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On a small quasi-compactness

Laurenţiu Calmuţchi

Abstract. The notion of small quasi-compactness is introduced and studied.
Let P be a small quasi-compactness. We prove that the classes of equivalence of
P -compactifications of a given space X form a lattice with maximal and minimal
elements. Some properties of maximal elements are studied.
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1 Introduction

Compactness is one of the most important notions.
A quasi-compactness is a class of spaces which is multiplicative, hereditary with

respect to closed subspaces and contains an infinite T0-space.
A g-extension of a space X is a pair (Y, f), where Y is a T0-space, f : X → Y is

a continuous mapping and the set f(X) is dense in Y . If f is an embedding of X
into Y , then (Y, f) is an extension of the space X.

Denote by E(X) the class of all extensions of a space X and by GE(X) the
class of all g-extensions of the space X. If eX(x) = x for every x ∈ X, then
(X, eX ) ∈ E(X). Thus Φ 6= E(X) ⊆ GE(X).

In the family GE(X) there exists a binary relation ≤: (Y1, f1) ≤ (Y2, f2) if there
exists a continuous mapping ϕ : Y2 → Y1 such that f1 = ϕ◦f2, i. e. f1(x) = ϕ(f2(x))
for each x ∈ X.

If (Y1, f1) ≤ (Y2, f2) and (Y2, f2) ≤ (Y1, f1) then we say that the g-extensions
(Y1, f1) and (Y2, f2) are equivalent and we denote (Y1, f1) ≈ (Y2, f2).

We say that (Y ,f) is a g-extension with a T1-remainder if for every point
x ∈ Y \f(X) the set {x} is closed in Y .

1.1. Example. Let X be an infinite T0-space, A and B be two non-empty sets,
Y1 = X ∪ A, Y2 = X ∪ B, f1(x) = f2(x) = x for every x ∈ X, X is an open
subspace of Y1 and Y2, the neighborhoods of the point x ∈ A are of the form
Y1\(F ∪ Φ), where F is a closed compact subset of X and Φ is a finite subset of A,
the neighborhoods of the points x ∈ B are of the form Y2\(F∪Φ), where F is a closed
compact subset of X and Φ is a finite subset of B. The pairs (Y1, f1) and (Y2, f2)
are equivalent compactifications of the space X. Let (Y, f) be a g-compactification
of the space X with a T1-remainder and Y \f(X) 6= ∅. Fix a non-empty set A. We
put Z = Y ∪ A. Consider some mapping ϕ : A → Y \f(X). On Z we consider the
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topology with the base {U ⊆ Y : U is open in Y }∪{ϕ−1(U)\F ) ∪ (U\Φ) : U is an
open subset of Y , F is a finite subset of A and Φ is a finite subset of Y \f(X)}.
Then (Z, f) is a g-compactification of the space X with a T1-remainder and the
g-compactifications (Y, f) and (Z, f) are equivalent. Thus the class of equivalence
of some g-compactification of X is not a set.

For every g-extension (Y, f) of a space X by e(Y, f,X) we denote the class of all
g-extensions of X equivalent to the g-extension (Y, f) .

1.2. Definition. A class L of g-extensions of a space X is a lattice of g-extensions
if the following conditions are fulfilled:

– there exists a set e(L) ⊆ L such that L ⊆ ∪{e(Y, f,X) : (Y, f) ∈ e(L)};
– there exists a g-extension (mLX,mL) ∈ L such that (mLX,mL) ≤ (Y, f) for

every (Y, f) ∈ L;

– for every non-empty set A ⊆ L there exists a g-extension (Z, g) ∈ L such that
(Z, g) = ∨A and (Y, f) ≤ (Z, g) for every (Y, f) ∈ L.

If L is a lattice of g-extensions of a space X, then by (βLX,βL) we denote some
maximal element of the class L.

1.3. Example. M. Hušec [6, 7] constructed an infinite non-compact T1- space X
such that the class of all T1 − g-compactifications of X is not a lattice.

Let P be a quasi-compactness.

A g-extension (Y, f) of a space X is called a g − P -extension of X if Y ∈ P.
Let PGE(X) = {(Y, f) ∈ GE(X) : Y ∈ P} be the class of all g − P -extensions and
PE(X) = E(X) ∩ PGE(X) be the class of all P -extensions of the space X.

