On some quasi-identities in finite quasigroups *

G. Belyavskaya, A. Diordiev

Abstract. In this article we consider some quasi-identities in quasigroups, in particular, quasi-identities connected with parastrophic orthogonality of a quasigroup. We also research some quasi-identities in quasigroups (in loops) with one parameter δ (δ -quasi-identities) which arose by the study of detecting coding systems such as check character systems in [6] (see also [5,7]), establish equivalence of such quasi-identities, connection of some of them with orthogonality of quasigroups and give a number of examples of finite quasigroups with such δ -quasi-identities.

Mathematics subject classification: 20N05, 94B60.

Keywords and phrases: Quasigroup, loop, group, automorphism, quasi-identity, orthogonality, parastrophe.

1 Introduction

It is known that the concept of a quasi-identity (or a conditional identity [1,11, 12]) in an algebraic system is a generalization of the concept of an identity and is used by the study of different algebraic systems, in particular, groups, semigroups.

A quasi-identity (or a conditional identity) is a formula of the form

$$(\forall x_1) \dots (\forall x_n) \ (u_1 = v_1 \& \dots \& u_m = v_m \Rightarrow u = v)$$

where u, v, u_i, v_i (i = 1, 2, ..., m) are words in the alphabet $\{x_1, x_2, ..., x_n\}$.

By writing of quasi-identities the quantor prefix usually is omitted. Each identity u = v can be changed by the quasi-identity $x = x \Rightarrow u = v$.

Some classes of algebraic systems are given by means of quasi-identities. So, groupoids, in particular semigroups (Q, \cdot) with the left (right) cancelation are defined by the quasi-identity $ca = cb \Rightarrow a = b$ ($ac = bc \Rightarrow a = b$) in a groupoid (in a semigroup) (Q, \cdot) . The known class of separative semigroups is defined by the following quasi-identity: $a^2 = ab = b^2 \Rightarrow a = b$. The class of finite groups is simply the class of semigroups with left and right cancelation.

The concept of a quasi-identity lies in the base of definition of a quasi-variety of algebraic systems. So, the class of semigroups with the two-sided cancelation (the class of separative semigroups) forms a quasi-variety [1].

[©] G. Belyavskaya, A. Diordiev, 2005

^{*}Acknowledgment: The research described in this article was made possible in part by Award No. MM1-3040-CH-02 of the Moldovan Research and Development Association (MRDA) and the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF).

Different quasi-identities arise also in quasigroups and loops. So, a definition and some properties of finite quasigroups can be given by means of quasi-identities.

So, a finite quasigroup (Q, \cdot) can be defined as a groupoid with the right and the left cancelations, that is with the quasi-identities:

$$xz = yz \Rightarrow x = y$$
 and $zx = zy \Rightarrow x = y$.

For a finite qroupoid the right (left) cancelation is equivalent to left (right) invertibility.

A quasigroup (Q, \cdot) is called diagonal [9] if the mapping $x \to x \cdot x = x^2$ is a permutation (bijection) on Q. In the case of a finite quasigroup this means that in such quasigroup the quasi-identity $x^2 = y^2 \Rightarrow x = y$ holds.

A quasigroup (Q, \cdot) is called anti-commutative [3] if $xy \neq yx$ for $x \neq y$, that is the quasi-identity $xy = yx \Rightarrow x = y$ holds.

A quasigroup of Stein (Q, \cdot) (that is a quasigroup with the identity $x \cdot xy = yx$) is an example of anti-commutative quasigroup: if xy = yx, then $x \cdot xy = xy$, xy = y, x = y, since a quasigroup of Stein is idempotent (that is $x^2 = x$ for each $x \in Q$). A quasigroup is called anti-abelian if xy = zt and yx = tz imply x = z and y = t. Such a quasigroup is anti-commutative also [15].

In this article we consider some other quasi-identities in quasigroups, in particular, quasi-identities connected with parastrophic orthogonality of a quasigroup. We also research some quasi-identities in quasigroups (in loops) with one parameter δ (δ -quasi-identities), which arose by the study of coding systems such as check character systems in [6] (see also [5,7]), establish equivalence of such quasi-identities, connection of some of them with orthogonality of quasigroups and give a number of examples of finite quasigroups with these δ -quasi-identities.

2 Some necessary notions and results

A binary quasigroup is a particular case of a groupoid.

A groupoid (Q, \cdot) is a set Q with some binary operation (\cdot) .

A groupoid (Q, \cdot) with the right (left) cancelation is a groupoid such that in it the following quasi-identities hold: $xa = ya \Rightarrow x = y$ ($ax = ay \Rightarrow x = y$).

A quasigroup (Q, \cdot) is a groupoid in which every of the equations ax = b and xa = b has a unique solution for any $a, b \in Q$. In other words, a quasigroup is a groupoid which is invertible to the right and to the left.

A quasigroup (Q, \cdot) is finite of order n if the set Q is finite and |Q| = n.

A quasigroup (Q, \cdot) with a left identity f (right identity e) is a quasigroup such that fx = x (xe = x) for every $x \in Q$.

A loop (Q, \cdot) is a quasigroup with the identity e: xe = ex = x for each $x \in Q$.

20

A loop (Q, \cdot) is called a *loop Moufang* if it satisfies the identity $(zx \cdot y) \cdot x = z(x \cdot yx)$.

The primitive quasigroup $(Q, \cdot, \backslash, /)$, where $x \cdot y \Leftrightarrow z/y = x$, $x \setminus z = y$, corresponds to every quasigroup (Q, \cdot) .

