On some quasi-identities in finite quasigroups *

G. Belyavskaya, A. Diordiev

Abstract

In this article we consider some quasi-identities in quasigroups, in particular, quasi-identities connected with parastrophic orthogonality of a quasigroup. We also research some quasi-identities in quasigroups (in loops) with one parameter δ (δ -quasi-identities) which arose by the study of detecting coding systems such as check character systems in [6] (see also [5, 7]), establish equivalence of such quasi-identities, connection of some of them with orthogonality of quasigroups and give a number of examples of finite quasigroups with such δ-quasi-identities.

Mathematics subject classification: 20N05, 94B60.
Keywords and phrases: Quasigroup, loop, group, automorphism, quasi-identity, orthogonality, parastrophe.

1 Introduction

It is known that the concept of a quasi-identity (or a conditional identity $[1,11$, 12]) in an algebraic system is a generalization of the concept of an identity and is used by the study of different algebraic systems, in particular, groups, semigroups.

A quasi-identity (or a conditional identity) is a formula of the form

$$
\left(\forall x_{1}\right) \ldots\left(\forall x_{n}\right)\left(u_{1}=v_{1} \& \ldots \& u_{m}=v_{m} \Rightarrow u=v\right)
$$

where $u, v, u_{i}, v_{i}(i=1,2, \ldots, m)$ are words in the alphabet $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
By writing of quasi-identities the quantor prefix usually is omitted. Each identity $u=v$ can be changed by the quasi-identity $x=x \Rightarrow u=v$.

Some classes of algebraic systems are given by means of quasi-identities. So, groupoids, in particular semigroups (Q, \cdot) with the left (right) cancelation are defined by the quasi-identity $c a=c b \Rightarrow a=b(a c=b c \Rightarrow a=b)$ in a groupoid (in a semigroup) (Q, \cdot). The known class of separative semigroups is defined by the following quasi-identity: $a^{2}=a b=b^{2} \Rightarrow a=b$. The class of finite groups is simply the class of semigroups with left and right cancelation.

The concept of a quasi-identity lies in the base of definition of a quasi-variety of algebraic systems. So, the class of semigroups with the two-sided cancelation (the class of separative semigroups) forms a quasi-variety [1].

[^0]Different quasi-identities arise also in quasigroups and loops. So, a definition and some properties of finite quasigroups can be given by means of quasi-identities.

So, a finite quasigroup (Q, \cdot) can be defined as a groupoid with the right and the left cancelations, that is with the quasi-identities:

$$
x z=y z \Rightarrow x=y \text { and } z x=z y \Rightarrow x=y .
$$

For a finite qroupoid the right (left) cancelation is equivalent to left (right) invertibility.

A quasigroup (Q, \cdot) is called diagonal [9] if the mapping $x \rightarrow x \cdot x=x^{2}$ is a permutation (bijection) on Q. In the case of a finite quasigroup this means that in such quasigroup the quasi-identity $x^{2}=y^{2} \Rightarrow x=y$ holds.

A quasigroup (Q, \cdot) is called anti-commutative $[3]$ if $x y \neq y x$ for $x \neq y$, that is the quasi-identity $x y=y x \Rightarrow x=y$ holds.

A quasigroup of Stein (Q, \cdot) (that is a quasigroup with the identity $x \cdot x y=y x$) is an example of anti-commutative quasigroup: if $x y=y x$, then $x \cdot x y=x y, x y=y$, $x=y$, since a quasigroup of Stein is idempotent (that is $x^{2}=x$ for each $x \in Q$). A quasigroup is called anti-abelian if $x y=z t$ and $y x=t z$ imply $x=z$ and $y=t$. Such a quasigroup is anti-commutative also [15].

In this article we consider some other quasi-identities in quasigroups, in particular, quasi-identities connected with parastrophic orthogonality of a quasigroup. We also research some quasi-identities in quasigroups (in loops) with one parameter δ (δ-quasi-identities), which arose by the study of coding systems such as check character systems in $[6]$ (see also $[5,7]$), establish equivalence of such quasi-identities, connection of some of them with orthogonality of quasigroups and give a number of examples of finite quasigroups with these δ-quasi-identities.

2 Some necessary notions and results

A binary quasigroup is a particular case of a groupoid.
A groupoid (Q, \cdot) is a set Q with some binary operation (\cdot).
A groupoid (Q, \cdot) with the right (left) cancelation is a groupoid such that in it the following quasi-identities hold: $x a=y a \Rightarrow x=y(a x=a y \Rightarrow x=y)$.

A quasigroup (Q, \cdot) is a groupoid in which every of the equations $a x=b$ and $x a=b$ has a unique solution for any $a, b \in Q$. In other words, a quasigroup is a groupoid which is invertible to the right and to the left.

A quasigroup (Q, \cdot) is finite of order n if the set Q is finite and $|Q|=n$.
A quasigroup (Q, \cdot) with a left identity f (right identity e) is a quasigroup such that $f x=x(x e=x)$ for every $x \in Q$.
A loop (Q, \cdot) is a quasigroup with the identity $e: x e=e x=x$ for each $x \in Q$.

A loop (Q, \cdot) is called a loop Moufang if it satisfies the identity $(z x \cdot y) \cdot x=$ $z(x \cdot y x)$.

The primitive quasigroup $(Q, \cdot, \backslash, /$, where $x \cdot y \Leftrightarrow z / y=x, x \backslash z=y$, corresponds to every quasigroup (Q, \cdot).

If for the designation of a quasigroup operation (\cdot) the letter A is used, then a primitive quasigroup $\left(Q, A, A^{-1},{ }^{-1} A\right)$, where $A(x, y)=z \Leftrightarrow A^{-1}(x, z)=y$, ${ }^{-1} A(z, y)=x$ corresponds to a quasigroup (Q, A). The operations $A^{-1},{ }^{-1} A$ (or $(\backslash),(/))$ are also quasigroup operations which are called the right, left inverse operations for A (for $(\cdot))$ respectively.