If PGE(X) is a lattice of g-extensions of the space X, then (βP X,βP ) is one of
the maximal elements of the class PGE(X).

First General Problem. To find the methods of construction and of study of
the P -extensions and of special P -extensions of a given space X.

Second General Problem. Under which conditions the class PGE(X) is a
lattice?

Third General Problem. Let P be a compactness and K be a class of spaces.
Under which conditions there exists a set valued functor F : K → P such that:

– F (X) is a non-empty lattice of g−P -extensions of the space X for every space
X;

– F (X)∩PE(X) 6= ∅ for every X ∈ KB and the maximal element (βF X,βF ) of
the lattice F (X) is an extension of X;

– for every closed continuous mapping f : X → Y of a space X ∈ K onto a
space Y ∈ K there exists a continuous extension g = βf : βF X → βF Y such that
f = g|X ?

The functor F with these properties is called a functor of the Wallman type.

Fourth General Problem. Let P be a compactness and K be a class of spaces.
Under which conditions there exists a set-valued functor F : K → P such that:
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– F (X) ∩ PE(X) 6= ∅ and F (X) is a lattice of g − P -extensions of the space X
for every space X ∈ K;

– for every continuous mapping f : X → Y of a space X ∈ K into a space Y ∈ K
there exists a continuous extension g = βf : βF X → βF Y of the mapping f onto
the maximal extensions?

A functor with these properties is called a functor of the Stone-Čech type. Every
functor of the Stone-Čech type is a functor of the Wallman type.

1.4. Example. If P is a compactness, i.e. P is a quasi-compactness and every
space X ∈ P is a Hausdorff space, then for every space X the class PGE (X)
is a set.

If K = {X : E(X) ∩ PGE(X) 6= ∅}, then F : K → PGE(X), where F (X) =
PG(X), is a functor of the Stone-Čech type.

1.5. Example. Let K be the class of all T0-spaces, ωX be the Wallman extension
of the T0-space X (see [1]). A g-compactification (Y, f) of a space X is called a
regular g-compactification of X if {clY A : A ⊆ f(X)} is a closed base of Y and
there exists a continuous mapping g : ωX → Y such that g(x) = f(x) for every
x ∈ X. If the mapping g is closed, then the g-compactification (Y, f) is called a
g − ωα-compactification of X (see [9]). Let F (X) = {(Y, f) : (Y, f) is a regular
g-compactification of X } and Φ(X) = {(Y, f) : (Y, f) is a g − ωα-compactification
of X } . Then F and Φ are functors of the Wallman type.

1.6. Example. Let K be the class of all T0-spaces and PGE(X) be the set
of all spectral g-compactifications of the T0-space X. Then the correspondence
X → PGE(X) is a functor of the Stone-Čech type (see [1]).

1.7. Example. Let K be the class of all completely regular spaces and PGE(X) be
the set of all Hausdorff g-compactifications of the space X. Then the correspondence
X → PGE(X) is a functor of the Stone-Čech type.

The purpose of the present paper is to investigate the class of P -extensions of
topological spaces.

In this article we shall use the following notations:

– we denote by clXA or clA the closure of a set A in a space X;

– we denote by |A| the cardinality of a set A;

– we denote by w(X) the weight of a space X.

– R is the space of reals, N = {1, 2, ...}, I = [0, 1];

– every space is considered to be a T0-space.

We use the terminology from [3, 1].

2 Small quasi-compactness

Let K be a class of T0-spaces and 2 ≤ |X| for some X ∈ K. Then there exists
a minimal quasi-compactness P (K) such that K ⊆ P (K). We put KGE(X) =
P (K)GE(X) for every non-empty T0-space X.
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2.1. Definition. A quasi-compactness P is called a small quasi-compactness if
there exists a set K of spaces such that P = P (K).

2.2. Proposition. Let P be a small quasi-compactness and for every space X ∈ P
there exists a point bX ∈ X such that the set {aX}is closed in X. Then P = P ({E})
for some space E ∈ P.