If for the designation of a quasigroup operation (\cdot) the letter A is used, then a primitive quasigroup $(Q, A, A^{-1}, {}^{-1}A)$, where $A(x, y) = z \Leftrightarrow A^{-1}(x, z) = y$, ${}^{-1}A(z, y) = x$ corresponds to a quasigroup (Q, A). The operations A^{-1} , ${}^{-1}A$ (or $(\backslash), (/)$) are also quasigroup operations which are called the right, left inverse operations for A (for (\cdot)) respectively.

A quasigroup (Q, B) is isotopic to a quasigroup (Q, A) if there exists a tuple $T = (\alpha, \beta, \gamma)$ of permutations on Q such that $B(x, y) = \gamma^{-1}A(\alpha x, \beta x)$ (shortly, $B = A^{(\alpha,\beta,\gamma)} = A^T$).

With any quasigroup operation A five *parastrophes* (or conjugate operations) are connected

$$A^{-1}$$
, ${}^{-1}A$, $({}^{-1}A)^{-1}$, ${}^{-1}(A^{-1})$ and $A^* \left(={}^{-1}\left(({}^{-1}A)^{-1}\right) = ({}^{-1}(A^{-1}))^{-1}\right)$,

where $A^{*}(x, y) = A(y, x)$ [3].

Definition 1 [2]. Two operations A and B, given on a set Q, are called orthogonal (shortly, $A \perp B$) if the system of equations $\{A(x, y) = a, B(x, y) = b\}$ has a unique solution for all $a, b \in Q$.

Let Q be a finite or infinite set, A and B be operations on Q, then the right (left) multiplication $A \cdot B (A \circ B)$ of Mann is defined in the following way:

$$(A \cdot B)(x, y) = A(x, B(x, y)), \ (A \circ B)(x, y) = A(B(x, y), y).$$

All invertible to the right (to the left) operations on a set Q form a group with respect to the right (left) multiplication of Mann [13].

According to the criterion of Belousov [4] two quasigroups (Q, A) and (Q, B) are orthogonal if and only if the operation $A \cdot B^{-1}$ $(A \circ^{-1} B)$ is a quasigroup.

3 Parastrophic orthogonality of quasigroups and quasi-identities

A quasigroup (Q, A) can be orthogonal with some its parastrophes. As it was proved by G. Mullen and V. Shcherbacov in [14], conditions for this orthogonality of finite quasigroups can be expressed by quasi-identities in the corresponding primitive quasigroup $(Q, A^{-1}, {}^{-1}A)$. We shall give some his quasi-identities and other ones obtained with the help of the Belousov's criterion of orthogonality of two quasigroups.

Proposition 1. Let (Q, A) be a finite quasigroup, $(Q, \cdot, A^{-1}, {}^{-1}A)$ be the corresponding primitive quasigroup. Then

$$A \perp A^{-1} \Leftrightarrow A(x, A(x, z)) = A(y, A(y, z)) \Rightarrow x = y, \tag{1}$$

G. BELYAVSKAYA, A. DIORDIEV

$$A \perp^{-1} A \Leftrightarrow A(A(z,x),x) = A((z,y),y) \Rightarrow x = y, \tag{2}$$

$$A \perp ({}^{-1}A)^{-1} \Leftrightarrow A(x, {}^{-1}A(x, z)) = A(y, {}^{-1}A(y, z)) \Rightarrow x = y, \tag{3}$$

$$A \perp^{-1} (A^{-1}) \Leftrightarrow A(A^{-1}(z, x), x) = A(A^{-1}(z, y), y) \Rightarrow x = y,$$
(4)

$$A \perp A^* \Leftrightarrow A(A^{-1}(x,z),x) = A(A^{-1}(y,z),y) \Rightarrow x = y.$$
(5)

Proof. By the criterion of Belousov $A \perp A^{-1}$ if and only if the operation $(A \cdot (A^{-1})^{-1}) = A \cdot A$ is a quasigroup. It is valid if and only if the quasi-identity (1) holds, since the operation $A \cdot A$ is always invertible from the right.

 $A \perp^{-1} A$ if and only if $A \circ^{-1} ({}^{-1}A) = A \circ A$ is a quasigroup, that is the quasiidentity (2) is valid if we take into account that the operation $A \circ A$ is always invertible to the left.

By the criterion, $A \perp ({}^{-1}A)^{-1}$ if and only if the invertible from the right operation $A \cdot (({}^{-1}A)^{-1})^{-1} = A \cdot {}^{-1}A$ is a quasigroup, that is invertible from the left. It is valid if and only if the quasi-identity (3) holds.

Analogously, $A \perp^{-1} (A^{-1})$ if and only if the invertible from the left operation $A \circ^{-1} ({}^{-1}(A^{-1})) = A \circ A^{-1}$ is a quasigroup, that is the quasi-identity (4) holds.

At last, $A \perp A^*$ if and only if $A^* \cdot A^{-1}$ is a quasigroup, that is the quasi-identity (5) holds.

