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On Commutativity and Mediality of Polyagroup

Cross Isomorphs
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Abstract. The notion of cross isotopy (cross isomorphism) of n-ary operations can
be got from the well-known notion of isotopy (isomorphism) by replacing one of its
components with a k-ary m-invertible operation [1, 2]. The idea of consideration of
cross isotopy belongs to V.D. Belousov [3], who defined it for binary quasigroups.
In the paper necessary and sufficient conditions for commutativity and mediality of a
polyagroup cross isomorph (when n > 2k) are determined. A neutrality criterion of
an arbitrary element is stated.
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1 Introduction

V.D. Belousov [3] introduced left and right cross isotopy notions for binary quasi-
groups by replacing the left (right) component of the common isotopy with a left
(right) invertible binary operation.

For the first time the corresponding notion for multiary operations was proposed
in [1] and was based on the same idea. Namely, the notion of i-cross isotopy of
an (n + 1)-ary operation can be received from the well-known notion of isotopy by
replacing its i-th nonprincipal component with an m-invertible operation depending
on variables having indices in ~ı := (i0, . . . , ik), where 0 6 i0 < · · · < ik 6 n and
im = i. The pair (m;~ı) is called a type of the cross isotopy. If all its components
coincide, except the i-th one, then the cross isotopy is called a cross isomorphism.

General properties of cross isotopy were studied in [1]. The set of all cross
isotopies of fixed type of a set Q forms a group acting on the set of all operations
of Q. It follows that the set of all cross autotopies of an operation is its subgroup;
cross autotopy groups of cross isotopic operations are isomorphic; cross isotopy is an
equivalence relation and so on. The same results were proved for cross isomorphism.
Some other results were observed in the mentioned work too. For example, every
two quasigroup operations defined on the same set are cross isomorphic if its type is
maximal, i.e. if n = k, but there exists a pair of quasigroup operations (irreducible
and completely reducible) which is not cross isotopic for every nonmaximal type.

In [2] the study of cross isotopy and cross isomorphism was continued: the
structure of polyagroup nonmaximal type cross isotopism was found if the type is
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a segment of integers or the polyagroup is medial (i.e. a decomposition group of
the polyagroup is commutative); an associate being i-cross isotopic to a quasigroup
is a polyagroup if i is one of the integers 1, . . . , n − 1; the notions of strong cross
isomorphism and the well-known notion of isomorphism coincide if its type does
not contain 1 or n − 1 or the polyagroup is medial and the integers from the set
{1, . . . , n − 1}, which is not in the cross isotomorphism type are relatively prime.

E.A.Kuznetsov [4] used the notion of cross isotopy for describing some classes of
loops. It is proposed a description of all cross isotopies between the given class of
loops and well-studied class of loops, for example, the class of groups.

The same problem exists for multiary operations. Now the most developed op-
erations are polyadic groups. So, the problem is to describe the structure of cross
isotopies assuring a polyagroup cross isotope belongs to the given class A.

Here, we consider the problem in the case if the cross isotopy is a cross isomor-
phism and if the class A is a class of commutative or medial operations. We also
determine the neutrality criterion for an element of polyagroup cross isomorph.

2 General notion

All the operations below are defined on the same fixed set Q. We recall that
(n + 1)-ary operation f is called

• (i, j)-associative if for arbitrary x0, . . . , xn ∈ Q the identity

f(x0, . . . , xi−1, f(xi, . . . , xi+n), xi+n+1, . . . , x2n) =

= f(x0, . . . , xj−1, f(xj, . . . , xj+n), xj+n+1, . . . , x2n)

is true;

• i-invertible if for any a0,. . . , an of Q the equation

f(a0, . . . , ai−1, x, ai+1, . . . , an) = ai (1)

has a unique solution;

• invertible or a quasigroup operation if it is i-invertible for all i=0, 1, . . . , n.

A groupoid (Q; f) is called (see [5]) an associate of the kind (s, n), where s|n,
if the operation f is (i, j)-associative for all pairs (i, j) such that i ≡ j (mod s); a
quasigroup if f is invertible; a polyagroup of the kind (s, n) if it is an associate of the
kind (s, n) and a quasigroup; an (n + 1)-group if it is a polyagroup and s = 1.

