compactification (Y, f) is called a
g — wa-compactification of X (see [9]). Let F(X) = {(Y,f) : (Y, f) is a regular
g-compactification of X } and ®(X) = {(Y, f) : (Y, f) is a ¢ — wa-compactification
of X } . Then F and ® are functors of the Wallman type.

1.6. Example. Let K be the class of all Ty-spaces and PGE(X) be the set
of all spectral g-compactifications of the Ty-space X. Then the correspondence
X — PGE(X) is a functor of the Stone-Cech type (see [1]).

1.7. Example. Let K be the class of all completely regular spaces and PGE(X) be
the set of all Hausdorff g—compactiﬁcation§ of the space X. Then the correspondence
X — PGE(X) is a functor of the Stone-Cech type.

The purpose of the present paper is to investigate the class of P-extensions of
topological spaces.

In this article we shall use the following notations:

— we denote by clx A or clA the closure of a set A in a space X;

— we denote by |A| the cardinality of a set A;

— we denote by w(X) the weight of a space X.

— R is the space of reals, N = {1,2,...}, I=10,1];

— every space is considered to be a Ty-space.

We use the terminology from [3, 1].

2 Small quasi-compactness

Let K be a class of Tp-spaces and 2 < |X| for some X € K. Then there exists
a minimal quasi-compactness P(K) such that K C P(K). We put KGE(X) =
P(K)GE(X) for every non-empty Tp-space X.
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2.1. Definition. A quasi-compactness P is called a small quasi-compactness if
there exists a set K of spaces such that P = P(K).

2.2. Proposition. Let P be a small quasi-compactness and for every space X € P
there exists a point bx € X such that the set {ax }is closed in X. Then P = P({E})
for some space E € P.

Proof. There exists a non-empty set K C P of spaces such that P = P(K).
Suppose that K = {X, : « € A}. For every a € A there exists a point b, € X, such
that the set {b,} is closed in X,. We put E =II{X, :a € A} and Eg = {(zo : a €
A) € E:xo = b, for every o € A\{3} and x5 € Xg}. Then Ej is a closed subspace
of the space E. For every 5 € A the spaces F, and X, are homeomorphic. Thus
P(K) = P({E}).

2.3. Lemma. Let F' be a non-empty compact subset of Ty-space X. Then there
exists a point b € F such that the set {b} is closed in X.

Proof. Let £ be a maximal family of closed subsets of the space X such that:

1. 0 ¢ £ and H C F for every H € &;
2. Tf H, M € ¢, then HN M € ¢,

We put ® = NE. The set @ is non-empty and closed in X. There exists a unique
point b € F such that ® = {b}. Really, if 21,22 € ® and 1 # x4, then there exists
an open subset U of X such that U N{xy,z2} is a singleton set. Then ®\U € £ and
{1, 22 }\® # (), a contradiction. The proof is complete.

2.4. Corollary. Let P be a small quasi-compactness and every space X € P be a
compact Ty-space. Then P = ({E}) for some space E € P.

Fix a quasi-compactness P and a non-empty space X. For every Y € P denote
by C(X,Y) the set of all continuous mappings of the space X into the space Y. Let
O={fo: X —>Y,:ac A} CU{C(X,Y) :Y € P} be a set of mappings. We put
fo(x) = {fa(z) : @ € A} € II{Y, : a € A} for every x € X. Denote by e X the
closure of the set fo(X) in the space II{Y, : & € A}. Then (es X, fo) € PGE(X).

2.5. Theorem. Let K be a class of Ty-spaces and P = P(K). For every Ty-space
X and every g — P-extension (Y, f) € PGE(X) there exists a set ® = {f, : X —
Yo :a€e A} CU{C(X,Z) : Z € K} such that the g — P-extensions (Y, f) and
(ea X, fo) are equivalent. Moreover, fo # fg for every o, € A and o # (3.