Proposition 2. Let $(Q, \cdot, \backslash, /)$ be a finite primitive quasigroup. Then the quasi-identity (1) is equivalent to the quasi-identity

$$A({}^{-1}\!A(x,z),x) = A({}^{-1}\!A(y,z),y) \Rightarrow x = y,$$
(6)

the quasi-identity (2) is equivalent to the quasi-identity

$$A(x, A^{-1}(z, x)) = A(y, A^{-1}(z, y) \Rightarrow x = y,$$
(7)

the quasi-identity (3) is equivalent to the quasi-identity

$$A(A(x,z),x) = A(A(y,z),y) \Rightarrow x = y,$$
(8)

the quasi-identity (4) is equivalent to the quasi-identity

$$A(x, A(z, x)) = A(y, A(z, y)) \Rightarrow x = y,$$
(9)

the quasi-identity (5) is equivalent to the quasi-identity

$$A(x,^{-1}A(z,x)) = A(y,^{-1}A(z,y)) \Rightarrow x = y.$$
(10)

Proof. Indeed, $A \perp A^{-1}$ by the criterion of Belousov if and only if $A \circ^{-1}(A^{-1})$ is a quasigroup. But $(A \circ^{-1}(A^{-1}))(z, x) = A(^{-1}(A^{-1})(z, x), x) = A(^{-1}A(x, z), x)$, since $^{-1}(A^{-1})(z, x) = ^{-1}A(x, z)$. So $A \circ^{-1}(A^{-1})$ is a quasigroup if and only if (6) holds.

 $A \perp^{-1} A$ if and only if $A \cdot ({}^{-1}A)^{-1}$ is a quasigroup. Taking into account that $({}^{-1}A)^{-1}(x,z) = A^{-1}(z,x)$ we have $(A \cdot ({}^{-1}A)^{-1})(x,z) = A(x, ({}^{-1}A)^{-1}(x,z)) = A(x, A^{-1}(z,x))$. So $A \cdot ({}^{-1}A)^{-1}$ is a quasigroup if and only if (7) holds.

 $A \perp ({}^{-1}A)^{-1}$ if and only if $A \circ {}^{-1}(({}^{-1}A)^{-1}) = A \circ A^*$ is a quasigroup, that is the quasi-identity $A(A^*(z, x), x) = A(A^*(z, y), y) \Rightarrow x = y$ or (8) holds.

 $A \perp^{-1} (A^{-1})$ if and only if $A \cdot ({}^{-1}(A^{-1}))^{-1} = A \cdot A^*$ is a quasigroup. This condition is equivalent to the quasi-identity (9).

 $A^* \perp A$ if and only if $A^* \circ^{-1} A$ is a quasigroup if and only if the quasi-identity $A^*({}^{-1}\!A(z,x),x) = A^*({}^{-1}\!A(z,y),y) \Rightarrow x = y$ or (10) holds. \Box

Using the designation (\cdot) for an operation A we can write the quasi-identities (1)-(10), respectively, in the following way (we use the same numeration for them) :

$$x \cdot xz = y \cdot yz \Rightarrow x = y, \tag{1}$$

$$zx \cdot x = zy \cdot y \Rightarrow x = y, \tag{2}$$

$$x \cdot (x/z) = y \cdot (y/z) \Rightarrow x = y, \tag{3}$$

$$(z \backslash x) \cdot x = (z \backslash y) \cdot y \Rightarrow x = y, \tag{4}$$

$$(x \setminus z) \cdot x = (y \setminus z) \cdot y \Rightarrow x = y, \tag{5}$$

$$(x/z) \cdot x = (y/z) \cdot y \Rightarrow x = y, \tag{6}$$

$$x \cdot (z \setminus x) = y \cdot (z \setminus y) \Rightarrow x = y, \tag{7}$$

$$xz \cdot x = yz \cdot y \Rightarrow x = y, \tag{8}$$

$$x \cdot zx = y \cdot zy \Rightarrow x = y, \tag{9}$$

$$x \cdot (z/x) = y \cdot (z/y) \Rightarrow x = y. \tag{10}$$

Note that the quasi-identities (1), (2), (8) and (9) were obtained in [14]. From Proposition 1 and 2 it follows at once

Theorem 1. Let (Q, \cdot) be a finite quasigroup. Then

$$(\cdot) \perp (\cdot)^{-1} \Leftrightarrow x \cdot xz = y \cdot yz \Rightarrow x = y \Leftrightarrow (x/z) \cdot x = (y/z) \cdot y \Rightarrow x = y,$$

$$(\cdot) \perp^{-1} (\cdot) \Leftrightarrow zx \cdot x = zy \cdot y \Rightarrow x = y \Leftrightarrow x \cdot (z \setminus x) = y \cdot (z \setminus y) \Rightarrow x = y,$$

$$(\cdot) \perp (^{-1}(\cdot))^{-1} \Leftrightarrow x \cdot (x/z) = y \cdot (y/z) \Rightarrow x = y \Leftrightarrow xz \cdot x = yz \cdot y \Rightarrow x = y,$$

$$(\cdot) \perp^{-1} ((\cdot)^{-1}) \Leftrightarrow (z \setminus x) \cdot x = (z \setminus y) \cdot y \Rightarrow x = y \Leftrightarrow x \cdot zx = y \cdot zy \Rightarrow x = y,$$

$$(\cdot) \perp (\cdot)^* \Leftrightarrow (x \setminus z) \cdot x = (y \setminus z) \cdot y \Rightarrow x = y \Leftrightarrow x \cdot (z/x) = y \cdot (z/y) \Rightarrow x = y.$$

Corollary 1. Let (Q, A) be a finite commutative quasigroup. Then

(i) all quasi-identities (1)-(4),(6)-(9) are equivalent;

 (ii) each one of the first four parastrophic orthogonalities of Theorem 1 implies the rest of these orthogonalities.

Proof. In the case of a commutative quasigroup (that is xy = yx for all $x, y \in Q$) it is easy to see that

$$(1) \Leftrightarrow (2) \Leftrightarrow (8) \Leftrightarrow (9).$$

 \square

Item (ii) follows from this fact and Theorem 1.