A quasigroup (Q, B) is isotopic to a quasigroup (Q, A) if there exists a tuple $T=(\alpha, \beta, \gamma)$ of permutations on Q such that $B(x, y)=\gamma^{-1} A(\alpha x, \beta x)$ (shortly, $\left.B=A^{(\alpha, \beta, \gamma)}=A^{T}\right)$.

With any quasigroup operation A five parastrophes (or conjugate operations) are connected

$$
A^{-1},{ }^{-1} A,\left({ }^{-1} A\right)^{-1},{ }^{-1}\left(A^{-1}\right) \text { and } A^{*}\left(=^{-1}\left(\left({ }^{-1} A\right)^{-1}\right)=\left({ }^{-1}\left(A^{-1}\right)\right)^{-1}\right)
$$

where $A^{*}(x, y)=A(y, x)[3]$.
Definition 1 [2]. Two operations A and B, given on a set Q, are called orthogonal (shortly, $A \perp B$) if the system of equations $\{A(x, y)=a, B(x, y)=b\}$ has a unique solution for all $a, b \in Q$.

Let Q be a finite or infinite set, A and B be operations on Q, then the right (left) multiplication $A \cdot B(A \circ B)$ of Mann is defined in the following way:

$$
(A \cdot B)(x, y)=A(x, B(x, y)),(A \circ B)(x, y)=A(B(x, y), y)
$$

All invertible to the right (to the left) operations on a set Q form a group with respect to the right (left) multiplication of Mann [13].

According to the criterion of Belousov [4] two quasigroups (Q, A) and (Q, B) are orthogonal if and only if the operation $A \cdot B^{-1}\left(A \circ^{-1} B\right)$ is a quasigroup.

3 Parastrophic orthogonality of quasigroups and quasi-identities

A quasigroup (Q, A) can be orthogonal with some its parastrophes. As it was proved by G. Mullen and V. Shcherbacov in [14], conditions for this orthogonality of finite quasigroups can be expressed by quasi-identities in the corresponding primitive quasigroup $\left(Q, A^{-1},{ }^{-1} A\right)$. We shall give some his quasi-identities and other ones obtained with the help of the Belousov's criterion of orthogonality of two quasigroups.

Proposition 1. Let (Q, A) be a finite quasigroup, $\left(Q, \cdot, A^{-1},{ }^{-1} A\right)$ be the corresponding primitive quasigroup. Then

$$
\begin{equation*}
A \perp A^{-1} \Leftrightarrow A(x, A(x, z))=A(y, A(y, z)) \Rightarrow x=y \tag{1}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
A \perp^{-1} A \Leftrightarrow A(A(z, x), x)=A((z, y), y) & \Rightarrow x=y \\
A \perp\left({ }^{-1} A\right)^{-1} & \Leftrightarrow A\left(x,^{-1} A(x, z)\right)=A\left(y,,^{-1} A(y, z)\right)
\end{array} \Rightarrow x=y, ~=x+A^{-1}(z, y), y\right) \Rightarrow x=y, ~ m\left(A^{-1}(z, x), x\right)=A\left(A^{-1}\right) \Leftrightarrow A\left(A^{-1}(y, z), y\right) \Rightarrow x=y .
$$

Proof. By the criterion of Belousov $A \perp A^{-1}$ if and only if the operation (A. $\left.\left(A^{-1}\right)^{-1}\right)=A \cdot A$ is a quasigroup. It is valid if and only if the quasi-identity (1) holds, since the operation $A \cdot A$ is always invertible from the right.
$A \perp^{-1} A$ if and only if $A \circ^{-1}\left({ }^{-1} A\right)=A \circ A$ is a quasigroup, that is the quasiidentity (2) is valid if we take into account that the operation $A \circ A$ is always invertible to the left.

By the criterion, $A \perp\left({ }^{-1} A\right)^{-1}$ if and only if the invertible from the right operation $A \cdot\left(\left({ }^{-1} A\right)^{-1}\right)^{-1}=A \cdot{ }^{-1} A$ is a quasigroup, that is invertible from the left. It is valid if and only if the quasi-identity (3) holds.

Analogously, $A \perp^{-1}\left(A^{-1}\right)$ if and only if the invertible from the left operation $A \circ^{-1}\left({ }^{-1}\left(A^{-1}\right)\right)=A \circ A^{-1}$ is a quasigroup, that is the quasi-identity (4) holds.

At last, $A \perp A^{*}$ if and only if $A^{*} \cdot A^{-1}$ is a quasigroup, that is the quasi-identity (5) holds.

Proposition 2. Let $(Q, \cdot, \backslash, /)$ be a finite primitive quasigroup. Then the quasi-identity (1) is equivalent to the quasi-identity

$$
\begin{equation*}
A\left({ }^{-1} A(x, z), x\right)=A\left({ }^{-1} A(y, z), y\right) \Rightarrow x=y \tag{6}
\end{equation*}
$$

the quasi-identity (2) is equivalent to the quasi-identity

$$
\begin{equation*}
A\left(x, A^{-1}(z, x)\right)=A\left(y, A^{-1}(z, y) \Rightarrow x=y\right. \tag{7}
\end{equation*}
$$

the quasi-identity (3) is equivalent to the quasi-identity

$$
\begin{equation*}
A(A(x, z), x)=A(A(y, z), y) \Rightarrow x=y \tag{8}
\end{equation*}
$$

the quasi-identity (4) is equivalent to the quasi-identity

$$
\begin{equation*}
A(x, A(z, x))=A(y, A(z, y)) \Rightarrow x=y \tag{9}
\end{equation*}
$$

the quasi-identity (5) is equivalent to the quasi-identity

$$
\begin{equation*}
A\left(x,,^{-1} A(z, x)\right)=A\left(y,,^{-1} A(z, y)\right) \Rightarrow x=y \tag{10}
\end{equation*}
$$