Proof. There exists a set {Eg : § € B} C K such that Y is homeomorphic to
a closed subset of the space F = II{E3 : 3 € B}. We assume that Y is a closed
subspace of the space E. Let pg : E — Eg be the continuous projections of E' onto
Eg :pg((zy : p € B)) = xp for every point (z, € E,, : p € B) € E. For every 3 € B
we put gg = pgo f. Then gg : X — FEg is a continuous mapping. There exists a
minimal set of mappings ® = {f, : X — Y, : @« € A} such that:

1. For every o € A there exists a 3 € B such that f, = gg.
2. For every 3 € B there exists a unique a = () € A such that f, = gg.
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Thus there exists a mapping ¢ : B — A of B onto A such that f, = gg for all
a€Aand f€it(a). fa, A€ Aand a# A, then f, # fi.

We put B, = i~ '(a) for each o € A. By construction, Eg=FE,forallac A
and 3, u € B,. We may consider that Eg = X, for all « € A and 8 € B,. For every
B € B, we consider the mapping 6,5 : Xo — Ejs such that d,g(x) = = for every
z € Xo. We put do(x) = (dap(z) : B € By) € II{Eg : B € By} for every a € A
and every x € X,. Then 6, : Xo — II{Eg : 8 € B,} is an embedding. The set
Ay (Xq) = 6a(Xq) is the diagonal of the space X, in II{Ej3 : § € B,}. Fix () €
By. Let hg : II{Eg : B € Ba} — Xq be the projection hq (x5 : 8 € Ba) = 25y for
every point (zg: 8 € B,) € II{Eg : B € By}

Now we consider the continuous mapping h : II{Eg : 8 € B} = II{II{E3z : § €
B.}:ae A} = II{X, : o € A}, where h(zg: B € B) = (ha(xg: B € By) : a € A)
for every point (zg : B € B) € II{Eg : § € B}. The mapping ¢ : II{X, : a €
A} — II{AL(Xy) : a € A}, where §(zq : @ € A) = (0a(xq) @ a € A) for every
(xq : @ € A) € II{X, : a € A}, is a homeomorphism of the space II{X, : a € A}
onto the subspace II{A,(X4) : a € A} of the space II{E3 : § € B}.

Let fo(x) = (fa(z) : @ € A) for every x € X and epX be the closure of the
subspace fo(X) in II{X, : « € A}. Let ¢ = 6lea X :e X — II{E3 : f € B}. Then
o(fo(x)) = (gp(x) : B € B) = f(x) for every x € X. Thus (Y, f) < (esX, fo). Let
U = h|Y. Then ¥(f(x)) = fo(z) for every x € X. Thus (es X, fo) < (Y, f). The
proof is complete.

2.6. Remark. By construction, ¢ : e X — Y is an embedding and ¥ : Y — ep X
is a retract, i.e. o(¥(y)) =y for every y € p(epX).

2.7. Theorem. Let ® = {f, : X - Y, :a € A} CU{C(X,Y) :Y € P} and
G={g9p: X —>Zs: € B} CU{C(X,Y):Y € P} be two sets of mappings, A C B
and Yo = Za,  fo = ga for each a € A. Then (es X, f3) < (ec X, fa).

Proof. Consider the projection p: I[I{Z3: € B} = II{Y,:a€ A} =1l{Z, :a €
A}, where p(z3 : B € B) = (23 : B € A). Then p(fa(z)) = fo(x) for every xz € X.
Thus p(egX) C e X and (ee X, fo) < (egX, fi). The proof is complete.

2.8. Corollary. Let A be a set, &, ={g93: X — Zg: € By} CU{C(X,Y):Y €
P} be a set of continuous mappings for every a € A, B = U{B, : a € A} and
P = {gg X — Zﬁ : 0B € B} Then (€<1>X, fq;) = \/{(ecan, f@a) NS A}

2.9. Corollary. Let P be a small quasi-compactness. Then there exists a set K C P
of spaces such that:

1. For every (Y, f) € PGE(X) there exist a set ® C U{C(X,Y):Y € K}, an
embedding ¢ : e X — Y and a retraction VU :Y — ee X such that ¢(¥(y)) =y for
every y € p(eaX) and (Y, f) ~ (ea X, fa).