Proof. There exists a non-empty set K ⊆ P of spaces such that P = P (K).
Suppose that K = {Xα : α ∈ A}. For every α ∈ A there exists a point bα ∈ Xα such
that the set {bα} is closed in Xα. We put E = Π{Xα : α ∈ A} and Eβ = {(xα : α ∈
A) ∈ E : xα = bα for every α ∈ A\{β} and xβ ∈ Xβ}. Then Eβ is a closed subspace
of the space E. For every β ∈ A the spaces Eα and Xα are homeomorphic. Thus
P (K) = P ({E}).

2.3. Lemma. Let F be a non-empty compact subset of T0-space X. Then there
exists a point b ∈ F such that the set {b} is closed in X.

Proof. Let ξ be a maximal family of closed subsets of the space X such that:

1. ∅ /∈ ξ and H ⊆ F for every H ∈ ξ;

2. If H,M ∈ ξ, then H ∩ M ∈ ξ.

We put Φ = ∩ξ. The set Φ is non-empty and closed in X. There exists a unique
point b ∈ F such that Φ = {b}. Really, if x1, x2 ∈ Φ and x1 6= x2, then there exists
an open subset U of X such that U ∩ {x1, x2} is a singleton set. Then Φ\U ∈ ξ and
{x1, x2}\Φ 6= ∅, a contradiction. The proof is complete.

2.4. Corollary. Let P be a small quasi-compactness and every space X ∈ P be a
compact T0-space. Then P = ({E}) for some space E ∈ P .

Fix a quasi-compactness P and a non-empty space X. For every Y ∈ P denote
by C(X,Y ) the set of all continuous mappings of the space X into the space Y . Let
Φ = {fα : X → Yα : α ∈ A} ⊆ ∪{C(X,Y ) : Y ∈ P} be a set of mappings. We put
fΦ(x) = {fα(x) : α ∈ A} ∈ Π{Yα : α ∈ A} for every x ∈ X. Denote by eΦX the
closure of the set fΦ(X) in the space Π {Yα : α ∈ A}. Then (eΦX, fΦ) ∈ PGE(X).

2.5. Theorem. Let K be a class of T0-spaces and P = P (K). For every T0-space
X and every g − P -extension (Y, f) ∈ PGE(X) there exists a set Φ = {fα : X →
Yα : α ∈ A} ⊆ ∪{C(X,Z) : Z ∈ K} such that the g − P -extensions (Y, f) and
(eΦX, fΦ) are equivalent. Moreover, fα 6= fβ for every α, β ∈ A and α 6= β.

Proof. There exists a set {Eβ : β ∈ B} ⊆ K such that Y is homeomorphic to
a closed subset of the space E = Π{Eβ : β ∈ B}. We assume that Y is a closed
subspace of the space E. Let pβ : E → Eβ be the continuous projections of E onto
Eβ : pβ((xµ : µ ∈ B)) = xβ for every point (xµ ∈ Eµ : µ ∈ B) ∈ E. For every β ∈ B
we put gβ = pβ ◦ f . Then gβ : X → Eβ is a continuous mapping. There exists a
minimal set of mappings Φ = {fα : X → Yα : α ∈ A} such that:

1. For every α ∈ A there exists a β ∈ B such that fα = gβ .

2. For every β ∈ B there exists a unique α = i(β) ∈ A such that fα = gβ .
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Thus there exists a mapping i : B → A of B onto A such that fα = gβ for all
α ∈ A and β ∈ i−1(α). If α, λ ∈ A and α 6= λ, then fα 6= fλ.

We put Bα = i−1(α) for each α ∈ A. By construction, Eβ = Eµ for all α ∈ A
and β, µ ∈ Bα. We may consider that Eβ = Xα for all α ∈ A and β ∈ Bα. For every
β ∈ Bα we consider the mapping δαβ : Xα → Eβ such that δαβ(x) = x for every
x ∈ Xα. We put δα(x) = (δαβ(x) : β ∈ Bα) ∈ Π{Eβ : β ∈ Bα} for every α ∈ A
and every x ∈ Xα. Then δα : Xα → Π{Eβ : β ∈ Bα} is an embedding. The set
∆α(Xα) = δα(Xα) is the diagonal of the space Xα in Π{Eβ : β ∈ Bα}. Fix β(α) ∈
Bα. Let hα : Π{Eβ : β ∈ Bα} → Xα be the projection hα(xβ : β ∈ Bα) = xβ(α) for
every point (xβ : β ∈ Bα) ∈ Π{Eβ : β ∈ Bα}.