In a finite commutative quasigroup the quasi-identities (5) and (10) do not hold, since (\cdot) and $(\cdot)^* = (\cdot)$ are not orthogonal.

Corollary 2. Let (Q, \cdot) be a finite loop Moufang (in particular, a finite group). Then

- (i) if in (Q, \cdot) one of the quasi-identities (1)-(4), (6)-(9) holds, then (Q, \cdot) is diagonal;
- (ii) if (Q, \cdot) is diagonal, then $(1) \Leftrightarrow (2) \Leftrightarrow (8) \Leftrightarrow (9)$ and (Q, \cdot) is orthogonal to each of its parastrophes, except $(Q, (\cdot)^*)$;
- (iii) (Q, \cdot) is not orthogonal to $(Q, (\cdot)^*)$;
- (iv) a loop Moufang (Q, \cdot) of odd order is orthogonal to each of its parastrophes, except $(Q, (\cdot)^*)$.

Proof. (i) Let (1) ((2), (8) or (9)) hold in a finite loop Moufang, then by z = e (e is the identity of the loop) we have that $x^2 = y^2 \Rightarrow x = y$. The rest quasi-identities, except (5) and (10), are equivalent to one of these quasi-identities by Theorem 1.

(ii) Let (Q, \cdot) be diagonal, that is $x^2 = y^2 \Rightarrow x = y$, then (1) and (2) also hold, since a loop Moufang is diassociative (that is each two elements generate a subgroup) [3]. Show that from $x^2 = y^2 \Rightarrow x = y$ it follows (9):

 $\begin{aligned} x \cdot x &= y \cdot y \Leftrightarrow z(x \cdot x) = z(y \cdot y) \Leftrightarrow zx \cdot x = \\ &= zy \cdot y \Leftrightarrow x \cdot L_z^{-1} x = y \cdot L_z^{-1} y \Leftrightarrow x \cdot z_1 x = y \cdot z_1 y, \end{aligned}$

where $L_z x = zx$, $z_1 = z^{-1}$, since in a loop Moufang $L_z^{-1} = L_{z^{-1}}$ (see, for example,[3]). Thus, $x^2 = y^2 \Rightarrow x = y$ implies $x \cdot z_1 x = y \cdot z_1 y \Rightarrow L_z^{-1} x = L_z^{-1} y \Rightarrow x = y$. Analogously, have for (8):

$$x \cdot x = y \cdot y \Leftrightarrow x \cdot xz = y \cdot yz \Leftrightarrow R_z^{-1} x \cdot x = R_z^{-1} y \cdot y \Leftrightarrow xz_2 \cdot x = yz_2 \cdot x,$$

where $R_z x = xz$, $z_2 = z^{-1}$, since in a loop Moufang $R_z^{-1} = R_{z^{-1}}$. Hence, from $x^2 = y^2 \Rightarrow x = y$ it follows $xz_2 \cdot x = yz_2 \cdot y \Rightarrow R_z^{-1}x = R_z^{-1}y \Rightarrow x = y$.

- (iii) If (Q, \cdot) is a loop Moufang, then $x \mid z = x^{-1}z$, $z/x = zx^{-1}$, so the quasiidentity (5) becomes $x^{-1}z \cdot x = y^{-1}z \cdot y \Rightarrow x = y$. But by z = e this quasiidentity does not hold (we have e = e by $x \neq y$).
- (iv) Is a corollary of (ii) if to take into account that a loop Moufang (see, for example, [6]), as in the case of a group (see [3]), of odd order is diagonal. \Box

24

4 Some quasi-identities with one parameter

In different cases in a quasigroup (Q, \cdot) quasi-identities (δ -quasi-identities) in which one permutation δ of Q presents, arise. For example, a quasigroup (Q, \cdot) is called admissible if there exists a permutation δ (it is called *complete* for the quasigroup (Q, \cdot)) such that the mapping $x \to x \cdot \delta x$ is also a permutation of Q. If a quasigroup $(Q \cdot)$ is finite, then a permutation δ is complete if and only if in (Q, \cdot) the δ -quasi-identity $x \cdot \delta x = y \cdot \delta y \Rightarrow x = y$ with the permutation δ holds.

In some applications of the quasigroups and loops these quasi-identities also arise. So, by the study of such detecting coding systems as check character systems with one control symbol arose a number of quasi-identities with one parameter δ .

A check character (or digit) system with one check character is an error detecting code over an alphabet Q which arises by appending a check digit a_n to every word $a_1a_2 \ldots a_{n-1} \in Q^{n-1}$:

$$a_1a_2\ldots a_{n-1} \to a_1a_2\ldots a_{n-1}a_n$$

(see surveys [7, 8, 10, 17]).

The control digit a_n can be calculated by different check formulas, in particular, with the help of a quasigroup (a loop, a group) (Q, \cdot) . One of such formulas with a quasigroup (Q, \cdot) is

$$(\dots (((a_1 \cdot \delta a_2) \cdot \delta^2 a_3) \cdot \dots) \cdot \delta^{n-2} a_{n-1}) \cdot \delta^{n-1} a_n = c, \tag{11}$$

where δ is a fixed permutation on Q, c is a fixed element of Q.

This system can detect the most prevalent errors such as single errors $(a \rightarrow b)$, adjacent errors $(ab \rightarrow ba)$, jump transpositions $(acb \rightarrow bca)$, twin errors $(aa \rightarrow bb)$ and jump twin errors $(aca \rightarrow bcb)$ if the parameter δ satisfies some conditions.