2. The class PGE(X) is a lattice provided PE(X) # 0.

3. For every space X there exists a mazimal element (Bp X, Bp), where (8,X, Bp) =
(e X, fo) for ® =U{C(X,Y):Y € K} .

2.10. Definition. A quasi-compactness P is called a virtual small quasi-
compactness if for every space X the class PGE(X) is a lattice.
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Every small quasi-compactness is a virtual small quasi-compactness

2.11. Corollary. Let P be a virtual small quasi-compactness. Then:

1. For every space X there exists some mazimal element (BpX, Bp) in PGE(X).

2. For every continuous mapping f : X — Y there exists a continuous mapping
Bf: BpX — BpY such that Bf(Bp(x)) = Bp(f(x)) for every v € X.

3. For every continuous mapping f : X — Y into a space there exists a con-
tinuous mapping Bf : fpX — Y such that Bf(Bp(z)) — f(z) for every x € X.

2.12. Remark. IfY € P and i, : Y — Yis the identical mapping, then (Y,i,) =
(BPY, Bp) is one of the mazimal elements from PGE(X) and PE(X) # 0.

3 On E-compact spaces

Let E be a space and |E| > 2. Consider the small compactness P = P(E) =
P({E}). We put EGE(X) = P(E)GE(X) and EE(X) = P(E)E(X). If (Y,f) €
EGE(X), then (Y, f) is called a g — E-compactification of the space X. If (Y, f) €
EE(X), then (Y, f) or Y is called a E-compactification of the space.

The notion of E-compactification was introduced by S. Mrovka [7,4]. From
Theorems 2.5, 2.7, 2.10 and Corollary 2.9 follow the next assertions.

3.1. Corollary. For every space X the class EGE(X) is a lattice with the maximal
element (BeX, BE) = (ec(x,5) X, fo(x,E))-

3.2. Corollary. For every (Y, f) € EGE(X) there exists a set ® C C(X, E) such
that:

1. (es X, fo) = (Y, f).
2. There exist a continuous mapping ¢ : Y — e X and an embedding ¥ : e X —

Y such that ¥(fo(z)) = ¢(f(x)) and ¢(¥(y)) =y for allz € X and y € e X.

3.3. Corollary. For every continuous mapping @ : X — Y there exists a continuous
mapping By : BpX — PBrY such that the diagram

X Ld Y
ﬁEJ/ lﬁE
Be
BrX BeY

18 commutative.
3.4. Corollary. If Ind X =0, then EE(X) # 0 and (B X, ) € EE(X).

3.5. Corollary. If E is a T1-space, then there exists a reqular space X such that
EE(X)=0.

3.6. Corollary. If E is a Ty-space and E is not a Ty-space, then EE(X) # 0 and
(BeX,Br) C EE(X) for every Ty-space X.
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4 Examples

4.1. Example. Let F' = {0,1} with the topology {0,{0},{0,1}}. Then F is a
To-space and F' is not a Tj-space. In this case FE(X) # () for every Ty-space X.
The class FE(X) is not a set and the class FGE(X) is a lattice.The assertions of
the preceding section are true for FGE(X).

The space F™ is called the Alexandroff cube (see [3]).

Denote by (maX, mx) the maximal element of the lattice FGE(X) of a space
X. We may suppose that maX = ec(x, r)X. Weidentify z € X and mx (v) € maX.
In this case X is a dense subspace of the Ty-compact space maX. If o : X — Y is
a continuous mapping, then there exists a continuous mapping myp : maX — maY
such that ¢ = mp|X .

4.2. Example. Let D={0,1} with the discrete topology {0,{0},{1},{0,1}}. In
this case:

— EGE(X) is a set for every space X;

— EGE(X) is a lattice for every space X;

— FE(X) # 0 if and only if ind X=0.