Now we consider the continuous mapping h : Π{Eβ : β ∈ B} = Π{Π{Eβ : β ∈
Bα} : α ∈ A} → Π{Xα : α ∈ A}, where h(xβ : β ∈ B) = (hα(xβ : β ∈ Bα) : α ∈ A)
for every point (xβ : β ∈ B) ∈ Π{Eβ : β ∈ B}. The mapping δ : Π{Xα : α ∈
A} → Π{∆α(Xα) : α ∈ A}, where δ(xα : α ∈ A) = (δα(xα) : α ∈ A) for every
(xα : α ∈ A) ∈ Π{Xα : α ∈ A}, is a homeomorphism of the space Π{Xα : α ∈ A}
onto the subspace Π{∆α(Xα) : α ∈ A} of the space Π{Eβ : β ∈ B}.

Let fΦ(x) = (fα(x) : α ∈ A) for every x ∈ X and eΦX be the closure of the
subspace fΦ(X) in Π{Xα : α ∈ A}. Let ϕ = δ|eΦX :eΦX → Π{Eβ : β ∈ B}. Then
ϕ(fΦ(x)) = (gβ(x) : β ∈ B) = f(x) for every x ∈ X. Thus (Y, f) ≤ (eΦX, fΦ). Let
Ψ = h |Y. Then Ψ(f(x)) = fΦ(x) for every x ∈ X. Thus (eΦX, fΦ) ≤ (Y, f). The
proof is complete.

2.6. Remark. By construction, ϕ : eΦX → Y is an embedding and Ψ : Y → eΦX
is a retract, i.e. ϕ(Ψ(y)) = y for every y ∈ ϕ(eΦX).

2.7. Theorem. Let Φ = {fα : X → Yα : α ∈ A} ⊆ ∪{C(X,Y ) : Y ∈ P} and
G = {gβ : X → Zβ : β ∈ B} ⊆ ∪{C(X,Y ) : Y ∈ P} be two sets of mappings, A ⊆ B
and Yα = Zα, fα = gα for each α ∈ A. Then (eΦX, fΦ) ≤ (eGX, fG).

Proof. Consider the projection p : Π{Zβ : β ∈ B} → Π{Yα : α ∈ A} = Π{Zα : α ∈
A}, where p(zβ : β ∈ B) = (zβ : β ∈ A). Then p(fG(x)) = fΦ(x) for every x ∈ X.
Thus p(eGX) ⊆ eΦX and (eΦX, fΦ) ≤ (eGX, fG). The proof is complete.

2.8. Corollary. Let A be a set, Φα = {gβ : X → Zβ : β ∈ Bα} ⊆ ∪{C(X,Y ) : Y ∈
P} be a set of continuous mappings for every α ∈ A, B = ∪{Bα : α ∈ A} and
Φ = {gβ : X → Zβ : β ∈ B}. Then (eΦX, fΦ) = ∨{(eΦαX, fΦα) : α ∈ A}.

2.9. Corollary. Let P be a small quasi-compactness. Then there exists a set K ⊆ P
of spaces such that:

1. For every (Y, f) ∈ PGE(X) there exist a set Φ ⊆ ∪{C(X,Y ) : Y ∈ K}, an
embedding ϕ : eΦX → Y and a retraction Ψ : Y → eΦX such that ϕ(Ψ(y)) = y for
every y ∈ ϕ(eΦX) and (Y, f) ∼ (eΦX, fΦ).

2. The class PGE(X) is a lattice provided PE(X) 6= ∅.
3. For every space X there exists a maximal element (βpX,βp), where (βpX,βp) =

(eΦX, fΦ) for Φ = ∪{C(X,Y ) : Y ∈ K} .