Proof. Indeed, $A \perp A^{-1}$ by the criterion of Belousov if and only if $A \circ^{-1}\left(A^{-1}\right)$ is a quasigroup. But $\left(A \circ^{-1}\left(A^{-1}\right)\right)(z, x)=A\left({ }^{-1}\left(A^{-1}\right)(z, x), x\right)=A\left({ }^{-1} A(x, z), x\right)$, since ${ }^{-1}\left(A^{-1}\right)(z, x)={ }^{-1} A(x, z)$. So $A \circ^{-1}\left(A^{-1}\right)$ is a quasigroup if and only if (6) holds.
$A \perp^{-1} A$ if and only if $A \cdot\left({ }^{-1} A\right)^{-1}$ is a quasigroup. Taking into account that $\left(^{-1} A\right)^{-1}(x, z)=A^{-1}(z, x)$ we have $\left(A \cdot\left({ }^{-1} A\right)^{-1}\right)(x, z)=A\left(x,\left({ }^{-1} A\right)^{-1}(x, z)\right)=$ $A\left(x, A^{-1}(z, x)\right)$. So $A \cdot\left({ }^{-1} A\right)^{-1}$ is a quasigroup if and only if (7) holds.
$A \perp\left({ }^{-1} A\right)^{-1}$ if and only if $A \circ^{-1}\left(\left({ }^{-1} A\right)^{-1}\right)=A \circ A^{*}$ is a quasigroup, that is the quasi-identity $A\left(A^{*}(z, x), x\right)=A\left(A^{*}(z, y), y\right) \Rightarrow x=y$ or (8) holds.
$A \perp^{-1}\left(A^{-1}\right)$ if and only if $A \cdot\left({ }^{-1}\left(A^{-1}\right)\right)^{-1}=A \cdot A^{*}$ is a quasigroup. This condition is equivalent to the quasi-identity (9).
$A^{*} \perp A$ if and only if $A^{*} \circ^{-1} A$ is a quasigroup if and only if the quasi-identity $A^{*}\left({ }^{-1} A(z, x), x\right)=A^{*}\left({ }^{-1} A(z, y), y\right) \Rightarrow x=y$ or (10) holds.

Using the designation (\cdot) for an operation A we can write the quasi-identities (1)-(10),respectively, in the following way (we use the same numeration for them) :

$$
\begin{align*}
x \cdot x z & =y \cdot y z \Rightarrow x=y, \tag{1}\\
z x \cdot x & =z y \cdot y \Rightarrow x=y, \tag{2}\\
x \cdot(x / z) & =y \cdot(y / z) \Rightarrow x=y, \tag{3}\\
(z \backslash x) \cdot x & =(z \backslash y) \cdot y \Rightarrow x=y, \tag{4}\\
(x \backslash z) \cdot x & =(y \backslash z) \cdot y \Rightarrow x=y, \tag{5}\\
(x / z) \cdot x & =(y / z) \cdot y \Rightarrow x=y, \tag{6}\\
x \cdot(z \backslash x) & =y \cdot(z \backslash y) \Rightarrow x=y, \tag{7}\\
x z \cdot x & =y z \cdot y \Rightarrow x=y, \tag{8}\\
x \cdot z x & =y \cdot z y \Rightarrow x=y, \tag{9}\\
x \cdot(z / x) & =y \cdot(z / y) \Rightarrow x=y . \tag{10}
\end{align*}
$$

Note that the quasi-identities (1), (2), (8) and (9) were obtained in [14].
From Proposition 1 and 2 it follows at once
Theorem 1. Let (Q, \cdot) be a finite quasigroup. Then

$$
\begin{aligned}
& (\cdot) \perp(\cdot)^{-1} \Leftrightarrow x \cdot x z=y \cdot y z \Rightarrow x=y \Leftrightarrow(x / z) \cdot x=(y / z) \cdot y \Rightarrow x=y \\
& (\cdot) \perp^{-1}(\cdot) \Leftrightarrow z x \cdot x=z y \cdot y \Rightarrow x=y \Leftrightarrow x \cdot(z \backslash x)=y \cdot(z \backslash y) \Rightarrow x=y \\
& (\cdot) \perp\left(^{-1}(\cdot)\right)^{-1} \Leftrightarrow x \cdot(x / z)=y \cdot(y / z) \Rightarrow x=y \Leftrightarrow x z \cdot x=y z \cdot y \Rightarrow x=y \\
& (\cdot) \perp^{-1}\left((\cdot)^{-1}\right) \Leftrightarrow(z \backslash x) \cdot x=(z \backslash y) \cdot y \Rightarrow x=y \Leftrightarrow x \cdot z x=y \cdot z y \Rightarrow x=y \\
& (\cdot) \perp(\cdot)^{*} \Leftrightarrow(x \backslash z) \cdot x=(y \backslash z) \cdot y \Rightarrow x=y \Leftrightarrow x \cdot(z / x)=y \cdot(z / y) \Rightarrow x=y .
\end{aligned}
$$

Corollary 1. Let (Q, A) be a finite commutative quasigroup. Then
(i) all quasi-identities (1)-(4),(6)-(9) are equivalent;
(ii) each one of the first four parastrophic orthogonalities of Theorem 1 implies the rest of these orthogonalities.
Proof. In the case of a commutative quasigroup (that is $x y=y x$ for all $x, y \in Q$) it is easy to see that

$$
(1) \Leftrightarrow(2) \Leftrightarrow(8) \Leftrightarrow(9) .
$$

Item (ii) follows from this fact and Theorem 1.
In a finite commutative quasigroup the quasi-identities (5) and (10) do not hold, since (\cdot) and $(\cdot)^{*}=(\cdot)$ are not orthogonal.