4.3. Example. Let I = [0, 1] be a subspace of reals. In this case:

— EGE(X) is a set for every space X;

— EGE(X) is a lattice for every space X;

— EE(X) # 0 if and only if X is a completely regular space;

— for every completely regular space the compactification g € X is the Stone-
Cech compactification SE of the space X.

4.4. Example. Let 7 be an infinite cardinal and F be a space of cardinality 7
with the topology {0, E} U {E\F : F is a finite subset}. The space F is a compact
Ti-space and F is not a Hausdorff space. In this case:

— EGE(X) is not a set for some Tj-space;

— EGE(X) is a lattice for every space X;

~If X is a Ty-space and |X| < 7, then EE(X) # 0;

~1If ¢ < 7, then FE(X) # () for every completely regular space X.

4.5. Example. A class P of topological Ty-spaces is called a double compactness
if the following conditions are fulfilled:

1. There exists a space X € D such that | X| > 2.

2. If I is the topology of the space X € P, then there is determined the Hausdorff
topology dI' on X such that (X,dI') € P, T CdI' and ddI’ = dI". We say that dI’
is the strong topology and I' is the weak topology on X.

3. If {(Xqa,Tw) € P:a€ A} is a non-empty set of spaces, X =1I{X,, : a € A},
I' is the product of topologies I'y, on X and I is the product of topologies dI',, on
X, then I" C dI.

4. If (X, T)e P, Y C X and Y is a closed subset of the space (X,dI'), then
(Y,T') € Pand dI'|Y Cd(T'|Y), where I'lY ={UNY : U € I'} for the topology T
on X.
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Every double compactness is a quasi-compactness.

Let P be a double compactness. Then PGE(X) is a set for every space X.
Moreover, for every non-empty subset L C PGE(X) there exists the supremum
VL € PGE(X) . In particular, there exists the maximal element (3,X, Bp).

A mapping f: X — Y of a space (X,I") € P into a space (Y,I") € P is double
continuous if f~'I" C T'and f~'dI” C dI'. For every continuous mapping f : X — Y
of a space X into a space Y € P there exists a unique double continuous mapping
Bf : BpX — P such that f(z) = 8f(Bp(x)) for every point z € X. In particular,
for every continuous mapping f : X — Y there exists a unique double continuous

mapping Bf : B, X — 5,Y such that §,(f(x)) = Bf(Bp(x)) for every z € X.

4.6. Example. Let K be a class of triples (X, Tx,T%), where X is a non-empty
set, Tx and T% are topologies on X, Tx C T% and T% is a Hausdorff topology.
Then there exists a minimal double compactness P such that (X, Tx) € P and
T = dTx for every triple (X, Tx,T%) € K. We say that the double compactness
is generated by the class K. If P’ is the quasi-compactness generated by the class
{(X, Tx),(X,T%) : (X, Tx,T%) € K}, then P’ C P.

4.7. Example. Let Xy = {0,1},Tx, = {0,{0},{0,1}}, T}co = {0,{0},{1},{0,1}},
then there exists the minimal double compactness S such that (Xo,Tx,) € S and
dTx, = Ty,. The class S is the class of all spectral spaces (see [1]).

The class S satisfies the following properties:

1. For every Ty-space X the class SGE(X) is a set, is a lattice, SE(X) # () and
the maximal element (85X, 3g) is a compactification of X. We may consider that
X is a subspace of 8gX and X is dense in BgX in the strong topology on SgX.

2. The class S is a virtual small quasi-compactness.

3. The class S is not a small quasi-compactness.

5 Non-existence of universal compactification

5.1. Definition. A compactification (bX, @) of a space X is called a universal
compactification of a space X if (Y, f) < (bX, ¢) for every compactification (Y, f)
of X.

5.2. Definition. Leti € {0,1,2} and X be a T;-space. A compactification (bX, )
of the space X is called a universal T;-compactification of X if bX is a T;-space and
(Y, f) < (bX,p) for every T; — g-compactification (Y, f) of the space X.

If X is a completely regular space, then the Stone-Cech compactification X of
X is a universal Ts-compactification of the space X.