2.10. Definition. A quasi-compactness P is called a virtual small quasi-
compactness if for every space X the class PGE(X) is a lattice.
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Every small quasi-compactness is a virtual small quasi-compactness

2.11. Corollary. Let P be a virtual small quasi-compactness. Then:

1. For every space X there exists some maximal element (βP X,βP ) in PGE(X).
2. For every continuous mapping f : X → Y there exists a continuous mapping

βf : βP X → βP Y such that βf(βP (x)) = βP (f(x)) for every x ∈ X.
3. For every continuous mapping f : X → Y into a space there exists a con-

tinuous mapping βf : βP X → Y such that βf(βP (x)) → f(x) for every x ∈ X.

2.12. Remark. If Y ∈ P and iϕ : Y → Y is the identical mapping, then (Y, iϕ) =
(βP Y, βP ) is one of the maximal elements from PGE(X) and PE(X) 6= ∅.

3 On E-compact spaces

Let E be a space and |E| ≥ 2. Consider the small compactness P = P (E) =
P ({E}). We put EGE(X) = P (E)GE(X) and EE(X) = P (E)E(X). If (Y, f) ∈
EGE(X), then (Y, f) is called a g − E-compactification of the space X. If (Y, f) ∈
EE(X), then (Y, f) or Y is called a E-compactification of the space.

The notion of E-compactification was introduced by S. Mrovka [7,4]. From
Theorems 2.5, 2.7, 2.10 and Corollary 2.9 follow the next assertions.

3.1. Corollary. For every space X the class EGE(X) is a lattice with the maximal
element (βEX,βE) = (eC(X,E)X, fC(X,E)).

3.2. Corollary. For every (Y, f) ∈ EGE(X) there exists a set Φ ⊆ C(X,E) such
that:

1. (eΦX, fΦ) ≈ (Y, f).
2. There exist a continuous mapping ϕ : Y → eΦX and an embedding Ψ : eΦX →

Y such that Ψ(fΦ(x)) = ϕ(f(x)) and ϕ(Ψ(y)) = y for all x ∈ X and y ∈ eΦX.

3.3. Corollary. For every continuous mapping ϕ : X → Y there exists a continuous
mapping βϕ : βEX → βEY such that the diagram

X
ϕ

−−−−−−−−−−−−−→ Y

βE





y





y

βE

βEX
βϕ

−−−−−−−−−−−−−→ βEY

is commutative.

3.4. Corollary. If IndX=0, then EE(X) 6= ∅ and (βEX,βE) ∈ EE(X).

3.5. Corollary. If E is a T1-space, then there exists a regular space X such that
EE(X) = ∅.

3.6. Corollary. If E is a T0-space and E is not a T1-space, then EE(X) 6= ∅ and
(βEX,βE) ⊆ EE(X) for every T0-space X.
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4 Examples

4.1. Example. Let F = {0, 1} with the topology {∅, {0}, {0, 1}}. Then F is a
T0-space and F is not a T1-space. In this case FE(X) 6= ∅ for every T0-space X.
The class FE (X) is not a set and the class FGE(X) is a lattice.The assertions of
the preceding section are true for FGE(X).

The space Fm is called the Alexandroff cube (see [3]).

Denote by (maX,mX) the maximal element of the lattice FGE(X) of a space
X. We may suppose that maX = eC(X,F )X. We identify x ∈ X and mX(x) ∈ maX.
In this case X is a dense subspace of the T0-compact space maX. If ϕ : X → Y is
a continuous mapping, then there exists a continuous mapping mϕ : maX → maY
such that ϕ = mϕ|X .

4.2. Example. Let D={0, 1} with the discrete topology {∅, {0}, {1}, {0, 1}}. In
this case:

– EGE (X) is a set for every space X;

– EGE (X) is a lattice for every space X;

– EE(X) 6= ∅ if and only if indX=0.

4.3. Example. Let I = [0, 1] be a subspace of reals. In this case:

– EGE (X) is a set for every space X;

– EGE (X) is a lattice for every space X;

– EE(X) 6= ∅ if and only if X is a completely regular space;

– for every completely regular space the compactification βE ∈ X is the Stone-
Čech compactification βE of the space X.