Corollary 2. Let (Q, \cdot) be a finite loop Moufang (in particular, a finite group). Then
(i) if in (Q, \cdot) one of the quasi-identities (1)-(4), (6)-(9) holds, then (Q, \cdot) is diagonal;
(ii) if (Q, \cdot) is diagonal, then $(1) \Leftrightarrow(2) \Leftrightarrow(8) \Leftrightarrow(9)$ and (Q, \cdot) is orthogonal to each of its parastrophes, except $\left(Q,(\cdot)^{*}\right)$;
(iii) (Q, \cdot) is not orthogonal to $\left(Q,(\cdot)^{*}\right)$;
(iv) a loop Moufang (Q, \cdot) of odd order is orthogonal to each of its parastrophes, except $\left(Q,(\cdot)^{*}\right)$.
Proof. (i) Let (1) ((2), (8) or (9)) hold in a finite loop Moufang, then by $z=e(e$ is the identity of the loop) we have that $x^{2}=y^{2} \Rightarrow x=y$. The rest quasi-identities, except (5) and (10), are equivalent to one of these quasi-identities by Theorem 1.
(ii) Let (Q, \cdot) be diagonal, that is $x^{2}=y^{2} \Rightarrow x=y$, then (1) and (2) also hold, since a loop Moufang is diassociative (that is each two elements generate a subgroup) [3]. Show that from $x^{2}=y^{2} \Rightarrow x=y$ it follows (9):

$$
\begin{gathered}
x \cdot x=y \cdot y \Leftrightarrow z(x \cdot x)=z(y \cdot y) \Leftrightarrow z x \cdot x= \\
=z y \cdot y \Leftrightarrow x \cdot L_{z}^{-1} x=y \cdot L_{z}^{-1} y \Leftrightarrow x \cdot z_{1} x=y \cdot z_{1} y
\end{gathered}
$$

where $L_{z} x=z x, z_{1}=z^{-1}$, since in a loop Moufang $L_{z}^{-1}=L_{z^{-1}}$ (see, for example,[3]). Thus, $x^{2}=y^{2} \Rightarrow x=y$ implies $x \cdot z_{1} x=y \cdot z_{1} y \Rightarrow L_{z}^{-1} x=$ $L_{z}^{-1} y \Rightarrow x=y$. Analogously, have for (8):

$$
x \cdot x=y \cdot y \Leftrightarrow x \cdot x z=y \cdot y z \Leftrightarrow R_{z}^{-1} x \cdot x=R_{z}^{-1} y \cdot y \Leftrightarrow x z_{2} \cdot x=y z_{2} \cdot x
$$

where $R_{z} x=x z$, $z_{2}=z^{-1}$, since in a loop Moufang $R_{z}^{-1}=R_{z^{-1}}$. Hence, from $x^{2}=y^{2} \Rightarrow x=y$ it follows $x z_{2} \cdot x=y z_{2} \cdot y \Rightarrow R_{z}^{-1} x=R_{z}^{-1} y \Rightarrow x=y$.
(iii) If (Q, \cdot) is a loop Moufang, then $x \backslash z=x^{-1} z, z / x=z x^{-1}$, so the quasiidentity (5) becomes $x^{-1} z \cdot x=y^{-1} z \cdot y \Rightarrow x=y$. But by $z=e$ this quasiidentity does not hold (we have $e=e$ by $x \neq y$).
(iv) Is a corollary of (ii) if to take into account that a loop Moufang (see, for example,[6]), as in the case of a group (see [3]), of odd order is diagonal.

4 Some quasi-identities with one parameter

In different cases in a quasigroup (Q, \cdot) quasi-identities (δ-quasi-identities) in which one permutation δ of Q presents, arise. For example, a quasigroup (Q, \cdot) is called admissible if there exists a permutation δ (it is called complete for the quasigroup $(Q, \cdot))$ such that the mapping $x \rightarrow x \cdot \delta x$ is also a permutation of Q. If a quasigroup $(Q \cdot)$ is finite, then a permutation δ is complete if and only if in (Q, \cdot) the δ-quasi-identity $x \cdot \delta x=y \cdot \delta y \Rightarrow x=y$ with the permutation δ holds.

In some applications of the quasigroups and loops these quasi-identities also arise. So, by the study of such detecting coding systems as check character systems with one control symbol arose a number of quasi-identities with one parameter δ.

A check character (or digit) system with one check character is an error detecting code over an alphabet Q which arises by appending a check digit a_{n} to every word $a_{1} a_{2} \ldots a_{n-1} \in Q^{n-1}$:

$$
a_{1} a_{2} \ldots a_{n-1} \rightarrow a_{1} a_{2} \ldots a_{n-1} a_{n}
$$

(see surveys $[7,8,10,17]$).
The control digit a_{n} can be calculated by different check formulas, in particular, with the help of a quasigroup (a loop, a group) (Q, \cdot). One of such formulas with a quasigroup (Q, \cdot) is

$$
\begin{equation*}
\left(\ldots\left(\left(\left(a_{1} \cdot \delta a_{2}\right) \cdot \delta^{2} a_{3}\right) \cdot \ldots\right) \cdot \delta^{n-2} a_{n-1}\right) \cdot \delta^{n-1} a_{n}=c \tag{11}
\end{equation*}
$$

where δ is a fixed permutation on Q, c is a fixed element of Q.
This system can detect the most prevalent errors such as single errors $(a \rightarrow b)$, adjacent errors $(a b \rightarrow b a)$, jump transpositions $(a c b \rightarrow b c a)$, twin errors $(a a \rightarrow b b)$ and jump twin errors $(a c a \rightarrow b c b)$ if the parameter δ satisfies some conditions.

In [6] the following statement ([6, Theorem 1]) was proved.
Theorem 2 [6]. A check character system using a quasigroup (Q, \cdot) and coding (11) for $n>4$ is able to detect all

I single errors;
II transpositions if and only if for all $a, b, c, d \in Q$ with $b \neq c$ in the quasigroup (Q, \cdot) the inequalities

$$
\left(\alpha_{1}\right) \quad b \cdot \delta c \neq c \cdot \delta b \quad \text { and } \quad a b \cdot \delta c \neq a c \cdot \delta b \quad\left(\alpha_{2}\right)
$$

hold;
III jump transpositions if and only if (Q, \cdot) has the properties
$\left(\beta_{1}\right) \quad b c \cdot \delta^{2} d \neq d c \cdot \delta^{2} b \quad$ and $\quad(a b \cdot c) \cdot \delta^{2} d \neq(a d \cdot c) \cdot \delta^{2} b$
for all $a, b, c, d \in Q, b \neq d$;