5.3.Theorem. Let X be a Ti-space. The following assertions are equivalent:
1. For a space X there exists a universal compactification.
2. For a space X there exists a universal Ty-compactification.
3. For a space X there exists a universal T} -compactification.

Proof. Part 1. Let Z be a space with the topology T'. Denote by n1 the topology
on Z generated by the open base {U\H : U € T, H is finite subset of Z}. The
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topology nT is called the Ti-modification of the topology 1. Denote by nZ the set
Z with the topology nT. The space Z is compact if and only if the space nZ is
compact.

Part 2. Let (Y, f) be a compactification of the Ti-space X. Then f : X — Y isan
embedding. It is obvious that the mapping f : X — nY is an embedding too. Thus
(nY, f) is a Ty-compactification of the space X. By construction, (Y, f) < (nY, f).

Part 3. For every g-compactification (Y, f) of the space X there exists a T}-
compactification (Z, g) of X such that (Y, f) < (Z,g).

Let (Y1, f1) be some compactification of X. Consider the mapping g : X —
Y x Y1, where g(z) = (f(x), fi(x)) for every z € X. Then ¢ is an embedding.
Denote by Y, the closure of the set g(X) in the space Y x Yj. Then (Ys,g) is a
compactification of X. We put Z = nY3. Then (Z, g) is a Ti-compactification of X
and (Y7 f) < (Y2vg) < (Z7g)

Part 4. Let (Z, ¢) be a universal compactification of the space X. Then (mZ, ¢)
is a universal compactification, a universal Ty-compactification and a universal T7-
compactification. The implications 1 — 2 and 1 — 3 are proved.

Part 5. Let (Z, ) be a universal Tp-compactification. Then (Z,g) < (Z,¢) <
(nZ,p) for every T1 — g-compactification of X. Thus (nZ,¢) is a universal Tp-
compactification, universal Tj-compactification. From Part 3 it follows that (nZ, ¢)
is a universal compactification. The implications 2 — 1 and 2 — 3 are proved.

Part 6. Let (Z, ¢) be a universal T}-compactification. From Part 3 it follows that
(Z,¢) is a universal compactifiction and a universal Ty-compactification, too. The
implications 3 — 1 and 3 — 2 and the theorem are proved.

5.4. Corollary. There exists a T7-space X such that:
1. For X a universal Ti-compactification does not exist.
2. For X a universal Ty-compactification does not exist.
3. For X a universal compactification does not exist.

Proof. The existence of Ti-space X without universal Tj-compactification was
proved by M. Husec [5, 6]. Theorem 5.2. completes the proof.

6 The minimality of the compactification maX

Fix a Tp-space X. Let F' be the space from Example 4.1.

6.1. Theorem. Let P be a quasi-compactness and F be a subspace of some space
from P. Then:

1. There exists a compactification (Y, f) € PE(X) such that (maX,myx) <
(v, f).

2. If P is a small quasi-compactness then (maX,mx) < (8,X, Bp).

Proof. Let £ € P and F be a subspace of the space E. There exists an open
subset U of E such that 0 € U and 1 ¢ U. Consider the mapping r : E — F,
where 771(0) = U and r~'(1) = E\U. The mapping r is a continuous retraction.
By construction, C'(X, F) C C(X, E). We put ® = C(X, F). Consider the mapping
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fo : X — F® C E®. By construction, maX is the closure of the set fg(X) in the
space F®. Let Y be the closure of the set fo(X) in the space E®. Then (Y, fp) €
P(E)E(P) C PE(X). Consider the continuous mapping h : E® — F® where
h(zg: f € ®) = (r(zy) : f € ®) for every point © = (zf : f € &) € E®. The
mapping h is a retraction and maX C h(Y). Thus maX is a subspace of the space
Y and (maX,mx) = (maX, fo) < (Y, fo). The assertion 1 is proved. If P is
a small quasi-compactness, then we may consider that P = P(FE). In this case
(Y, fo) < (8pX, Bp). The proof is complete.
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