In [6] the following statement ([6, Theorem 1]) was proved.

Theorem 2 [6]. A check character system using a quasigroup (Q, \cdot) and coding (11) for n > 4 is able to detect all

- I single errors;
- II transpositions if and only if for all $a, b, c, d \in Q$ with $b \neq c$ in the quasigroup (Q, \cdot) the inequalities

$$(\alpha_1) \qquad b \cdot \delta c \neq c \cdot \delta b \quad and \quad ab \cdot \delta c \neq ac \cdot \delta b \qquad (\alpha_2)$$

hold;

- III jump transpositions if and only if (Q, \cdot) has the properties
 - $(\beta_1) \qquad bc \cdot \delta^2 d \neq dc \cdot \delta^2 b \quad and \quad (ab \cdot c) \cdot \delta^2 d \neq (ad \cdot c) \cdot \delta^2 b \qquad (\beta_2)$

for all $a, b, c, d \in Q$, $b \neq d$;

IV twin errors if and only if (Q, \cdot) satisfies the inequalities

 (γ_1) $b \cdot \delta b \neq c \cdot \delta c$ and $ab \cdot \delta b \neq ac \cdot \delta c$ (γ_2)

for all $a, b, c, d \in Q$, $b \neq c$;

V jump twin errors if and only if in (Q, \cdot) the inequalities

$$(\sigma_1) \qquad bc \cdot \delta^2 b \neq dc \cdot \delta^2 d \quad and \quad (ab \cdot c) \cdot \delta^2 b \neq (ad \cdot c) \cdot \delta^2 d \qquad (\sigma_2)$$

hold for all $a, b, c, d \in Q$, $b \neq d$.

The following quasi-identities correspond to the inequalities of Theorem 2:

$$\begin{array}{ll} (a_1): \ x \cdot \delta y = y \cdot \delta x \Rightarrow x = y, \\ (b_1): \ xy \cdot \delta^2 z = zy \cdot \delta^2 x \Rightarrow x = z, \\ (c_1): \ x \cdot \delta x = y \cdot \delta y \Rightarrow x = y, \\ (d_1): \ xy \cdot \delta^2 x = zy \cdot \delta^2 z \Rightarrow x = z, \\ \end{array}$$

Below we shall assume that all these quasi-identities depend on a permutation δ and shall sometimes call them δ -quasi-identities.

In a loop (Q, \cdot) (in a quasigroup with the left identity) $(a_2) \Rightarrow (a_1), (b_2) \Rightarrow (b_1),$ $(c_2) \Rightarrow (c_1), (d_2) \Rightarrow (d_1)$. In a group these pairs of quasi-identities are equivalent (see Proposition 2 of [6]).

In [6] some properties of quasigroups with the pointed inequalities were established. In accordance with Proposition 3 and Corollaries 3 and 4 of [6] in a loop (Q, \cdot) the following statements are valid if $\delta = \varepsilon$ (ε is the identity permutation):

- 1) ε -quasi-identities (a_2) and (b_2) do not hold;
- 2) from ε -quasi-identity (d_2) ε -quasi-identity (c_2) follows;
- 3) in a loop Moufang (in particular, in a group) all ε -quasi-identities (d_1) , (d_2) , (c_1) and (c_2) are equivalent;
- 4) in a finite Moufang loop (in a finite group) ε -quasi-identity (c_1) ((c_2), (d_1) ,(d_2)) holds if and only if $x^2 = y^2 \Rightarrow x = y$;
- 5) in a finite Moufang loop of odd order ε -quasi-identities $(c_1), (c_2), (d_1)$ and (d_2) always hold.

From Corollary 2 and items 3) and 4) it follows

Corollary 3. If in a finite Moufang loop (in a finite group) $(Q, \cdot) \varepsilon$ -quasi-identity (c_1) $((c_2), (d_1)$ or (d_2)) holds, then this loop is orthogonal to every its parastrophes, except $(Q, (\cdot)^*)$.

As it was said above, in a loop (a group) ε -quasi-identities (a_2) and (b_2) can not hold. But in a quasigroup with the left identity these ε -quasi-identities can hold.

26

All examples given below were checked by computer research.

Example 1. The quasigroup (Q, \cdot) of order 4 on the set $Q = \{1, 2, 3, 4\}$ with the left identity 1 in Table 1 satisfies all ε -quasi-identities (a_2) , (b_2) , (c_2) , (d_2) (and (a_1) , (b_1) , (c_1) , (d_1) also).

Table 1:					Table 2:					Table 3:								
(\cdot)	1	2	3	4	(.)	1	2	3	4	5	_	(\cdot)	1	2	3	4	5
1	1	2	3	4	1	L	1	2	3	4	5	-	1	1	2	3	4	5
2	3	4	1	2	2	2	3	4	2	5	1		2	3	1	4	5	2
3	4	3	2	1	3	3	4	1	5	3	2		3	2	5	1	3	4
4	2	1	4	3	4	ł	5	3	1	2	4		4	5	4	2	1	3
	•				Ę	5	2	5	4	1	3		5	4	3	5	2	1

The quasigroup of order 5 with the left identity 1 given in Table 2 satisfies only ε -quasi-identities (a_2) , (b_2) , (c_2) (and (a_1) , (b_1) , (c_1) also).

In the quasigroup of order 5 with the left identity 1 in Table 3 δ -quasi-identities $(a_2), (b_2), (c_2)$ (and $(a_1), (b_1), (c_1)$) hold with $\delta = (14532)$.