IV twin errors if and only if (Q, \cdot) satisfies the inequalities

$$
\begin{equation*}
\left(\gamma_{1}\right) \quad b \cdot \delta b \neq c \cdot \delta c \quad \text { and } \quad a b \cdot \delta b \neq a c \cdot \delta c \tag{2}
\end{equation*}
$$

for all $a, b, c, d \in Q, b \neq c ;$
V jump twin errors if and only if in (Q, \cdot) the inequalities

$$
\left(\sigma_{1}\right) \quad b c \cdot \delta^{2} b \neq d c \cdot \delta^{2} d \quad \text { and } \quad(a b \cdot c) \cdot \delta^{2} b \neq(a d \cdot c) \cdot \delta^{2} d
$$

hold for all $a, b, c, d \in Q, \quad b \neq d$.
The following quasi-identities correspond to the inequalities of Theorem 2:

$$
\begin{gathered}
\left(a_{1}\right): x \cdot \delta y=y \cdot \delta x \Rightarrow x=y, \quad\left(a_{2}\right): z x \cdot \delta y=z y \cdot \delta x \Rightarrow x=y \\
\left(b_{1}\right): x y \cdot \delta^{2} z=z y \cdot \delta^{2} x \Rightarrow x=z, \quad\left(b_{2}\right):(u x \cdot y) \cdot \delta^{2} z=(u z \cdot y) \cdot \delta^{2} x \Rightarrow x=z \\
\left(c_{1}\right): x \cdot \delta x=y \cdot \delta y \Rightarrow x=y, \\
\left(c_{1}\right): x y \cdot \delta^{2} x=z y \cdot \delta^{2} z \Rightarrow x=z, \quad\left(d_{2}\right):(u x \cdot y) \cdot \delta^{2} x=z y \cdot \delta y \Rightarrow x=y \\
(u z \cdot y) \cdot \delta^{2} z \Rightarrow x=z
\end{gathered}
$$

Below we shall assume that all these quasi-identities depend on a permutation δ and shall sometimes call them δ-quasi-identities.

In a loop (Q, \cdot) (in a quasigroup with the left identity) $\left(a_{2}\right) \Rightarrow\left(a_{1}\right),\left(b_{2}\right) \Rightarrow\left(b_{1}\right)$, $\left(c_{2}\right) \Rightarrow\left(c_{1}\right),\left(d_{2}\right) \Rightarrow\left(d_{1}\right)$. In a group these pairs of quasi-identities are equivalent (see Proposition 2 of [6]).

In [6] some properties of quasigroups with the pointed inequalities were established. In accordance with Proposition 3 and Corollaries 3 and 4 of [6] in a loop (Q, \cdot) the following statements are valid if $\delta=\varepsilon(\varepsilon$ is the identity permutation):

1) ε-quasi-identities $\left(a_{2}\right)$ and $\left(b_{2}\right)$ do not hold;
2) from ε-quasi-identity $\left(d_{2}\right) \varepsilon$-quasi-identity $\left(c_{2}\right)$ follows;
3) in a loop Moufang (in particular, in a group) all ε-quasi-identities $\left(d_{1}\right),\left(d_{2}\right)$, $\left(c_{1}\right)$ and $\left(c_{2}\right)$ are equivalent;
4) in a finite Moufang loop (in a finite group) ε-quasi-identity $\left(c_{1}\right)\left(\left(c_{2}\right),\left(d_{1}\right)\right.$,$\left.\left(d_{2}\right)\right)$ holds if and only if $x^{2}=y^{2} \Rightarrow x=y ;$
$5)$ in a finite Moufang loop of odd order ε-quasi-identities $\left(c_{1}\right),\left(c_{2}\right),\left(d_{1}\right)$ and $\left(d_{2}\right)$ always hold.

From Corollary 2 and items 3) and 4) it follows
Corollary 3. If in a finite Moufang loop (in a finite group) $(Q, \cdot) \varepsilon$-quasi-identity $\left(c_{1}\right)\left(\left(c_{2}\right),\left(d_{1}\right)\right.$ or $\left.\left(d_{2}\right)\right)$ holds, then this loop is orthogonal to every its parastrophes, except $\left(Q,(\cdot)^{*}\right)$.

As it was said above, in a loop (a group) ε-quasi-identities $\left(a_{2}\right)$ and $\left(b_{2}\right)$ can not hold. But in a quasigroup with the left identity these ε-quasi-identities can hold.

All examples given below were checked by computer research.
Example 1. The quasigroup (Q, \cdot) of order 4 on the set $Q=\{1,2,3,4\}$ with the left identity 1 in Table 1 satisfies all ε-quasi-identities $\left(a_{2}\right),\left(b_{2}\right),\left(c_{2}\right),\left(d_{2}\right)$ (and $\left(a_{1}\right)$, $\left(b_{1}\right),\left(c_{1}\right),\left(d_{1}\right)$ also $)$.

Table 1:

(\cdot)	1	2	3	4
1	1	2	3	4
2	3	4	1	2
3	4	3	2	1
4	2	1	4	3

Table 2:

(\cdot)	1	2	3	4	5
1	1	2	3	4	5
2	3	4	2	5	1
3	4	1	5	3	2
4	5	3	1	2	4
5	2	5	4	1	3

Table 3:

(\cdot)	1	2	3	4	5
1	1	2	3	4	5
2	3	1	4	5	2
3	2	5	1	3	4
4	5	4	2	1	3
5	4	3	5	2	1

The quasigroup of order 5 with the left identity 1 given in Table 2 satisfies only ε-quasi-identities $\left(a_{2}\right),\left(b_{2}\right),\left(c_{2}\right)$ (and $\left(a_{1}\right),\left(b_{1}\right),\left(c_{1}\right)$ also).

In the quasigroup of order 5 with the left identity 1 in Table 3δ-quasi-identities $\left(a_{2}\right),\left(b_{2}\right),\left(c_{2}\right)\left(\right.$ and $\left.\left(a_{1}\right),\left(b_{1}\right),\left(c_{1}\right)\right)$ hold with $\delta=(14532)$.

Note that here and below we do not write the first row of permutations in the natural order.

A loop (a group) can satisfy δ-quasi-identities $\left(a_{2}\right),\left(b_{2}\right)\left(\right.$ and $\left.\left(a_{1}\right),\left(b_{1}\right)\right)$ if $\delta \neq \varepsilon$ as the following example shows.