4.4. Example. Let τ be an infinite cardinal and E be a space of cardinality τ
with the topology {∅, E} ∪ {E\F : F is a finite subset}. The space E is a compact
T1-space and E is not a Hausdorff space. In this case:

– EGE (X) is not a set for some T1-space;

– EGE (X) is a lattice for every space X;

– If X is a T1-space and |X| ≤ τ , then EE(X) 6= ∅;
– If c ≤ τ , then EE(X) 6= ∅ for every completely regular space X.

4.5. Example. A class P of topological T0-spaces is called a double compactness
if the following conditions are fulfilled:

1. There exists a space X ∈ D such that |X| ≥ 2.

2. If Γ is the topology of the space X ∈ P, then there is determined the Hausdorff
topology dΓ on X such that (X, dΓ) ∈ P, Γ ⊆ dΓ and ddΓ = dΓ. We say that dΓ
is the strong topology and Γ is the weak topology on X.

3. If {(Xα,Γα) ∈ P : α ∈ A} is a non-empty set of spaces, X = Π{Xα : α ∈ A},
Γ is the product of topologies Γα on X and Γ′ is the product of topologies dΓα on
X, then Γ′ ⊆ dΓ.

4. If (X, Γ) ∈ P, Y ⊆ X and Y is a closed subset of the space (X, dΓ), then
(Y,Γ) ∈ P and dΓ|Y ⊆ d(Γ|Y ) , where Γ|Y = {U ∩ Y : U ∈ Γ} for the topology Γ
on X.
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Every double compactness is a quasi-compactness.
Let P be a double compactness. Then PGE(X) is a set for every space X.

Moreover, for every non-empty subset L ⊆ PGE(X) there exists the supremum
∨L ∈ PGE(X) . In particular, there exists the maximal element (βpX,βP ).

A mapping f : X → Y of a space (X,Γ) ∈ P into a space (Y,Γ′) ∈ P is double
continuous if f−1Γ′ ⊆ Γ and f−1dΓ′ ⊆ dΓ. For every continuous mapping f : X → Y
of a space X into a space Y ∈ P there exists a unique double continuous mapping
βf : βpX → P such that f(x) = βf(βP (x)) for every point x ∈ X. In particular,
for every continuous mapping f : X → Y there exists a unique double continuous
mapping βf : βpX → βpY such that βp(f(x)) = βf(βP (x)) for every x ∈ X.

4.6. Example. Let K be a class of triples (X, TX , T ′

X), where X is a non-empty
set, TX and T ′

X are topologies on X, TX ⊆ T ′

X and T ′

X is a Hausdorff topology.
Then there exists a minimal double compactness P such that (X, TX) ∈ P and
T ′

X = dTX for every triple (X, TX , T ′

X) ∈ K. We say that the double compactness
is generated by the class K. If P ′ is the quasi-compactness generated by the class
{(X, TX), (X,T ′

X ) : (X, TX , T ′

X) ∈ K}, then P ′ ⊆ P .

4.7. Example. Let X0 = {0, 1}, TX0 = {∅, {0}, {0, 1}}, T ′

X0
= {∅, {0}, {1}, {0, 1}},

then there exists the minimal double compactness S such that (X0, TX0) ∈ S and
dTX0 = T ′

X0
. The class S is the class of all spectral spaces (see [1]).

The class S satisfies the following properties:
1. For every T0-space X the class SGE (X) is a set, is a lattice, SE (X) 6= ∅ and

the maximal element (βSX,βS) is a compactification of X. We may consider that
X is a subspace of βSX and X is dense in βSX in the strong topology on βSX.

2. The class S is a virtual small quasi-compactness.
3. The class S is not a small quasi-compactness.

5 Non-existence of universal compactification

5.1. Definition. A compactification (bX, ϕ) of a space X is called a universal
compactification of a space X if (Y, f) ≤ (bX, ϕ) for every compactification (Y, f)
of X.

5.2. Definition. Let i ∈ {0, 1, 2} and X be a Ti-space. A compactification (bX,ϕ)
of the space X is called a universal Ti-compactification of X if bX is a Ti-space and
(Y, f) ≤ (bX,ϕ) for every Ti − g-compactification (Y, f) of the space X.

If X is a completely regular space, then the Stone-Čech compactification βX of
X is a universal T2-compactification of the space X.