Note that here and below we do not write the first row of permutations in the natural order.

A loop (a group) can satisfy δ -quasi-identities (a_2) , (b_2) (and (a_1) , (b_1)) if $\delta \neq \varepsilon$ as the following example shows.

Example 2. The group of order 4 (of order 5) in Table 4 (in Table 5) satisfies δ -quasi-identities (a_1) , (a_2) , (b_1) , (b_2) , (c_1) , (c_2) , (d_1) and (d_2) with $\delta = (1342)$ (δ -quasi-identities (a_1) , (a_2) , (b_1) , (b_2) , (c_1) , (c_2) with $\delta = (13524)$).

The loop of order 6 in Table 6 satisfies δ -quasi-identities (a_1) , (a_2) with $\delta = (213456)$.

	Ta	ble -	4:			Table 5:							
(\cdot)	1	2	3	4		(\cdot)	1	2	3	4	5		
1	1	2	3	4	-	1	1	2	3	4	5		
2	2	1	4	3		2	2	3	4	5	1		
3	3	4	1	2		3	3	4	5	1	2		
4	4	3	2	1		4	4	5	1	2	3		
I	•					5	5	1	2	3	4		

Table 6:											
(\cdot)	1	2	3	4	5	6					
1	1	2	3	4	5	6					
2	2	6	5	3	4	1					
3	3	5	6	1	2	4					
4	4	3	2	6	1	5					
5	5	4	1	2	6	3					
6	6	1	4	5	3	2					

In [6, Corollary 1] it was also proved that if a finite quasigroup (Q, \cdot) satisfies conditions (γ_2) $((\sigma_1) \text{ or } (\sigma_2))$, then this quasigroup has orthogonal mate. This means that if in a finite quasigroup (Q, \cdot) δ -quasi-identity (c_2) $((d_1) \text{ or } (d_2))$ holds, then it has orthogonal mate.

In addition now we shall establish some other orthogonalities which are connected with a quasigroup (Q, A) with δ -quasi-identity (c_2) $((d_1)$ or $(d_2))$.

Proposition 3. In a finite quasigroup (Q, A)

- (i) δ -quasi-identity (c₂) holds if and only if $A^{(\varepsilon,\delta,\varepsilon)} \perp {}^{-1}A$;
- (ii) δ -quasi-identity (d₁) holds if and only if $A^{(\varepsilon,\delta^2,\varepsilon)} \perp (^{-1}A)^{-1}$;
- (iii) δ -quasi-identity (d₂) holds if and only if $A^{(\varepsilon,\delta^2 L_u^{-1},\varepsilon)} \perp (^{-1}A)^{-1}$ for any $u \in Q$.

Proof. (i) Let $B = A^{(\varepsilon,\delta,\varepsilon)}$, that is $B(x,y) = A(x,\delta y)$ by the definition of isotopic quasigroups. By the criterion of Belousov $B \perp^{-1} A$ if and only if $B \circ A$ is a quasigroup. But $(B \circ A)(z,x) = B(A(z,x),x) = A(A(z,x),\delta x)$, so $B \circ A$ is a quasigroup if and only if $(B \circ A)(z,x) = (B \circ A)(z,y) \Rightarrow x = y$ or $A(A(z,x),\delta x) = A(A(z,x),\delta x) = A(A(z,y),\delta y) \Rightarrow x = y$. It is δ -quasi-identity (c_2) .

- (ii) Let $B(x, y) = A(x, \delta^2 y)$, then $B \perp ({}^{-1}A)^{-1}$ if and only if $B \circ A^*$ is a quasigroup, that is if and only if $B(A(x, y), x) = B(A(z, y), z) \Rightarrow x = z$ or (d_1) holds.
- (iii) Let $C = A^{(\varepsilon,\delta^2 L_u^{-1},\varepsilon)}$, that is $C(x,y) = A(x,\delta^2 L_u^{-1}y)$, then $C \perp (^{-1}A)^{-1}$ if and only if $C \circ^{-1}((^{-1}A)^{-1}) = C \circ A^*$ is a quasigroup. This is valid if and only if $(C \circ A^*)(y,x) = (C \circ A^*)(y,z) \Rightarrow x = z$ or $C(A(x,y),x) = C(A(z,y),z) \Rightarrow$ x = z, that is $A(A(x,y),\delta^2 L_u^{-1}x) = A(A(z,y),\delta^2 L_u^{-1}z) \Rightarrow x = z$ or $A(A(L_ux,y),\delta^2x) = A(A(L_uz,y),\delta^2z) \Rightarrow L_ux = L_uz \Rightarrow x = z$. It is δ quasi-identity (d_2) .

From Proposition 3 it immediately follows (see also Theorem 1 concerning quasiidentities (2) and (8))

Corollary 4. In a finite quasigroup (Q, A)

- (i) ε -quasi-identity (c₂) holds if and only if $A \perp^{-1} A$;
- (ii) δ -quasi-identity (d_1) with $\delta^2 = \varepsilon$ holds if and only if $A \perp (^{-1}A)^{-1}$;
- (iii) δ -quasi-identity (d_2) with $\delta^2 = \varepsilon$ holds if and only if $A^{(\varepsilon, L_u^{-1}, \varepsilon)} \perp ({}^{-1}A)^{-1}$ for any $u \in Q$.