Example 2. The group of order 4 (of order 5) in Table 4 (in Table 5) satisfies δ-quasi-identities $\left(a_{1}\right),\left(a_{2}\right),\left(b_{1}\right),\left(b_{2}\right),\left(c_{1}\right),\left(c_{2}\right),\left(d_{1}\right)$ and $\left(d_{2}\right)$ with $\delta=(1342)$ (δ-quasi-identities $\left(a_{1}\right),\left(a_{2}\right),\left(b_{1}\right),\left(b_{2}\right),\left(c_{1}\right),\left(c_{2}\right)$ with $\left.\delta=(13524)\right)$.

The loop of order 6 in Table 6 satisfies δ-quasi-identities $\left(a_{1}\right),\left(a_{2}\right)$ with $\delta=$ (213456).

Table 4:
Table 5:

(\cdot)	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	1	2
4	4	3	2	1

(\cdot)	1	2	3	4	5
1	1	2	3	4	5
2	2	3	4	5	1
3	3	4	5	1	2
4	4	5	1	2	3
5	5	1	2	3	4

Table 6:

(\cdot)	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	6	5	3	4	1
3	3	5	6	1	2	4
4	4	3	2	6	1	5
5	5	4	1	2	6	3
6	6	1	4	5	3	2

In [6, Corollary 1] it was also proved that if a finite quasigroup (Q, \cdot) satisfies conditions $\left(\gamma_{2}\right)\left(\left(\sigma_{1}\right)\right.$ or $\left.\left(\sigma_{2}\right)\right)$, then this quasigroup has orthogonal mate. This means that if in a finite quasigroup $(Q, \cdot) \delta$-quasi-identity $\left(c_{2}\right)\left(\left(d_{1}\right)\right.$ or $\left.\left(d_{2}\right)\right)$ holds, then it has orthogonal mate.

In addition now we shall establish some other orthogonalities which are connected with a quasigroup (Q, A) with δ-quasi-identity $\left(c_{2}\right)\left(\left(d_{1}\right)\right.$ or $\left.\left(d_{2}\right)\right)$.

Proposition 3. In a finite quasigroup (Q, A)
(i) δ-quasi-identity (c_{2}) holds if and only if $A^{(\varepsilon, \delta, \varepsilon)} \perp^{-1} A$;
(ii) δ-quasi-identity $\left(d_{1}\right)$ holds if and only if $A^{\left(\varepsilon, \delta^{2}, \varepsilon\right)} \perp\left({ }^{-1} A\right)^{-1}$;
(iii) δ-quasi-identity $\left(d_{2}\right)$ holds if and only if $A^{\left(\varepsilon, \delta^{2} L_{u}^{-1}, \varepsilon\right)} \perp\left({ }^{-1} A\right)^{-1}$ for any $u \in Q$.

Proof. (i) Let $B=A^{(\varepsilon, \delta, \varepsilon)}$, that is $B(x, y)=A(x, \delta y)$ by the definition of isotopic quasigroups. By the criterion of Belousov $B \perp^{-1} A$ if and only if $B \circ A$ is a quasigroup. But $(B \circ A)(z, x)=B(A(z, x), x)=A(A(z, x), \delta x)$, so $B \circ A$ is a quasigroup if and only if $(B \circ A)(z, x)=(B \circ A)(z, y) \Rightarrow x=y$ or $A(A(z, x), \delta x)=$ $A(A(z, y), \delta y) \Rightarrow x=y$. It is δ-quasi-identity $\left(c_{2}\right)$.
(ii) Let $B(x, y)=A\left(x, \delta^{2} y\right)$, then $B \perp\left({ }^{-1} A\right)^{-1}$ if and only if $B \circ A^{*}$ is a quasigroup, that is if and only if $B(A(x, y), x)=B(A(z, y), z) \Rightarrow x=z$ or $\left(d_{1}\right)$ holds.
(iii) Let $C=A^{\left(\varepsilon, \delta^{2} L_{u}^{-1}, \varepsilon\right)}$, that is $C(x, y)=A\left(x, \delta^{2} L_{u}^{-1} y\right)$, then $C \perp\left({ }^{-1} A\right)^{-1}$ if and only if $C \circ^{-1}\left(\left({ }^{-1} A\right)^{-1}\right)=C \circ A^{*}$ is a quasigroup. This is valid if and only if $\left(C \circ A^{*}\right)(y, x)=\left(C \circ A^{*}\right)(y, z) \Rightarrow x=z$ or $C(A(x, y), x)=C(A(z, y), z) \Rightarrow$ $x=z$, that is $A\left(A(x, y), \delta^{2} L_{u}^{-1} x\right)=A\left(A(z, y), \delta^{2} L_{u}^{-1} z\right) \Rightarrow x=z$ or $A\left(A\left(L_{u} x, y\right), \delta^{2} x\right)=A\left(A\left(L_{u} z, y\right), \delta^{2} z\right) \Rightarrow L_{u} x=L_{u} z \Rightarrow x=z$. It is δ -quasi-identity $\left(d_{2}\right)$.

From Proposition 3 it immediately follows (see also Theorem 1 concerning quasiidentities (2) and (8))

Corollary 4. In a finite quasigroup (Q, A)
(i) ε-quasi-identity $\left(c_{2}\right)$ holds if and only if $A \perp^{-1} A$;
(ii) δ-quasi-identity $\left(d_{1}\right)$ with $\delta^{2}=\varepsilon$ holds if and only if $A \perp\left({ }^{-1} A\right)^{-1}$;
(iii) δ-quasi-identity $\left(d_{2}\right)$ with $\delta^{2}=\varepsilon$ holds if and only if $A^{\left(\varepsilon, L_{u}^{-1}, \varepsilon\right)} \perp\left({ }^{-1} A\right)^{-1}$ for any $u \in Q$.
As it was said above, in a loop from the ε-quasi-identity $\left(d_{2}\right)$ the quasi-identity $\left(c_{2}\right)$ follows, so from Corollary 4 it follows

Corollary 5. If in a finite loop $(Q, A) \varepsilon$-quasi-identity $\left(d_{2}\right)$ holds, then $A \perp^{-1} A$ and $A \perp\left({ }^{-1} A\right)^{-1}$.