5.3.Theorem. Let X be a T1-space. The following assertions are equivalent:
1. For a space X there exists a universal compactification.
2. For a space X there exists a universal T0-compactification.
3. For a space X there exists a universal T1-compactification.

Proof. Part 1. Let Z be a space with the topology T . Denote by nT the topology
on Z generated by the open base {U\H : U ∈ T,H is finite subset of Z}. The
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topology nT is called the T1-modification of the topology T . Denote by nZ the set
Z with the topology nT . The space Z is compact if and only if the space nZ is
compact.

Part 2. Let (Y, f) be a compactification of the T1-space X. Then f : X → Y is an
embedding. It is obvious that the mapping f : X → nY is an embedding too. Thus
(nY, f) is a T1-compactification of the space X. By construction, (Y, f) ≤ (nY, f).

Part 3. For every g-compactification (Y, f) of the space X there exists a T1-
compactification (Z, g) of X such that (Y, f) ≤ (Z, g).

Let (Y1, f1) be some compactification of X. Consider the mapping g : X →
Y × Y1, where g(x) = (f(x), f1(x)) for every x ∈ X. Then g is an embedding.
Denote by Y2 the closure of the set g(X) in the space Y × Y1. Then (Y2, g) is a
compactification of X. We put Z = nY2. Then (Z, g) is a T1-compactification of X
and (Y, f) ≤ (Y2, g) ≤ (Z, g).

Part 4. Let (Z,ϕ) be a universal compactification of the space X. Then (mZ,ϕ)
is a universal compactification, a universal T0-compactification and a universal T1-
compactification. The implications 1 → 2 and 1 → 3 are proved.

Part 5. Let (Z,ϕ) be a universal T0-compactification. Then (Z, g) ≤ (Z,ϕ) ≤
(nZ,ϕ) for every T1 − g-compactification of X. Thus (nZ,ϕ) is a universal T0-
compactification, universal T1-compactification. From Part 3 it follows that (nZ,ϕ)
is a universal compactification. The implications 2 → 1 and 2 → 3 are proved.

Part 6. Let (Z,ϕ) be a universal T1-compactification. From Part 3 it follows that
(Z,ϕ) is a universal compactifiction and a universal T0-compactification, too. The
implications 3 → 1 and 3 → 2 and the theorem are proved.

5.4. Corollary. There exists a T1-space X such that:

1. For X a universal T1-compactification does not exist.

2. For X a universal T0-compactification does not exist.

3. For X a universal compactification does not exist.

Proof. The existence of T1-space X without universal T1-compactification was
proved by M. Hušec [5, 6]. Theorem 5.2. completes the proof.

6 The minimality of the compactification maX

Fix a T0-space X. Let F be the space from Example 4.1.

6.1. Theorem. Let P be a quasi-compactness and F be a subspace of some space
from P . Then:

1. There exists a compactification (Y, f) ∈ PE(X) such that (maX,mX) ≤
(Y, f).

2. If P is a small quasi-compactness then (maX,mX) ≤ (βpX,βp).

Proof. Let E ∈ P and F be a subspace of the space E. There exists an open
subset U of E such that 0 ∈ U and 1 /∈ U . Consider the mapping r : E → F ,
where r−1(0) = U and r−1(1) = E\U . The mapping r is a continuous retraction.
By construction, C(X,F ) ⊆ C(X, E). We put Φ = C(X,F ). Consider the mapping
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fΦ : X → FΦ ⊆ EΦ. By construction, maX is the closure of the set fΦ(X) in the
space FΦ. Let Y be the closure of the set fΦ(X) in the space EΦ. Then (Y, fΦ) ∈
P (E)E(P ) ⊆ PE(X). Consider the continuous mapping h : EΦ → FΦ, where
h(xf : f ∈ Φ) = (r(xf ) : f ∈ Φ) for every point x = (xf : f ∈ Φ) ∈ EΦ. The
mapping h is a retraction and maX ⊆ h(Y ). Thus maX is a subspace of the space
Y and (maX,mX) = (maX, fΦ) ≤ (Y, fΦ). The assertion 1 is proved. If P is
a small quasi-compactness, then we may consider that P = P (E). In this case
(Y, fΦ) ≤ (βpX,βp). The proof is complete.
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