As it was said above, in a loop from the ε -quasi-identity (d_2) the quasi-identity (c_2) follows, so from Corollary 4 it follows

Corollary 5. If in a finite loop (Q, A) ε -quasi-identity (d_2) holds, then $A \perp^{-1} A$ and $A \perp ({}^{-1}A)^{-1}$.

Proposition 4. Let (Q, \cdot) be a finite group. Then

- (i) if δ is a complete permutation of (Q, \cdot) then $^{-1}(\cdot) \perp (\cdot)^{T_a}$ for every $a \in Q$, where $T_a = (\varepsilon, \delta L_a, \varepsilon)$;
- (ii) if in (Q, \cdot) (d_1) holds, then $^{-1}(\cdot) \perp (\cdot)^{T_{a,b,c}}$ for all $a, b, c \in Q$, where $T_{a,b,c} = (\varepsilon, \delta^2 L_a R_b L_c, \varepsilon)$.

Proof. (i) By the condition of (i) in a group (Q, \cdot) the δ -quasi-identity (c_1) holds, but then (c_2) also holds for any z = Ia $(I : x \to x^{-1})$, since in a group δ -quasi-identity (c_1) is equivalent to (c_2) , that is $L_{Ia}x \cdot \delta x = L_{Ia}y \cdot \delta y \Rightarrow x = y$ or $x \cdot \delta L_a x = y \cdot \delta L_a y \Rightarrow$ $L_a x = L_a y$ (or x = y), since in a group $L_a^{-1} = L_{Ia}$. Thus, $x \cdot \delta_1 x = y \cdot \delta_1 y \Rightarrow x = y$, where $\delta_1 = \delta L_a$. By Proposition 3 $^{-1}(\cdot) \perp (\cdot)^{T_a}$, where $T_a = (\varepsilon, \delta_1, \varepsilon)$.

(ii) Let in (Q, \cdot) (d_1) hold, then (d_2) is valid also, so for any $a, b \in Q$ we have $((Ia \cdot x) \cdot Ib) \cdot \delta^2 x = ((Ia \cdot z) \cdot Ib) \cdot \delta^2 z \Rightarrow x = z \text{ or } R_{Ib} L_{Ia} x \cdot \delta^2 x = R_{Ib} L_{Ia} z \cdot \delta^2 z \Rightarrow x = z$, whence it follows that $x \cdot \delta^2 L_a R_b x = z \cdot \delta^2 L_a R_b z \Rightarrow x = z \text{ or } x \cdot \overline{\delta} x = z \cdot \overline{\delta} z \to x = z$, where $\overline{\delta} = \delta^2 L_a R_b$. By item (i) of this Proposition $^{-1}(\cdot) \perp (\cdot)^{T_{a,b,c}}$ with $T_{a,b,c} = (\varepsilon, \delta^2 L_a R_b L_c, \varepsilon)$ for any $a, b, c \in Q$.

5 Equivalence of some quasi-identities with one parameter

A quasigroup (Q, \cdot) can satisfy some δ -quasi-identities from $(a_1) - (d_2)$ with distinct permutations δ . A part of such permutations can be obtained from the permutation δ of a δ -quasi-identity with the help of the group of automorphisms of a quasigroup.

In [5] for quasigroups by analogy with groups (see [16]) the following transformation of δ with the help of an automorphism was introduced.

Definition 1 [5]. A permutation δ_1 is called automorphism equivalent to a permutation δ ($\delta_1 \sim \delta$) for a quasigroup (Q, \cdot) if there exists an automorphism α of (Q, \cdot) such that $\delta_1 = \alpha \delta \alpha^{-1}$.

Proposition 1 of [5] can be reformulated for δ -quasi-identities in the following way taking into account Theorem 1.

Proposition 5. (i) Automorphism equivalence of permutations is an equivalence relation (that is reflexive, symmetric and transitive).

(ii) If a quasigroup (Q, \cdot) satisfies the δ -quasi-identity (a_1) $((a_2), (b_1), (b_2), (c_1), (c_2), (d_1)$ or (d_2)) and a permutation δ_1 is an automorphism equivalent to δ , then in (Q, \cdot) the respective δ_1 -quasi-identity holds.

More general transformation of permutations can be considered in a loop with a nonempty nucleus. So, in [5] for a loop a weak equivalence was introduced by analogy with a group (see [16]).

Recall that the nucleus N of a loop is the intersection of the left, right and middle nuclei:

$$N = N_l \cap N_r \cap N_m,$$

where

$$N_l = \{a \in Q \mid ax \cdot y = a \cdot xy \text{ for all } x, y \in Q\},\$$

$$N_r = \{a \in Q \mid x \cdot ya = xy \cdot a \text{ for all } x, y \in Q\},\$$

$$N_m = \{a \in Q \mid xa \cdot y = x \cdot ay \text{ for all } x, y \in Q\}.$$

All these nuclei are subgroups in a loop [3]. In a group (Q, \cdot) the nucleus N coincides with Q.

Definition 3. A permutation δ_1 of a set Q is called weakly equivalent to a permutation δ ($\delta_1 \stackrel{w}{\sim} \delta$) for a loop (Q, \cdot) with the nucleus N if there exist an automorphism α ($\alpha \in \operatorname{Aut}(Q, \cdot)$) of the loop and elements $p, q \in N$ such that $\delta_1 = R_p \alpha \delta \alpha^{-1} L_q$, where $R_p x = xp$, $L_q x = qx$

(the permutations act to the left from the right).

Note that if δ is a complete permutation in a loop with nucleus N, then $\delta_1 = R_p \alpha \delta \alpha^{-1} L_q$ is also complete, where $\alpha \in \operatorname{Aut}(Q, \cdot), p, q \in N$.