Proposition 4. Let (Q, \cdot) be a finite group. Then
(i) if δ is a complete permutation of (Q, \cdot) then ${ }^{-1}(\cdot) \perp(\cdot)^{T_{a}}$ for every $a \in Q$, where $T_{a}=\left(\varepsilon, \delta L_{a}, \varepsilon\right)$;
(ii) if in $(Q, \cdot)\left(d_{1}\right)$ holds, then ${ }^{-1}(\cdot) \perp(\cdot)^{T_{a, b, c}}$ for all $a, b, c \in Q$, where $T_{a, b, c}=$ $\left(\varepsilon, \delta^{2} L_{a} R_{b} L_{c}, \varepsilon\right)$.

Proof. (i) By the condition of (i) in a group (Q, \cdot) the δ-quasi-identity $\left(c_{1}\right)$ holds, but then $\left(c_{2}\right)$ also holds for any $z=I a\left(I: x \rightarrow x^{-1}\right)$, since in a group δ-quasi-identity $\left(c_{1}\right)$ is equivalent to $\left(c_{2}\right)$, that is $L_{I a} x \cdot \delta x=L_{I a} y \cdot \delta y \Rightarrow x=y$ or $x \cdot \delta L_{a} x=y \cdot \delta L_{a} y \Rightarrow$ $L_{a} x=L_{a} y$ (or $x=y$), since in a group $L_{a}^{-1}=L_{I a}$. Thus, $x \cdot \delta_{1} x=y \cdot \delta_{1} y \Rightarrow x=y$, where $\delta_{1}=\delta L_{a}$. By Proposition $3^{-1}(\cdot) \perp(\cdot)^{T_{a}}$, where $T_{a}=\left(\varepsilon, \delta_{1}, \varepsilon\right)$.
(ii) Let in $(Q, \cdot)\left(d_{1}\right)$ hold, then $\left(d_{2}\right)$ is valid also, so for any $a, b \in Q$ we have $((I a \cdot x) \cdot I b) \cdot \delta^{2} x=((I a \cdot z) \cdot I b) \cdot \delta^{2} z \Rightarrow x=z$ or $R_{I b} L_{I a} x \cdot \delta^{2} x=R_{I b} L_{I a} z \cdot \delta^{2} z \Rightarrow x=z$, whence it follows that $x \cdot \delta^{2} L_{a} R_{b} x=z \cdot \delta^{2} L_{a} R_{b} z \Rightarrow x=z$ or $x \cdot \bar{\delta} x=z \cdot \bar{\delta} z \rightarrow x=z$, where $\bar{\delta}=\delta^{2} L_{a} R_{b}$. By item (i) of this Proposition ${ }^{-1}(\cdot) \perp(\cdot)^{T_{a, b, c}}$ with $T_{a, b, c}=$ $\left(\varepsilon, \delta^{2} L_{a} R_{b} L_{c}, \varepsilon\right)$ for any $a, b, c \in Q$.

5 Equivalence of some quasi-identities with one parameter

A quasigroup (Q, \cdot) can satisfy some δ-quasi-identities from $\left(a_{1}\right)-\left(d_{2}\right)$ with distinct permutations δ. A part of such permutations can be obtained from the permutation δ of a δ-quasi-identity with the help of the group of automorphisms of a quasigroup.

In [5] for quasigroups by analogy with groups (see [16]) the following transformation of δ with the help of an automorphism was introduced.

Definition 1 [5]. A permutation δ_{1} is called automorphism equivalent to a permutation $\delta\left(\delta_{1} \sim \delta\right)$ for a quasigroup (Q, \cdot) if there exists an automorphism α of (Q, \cdot) such that $\delta_{1}=\alpha \delta \alpha^{-1}$.

Proposition 1 of [5] can be reformulated for δ-quasi-identities in the following way taking into account Theorem 1.

Proposition 5. (i) Automorphism equivalence of permutations is an equivalence relation (that is reflexive, symmetric and transitive).
(ii) If a quasigroup (Q, \cdot) satisfies the δ-quasi-identity $\left(a_{1}\right)\left(\left(a_{2}\right),\left(b_{1}\right),\left(b_{2}\right),\left(c_{1}\right)\right.$, $\left(c_{2}\right),\left(d_{1}\right)$ or $\left.\left(d_{2}\right)\right)$ and a permutation δ_{1} is an automorphism equivalent to δ, then in (Q, \cdot) the respective δ_{1}-quasi-identity holds.

More general transformation of permutations can be considered in a loop with a nonempty nucleus. So, in [5] for a loop a weak equivalence was introduced by analogy with a group (see [16]).

Recall that the nucleus N of a loop is the intersection of the left, right and middle nuclei:

$$
N=N_{l} \cap N_{r} \cap N_{m},
$$

where

$$
\begin{aligned}
& N_{l}=\{a \in Q \mid a x \cdot y=a \cdot x y \text { for all } x, y \in Q\}, \\
& N_{r}=\{a \in Q \mid x \cdot y a=x y \cdot a \text { for all } x, y \in Q\}, \\
& N_{m}=\{a \in Q \mid x a \cdot y=x \cdot a y \text { for all } x, y \in Q\} .
\end{aligned}
$$

All these nuclei are subgroups in a loop [3]. In a group (Q, \cdot) the nucleus N coincides with Q.

Definition 3. A permutation δ_{1} of a set Q is called weakly equivalent to a permutation $\delta\left(\delta_{1} \stackrel{w}{\sim} \delta\right)$ for a loop (Q, \cdot) with the nucleus N if there exist an automorphism $\alpha(\alpha \in \operatorname{Aut}(Q, \cdot))$ of the loop and elements $p, q \in N$ such that $\delta_{1}=R_{p} \alpha \delta \alpha^{-1} L_{q}$, where $R_{p} x=x p, L_{q} x=q x$
(the permutations act to the left from the right).
Note that if δ is a complete permutation in a loop with nucleus N, then $\delta_{1}=R_{p} \alpha \delta \alpha^{-1} L_{q}$ is also complete, where $\alpha \in \operatorname{Aut}(Q, \cdot), p, q \in N$.