Proposition 2 of [5] can be reformulated for the δ -quasi-identities in the following way.

Proposition 6. a) Weak equivalence is an equivalence relation for a loop.

- b) If in a loop (Q, \cdot) the δ -quasi-identity (a_1) $((a_2), (c_1)$ or (c_2)) holds and the $\delta_1 \overset{w}{\sim} \delta$, then this loop satisfies the respective δ_1 -quasi-identities also.
- c) If, in addition, δ is an automorphism of (Q, ·) and δ-quasi-identity (a₁) ((a₂), (b₁), (b₂), (c₁), (c₂), (d₁) or (d₂)) holds, then the corresponding δ₁-quasi-identity holds too.

According to Corollary 2 of [5] in a Moufang loop of odd order with the nucleus N the δ -quasi-identities (c_1) , (c_2) , (d_1) , (d_2) by $\delta = R_p L_q$, $p, q \in N$, always hold (the respective ε -quasi-identities hold too).

In [5] an example of a loop of order 8 with the nucleus of four elements and with the group of automorphisms of order 4, some permutations and weak equivalent permutations to these permutations which satisfy the quasi-identities (c_2) were given. Here we give a loop of order 9 with the nucleus of three elements and with the group of automorphisms of order 6.

Example 3. The loop (Q, \cdot) of order 9 on the set $Q = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ with the identity 1 is given in Table 7.

Table 7:											
(\cdot)	1	2	3	4	5	6	7	8	9		
1	1	2	3	4	5	6	7	8	9		
2	2	3	1	5	6	4	8	9	7		
3	3	1	2	6	4	5	9	7	8		
4	4	5	6	8	9	7	2	3	1		
5	5	6	4	9	7	8	3	1	2		
6	6	4	5	7	8	9	1	2	3		
7	7	8	9	2	3	1	5	6	4		
8	8	9	7	3	1	2	6	4	5		
9	9	7	8	1	2	3	4	5	6		

A computer research has shown that this loop has the following group of automorphisms of order 6:

Aut $Q = \{(123456789), (123789456), (123645897), (123897645), (12389766), (123$

 $(123564978), (123978564)\}$

and the nucleus $N = N_r = \{1, 2, 3\}.$

This loop satisfies the quasi-identities (c_2) and (d_2) with the permutation $\delta_0 = (123456897)$ and with the following permutations which are weakly equivalent to δ_0 (that is have the form $R_p \alpha \delta_0 \alpha^{-1} L_q$, where $\alpha \in \operatorname{Aut}(Q, \cdot), p, q \in N$): (123456897), (231564978), (312645789), (123564789), (231645897), (312456978).

References

- ARTAMONOV A., SALII V.N., SKORNYAKOV L.A. General algebra. Vol. 2. Moscow, 1991 (in Russian).
- BELOUSOV V.D. On properties of binary operations. Uchenie zapiski of Bel'skogo pedinstituta, 1960, vyp. 5, p. 9–28 (in Russian).
- [3] BELOUSOV V.D. Foundation of the quasigroup and loop theory. Moscow, Nauka, 1967 (in Russian).
- [4] BELOUSOV V.D. Systems of orthogonal operations. Mat. sbornik, 1968, vol. 77(119):1, p. 38–58 (in Russian).
- [5] BELYAVSKAYA G.B. On check character systems over quasigroups and loops. Algebra and discrete mathematics, 2003, N 2, p. 1–13.
- [6] BELYAVSKAYA G.B., IZBASH V.I., MULLEN G.L. Check character systems using quasigroups: I. Designs, Codes and Cryptography, 2005, 37, p. 215–227.
- [7] BELYAVSKAYA G.B., IZBASH V.I., SHCHERBACOV V.A. Check character systems over quasigroups and loops. Quasigroups and related systems, 2003, 10, p. 1–28.
- [8] DAMM M. Pruefziffersysteme ueber Quasigruppen. Diplomarbeit Universitaet Marburg, Maerz, 1998.
- [9] DENEŠ J., KEEDWELL A.D. Latin squares and their applications. Budapest, Academiai Kiado, 1974.
- [10] ECKER A., POCH G. Check character systems. Computing, 1986, N 37(4), p. 277-301.

- [11] GORBUNOV V.A. Algebraic theory of quasi-varieties. Novosibirsk, 1998 (in Russian).
- [12] MAL'CEV A.I. Algebraic systems. Moscow, Nauka, 1970 (in Russian).
- [13] MANN H.B. On orthogonal latin squares. Bull. Amer. Math. Soc., 1944, 50, p. 249-257.
- [14] MULLEN G.L., SHCHERBACOV V.A. On orthogonality of binary operations and squares. Buletinul A. Ş. M., Matematica, 2005, N 2(48), p. 3–42.
- [15] SADE A. Produit direct-singular di quasigroups orthogonaux et anti-abelians. Ann. Soc. Sci., Bruxelles, Ser. I, 1960, 74, p. 91–99.
- [16] SCHULZ R.-H. On check digit systems using anti-symmetric mappings. In J. Althofer. et al. editors. Number, Information and Complexity, Kluwer Acad. Publ. Boston, 2000, p. 295–310.
- [17] VERHOEFF I. Error Detecting Decimal Codes. Math. Center Tracts 29, Amsterdam, 1969.

Institute of Mathematics and Computer Science Academy of Sciences of Moldova Academiei str. 5, MD-2028 Chisinau Moldova E-mail: gbel@math.md Received December 12, 2005