Proposition 2 of [5] can be reformulated for the δ-quasi-identities in the following way.

Proposition 6. a) Weak equivalence is an equivalence relation for a loop.
b) If in a loop (Q, \cdot) the δ-quasi-identity $\left(a_{1}\right)\left(\left(a_{2}\right),\left(c_{1}\right)\right.$ or $\left.\left(c_{2}\right)\right)$ holds and the $\delta_{1} \stackrel{w}{\sim} \delta$, then this loop satisfies the respective δ_{1}-quasi-identities also.
c) If, in addition, δ is an automorphism of (Q, \cdot) and δ-quasi-identity $\left(a_{1}\right)\left(\left(a_{2}\right)\right.$, $\left(b_{1}\right),\left(b_{2}\right),\left(c_{1}\right),\left(c_{2}\right),\left(d_{1}\right)$ or $\left.\left(d_{2}\right)\right)$ holds, then the corresponding δ_{1}-quasiidentity holds too.

According to Corollary 2 of [5] in a Moufang loop of odd order with the nucleus N the δ-quasi-identities $\left(c_{1}\right),\left(c_{2}\right),\left(d_{1}\right),\left(d_{2}\right)$ by $\delta=R_{p} L_{q}, p, q \in N$, always hold (the respective ε-quasi-identities hold too).

In [5] an example of a loop of order 8 with the nucleus of four elements and with the group of automorphisms of order 4, some permutations and weak equivalent permutations to these permutations which satisfy the quasi-identities $\left(c_{2}\right)$ were given. Here we give a loop of order 9 with the nucleus of three elements and with the group of automorphisms of order 6 .

Example 3. The loop (Q, \cdot) of order 9 on the set $Q=\{1,2,3,4,5,6,7,8,9\}$ with the identity 1 is given in Table 7 .

Table 7:

(\cdot)	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	3	1	5	6	4	8	9	7
3	3	1	2	6	4	5	9	7	8
4	4	5	6	8	9	7	2	3	1
5	5	6	4	9	7	8	3	1	2
6	6	4	5	7	8	9	1	2	3
7	7	8	9	2	3	1	5	6	4
8	8	9	7	3	1	2	6	4	5
9	9	7	8	1	2	3	4	5	6

A computer research has shown that this loop has the following group of automorphisms of order 6:

$$
\begin{gathered}
\text { Aut } Q=\{(123456789),(123789456),(123645897),(123897645) \\
(123564978),(123978564)\}
\end{gathered}
$$

and the nucleus $N=N_{r}=\{1,2,3\}$.
This loop satisfies the quasi-identities $\left(c_{2}\right)$ and $\left(d_{2}\right)$ with the permutation $\delta_{0}=$ (123456897) and with the following permutations which are weakly equivalent to δ_{0} (that is have the form $R_{p} \alpha \delta_{0} \alpha^{-1} L_{q}$, where $\left.\alpha \in \operatorname{Aut}(Q, \cdot), p, q \in N\right):(123456897)$, (231564978), (312645789), (123564789), (231645897), (312456978).

References

[1] Artamonov A., Salii V.n., Skornyakov L.A. General algebra. Vol. 2. Moscow, 1991 (in Russian).
[2] Belousov V.D. On properties of binary operations. Uchenie zapiski of Bel'skogo pedinstituta, 1960, vyp. 5, p. 9-28 (in Russian).
[3] Belousov V.D. Foundation of the quasigroup and loop theory. Moscow, Nauka, 1967 (in Russian).
[4] Belousov V.D. Systems of orthogonal operations. Mat. sbornik, 1968, vol. 77(119):1, p. 38-58 (in Russian).
[5] Belyavskaya G.B. On check character systems over quasigroups and loops. Algebra and discrete mathematics, 2003, N 2, p. 1-13.
[6] Belyavskaya G.B., Izbash V.I., Mullen G.L. Check character systems using quasigroups: I. Designs, Codes and Cryptography, 2005, 37, p. 215-227.
[7] Belyavskaya G.B., Izbash V.I., Shcherbacov V.A. Check character systems over quasigroups and loops. Quasigroups and related systems, 2003, 10, p. 1-28.
[8] Damм M. Pruefziffersysteme ueber Quasigruppen. Diplomarbeit Universitaet Marburg, Maerz, 1998.
[9] Deneš J., Keedwell A.D. Latin squares and their applications. Budapest, Academiai Kiado, 1974.
[10] Ecker A., Poch G. Check character systems. Computing, 1986, N 37(4), p. 277-301.
[11] Gorbunov V.A. Algebraic theory of quasi-varieties. Novosibirsk, 1998 (in Russian).
[12] Mal'cev A.I. Algebraic systems. Moscow, Nauka, 1970 (in Russian).
[13] Mann H.B. On orthogonal latin squares. Bull. Amer. Math. Soc., 1944, 50, p. 249-257.
[14] Mullen G.L., Shcherbacov V.A. On orthogonality of binary operations and squares. Buletinul A. Ş. M., Matematica, 2005, N 2(48), p. 3-42.
[15] Sade A. Produit direct-singular di quasigroups orthogonaux et anti-abelians. Ann. Soc. Sci., Bruxelles, Ser. I, 1960, 74, p. 91-99.
[16] Schulz R.-H. On check digit systems using anti-symmetric mappings. In J. Althofer. et al. editors. Number, Information and Complexity, Kluwer Acad. Publ. Boston, 2000, p. 295-310.
[17] Verhoeff I. Error Detecting Decimal Codes. Math. Center Tracts 29, Amsterdam, 1969.

Institute of Mathematics and Computer Science
Received December 12, 2005
Academy of Sciences of Moldova
Academiei str. 5, MD-2028 Chisinau
Moldova
E-mail: gbel@math.md

[^0]: (C) G. Belyavskaya, A. Diordiev, 2005
 *Acknowledgment: The research described in this article was made possible in part by Award No. MM1-3040-CH-02 of the Moldovan Research and Development Association (MRDA) and the U.S. Civilian Research \& Development Foundation for the Independent States of the Former Soviet Union (CRDF).