Theorem 1 [6]. If a groupoid (Q; f) is a polyagroup of the kind (s, n), then for
arbitrary element 0 ∈ Q there exists a unique triple of operations (+, ϕ, a) of the
arities 2, 1, 0 respectively such that the following conditions are true:



ON COMMUTATIVITY AND MEDIALITY OF POLYAGROUP CROSS ISOMORPHS 143

1) (Q; +) is a group, ϕ is its automorphism, 0 is its neutral element and the
identities

ϕnx + a = a + x, ϕsa = a (2)

are valid;

2) a decomposition of the operation f has the following form

f(x0, . . . , xn) = x0 + ϕx1 + · · · + ϕn−1xn−1 + ϕnxn + a. (3)

And vice versa, if the conditions 1) hold, then the groupoid (Q; f) defined by (3) is
a polyagroup of the kind (s, n).

In that case, the group (Q; +) is called a decomposition group, and the triple
(+, ϕ, a) is a decomposition of the polyagroup (Q; f).

Let
k
a denote a sequence a, . . . , a (k times).

An operation g of the arity n + 1 is called weak i-cross isomorphic of the type
~ı := (i0, . . . , ik), where 0 6 i0 < · · · < ik 6 n, or weak cross isomorphic of the type
(m,~ı) to (n + 1)-ary operation f if im = i and there exist a substitution α and an
m-invertible operation h of the arity k + 1 such that the equality

g(x0, . . . , xn) = α−1f(αx0, . . . , αxi−1, αh(xi0 , . . . , xik), αxi+1, . . . , αxn) (4)

holds for all x0, . . . , xn ∈ Q. The pair (α;h) is called a weak cross isomorphism of
the type (m,~ı) of the arity k + 1. A cross isomorphism is called principal if α = ε.
If k = n, then i-th cross isomorphism is called i-th cross isomorphism of the
maximal type.

A weak cross isomorphism (α;h) is called strong if h is a selector-like operation,
i.e. if for arbitrary substitution τ of Q and for all x ∈ Q the equality

h(
m
x, τx,

k−m
x ) = τx (5)

holds.
An operation g is called commutative if for all permutation σ of the set

{0, 1, . . . , n} the identity

g(xσ0, xσ1, . . . , xσn) = g(x0, x1, . . . , xn) (6)

is true.

Lemma 2 [7]. If there exist transformations α, β, γ, δ of the group (Q; +) such
that the equality

αx + βy = γy + δx

holds for all x, y ∈ Q and at least one element of each of the sets {α, δ} and {β, γ}
is a substitution of Q, then the group (Q; +) is commutative.
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The relation (4) implies the following identity

g0(x0, . . . , xn) = f(x0, . . . , xi−1, h0(xi0 , . . . , xik), xi+1, . . . , xn),

where

g0(x0, . . . , xn) = αg(α−1x0, . . . , α
−1xn), h0(xi0 , . . . , xik) = αh(α−1xi0 , . . . , α

−1xik),

i.e. groupoids (Q; g) and (Q; g0) are isomorphic. To clarify the truth of a formula
for cross isotopes it is enough to clarify it for principal cross isotopes. So from here
on we will consider principal cross isotopes only.

Let (n + 1)-ary groupoid (Q; g) be a principal cross isomorph of the type (m,~ı)
of an (n + 1)-ary polyagroup (Q; f) with a decomposition (+, ϕ, a), where ~ı :=
(i0, . . . , ik). Combining the identities (3) and (4) we obtain a decomposition of the
operation g

g(x0, . . . , xn) = x0 + ϕx1 + · · · + ϕi−1xi−1 + ϕih(xi0 , . . . , xik)+

+ϕi+1xi+1 + · · · + ϕnxn + a. (7)

3 Commutativity

The next theorem gives a criterion when a cross isomorphism of a polyagroup is
commutative.

Theorem 3. Let (Q; f) be a polyagroup with a decomposition (+, ϕ, a) and let
(ε, h)f be a principal cross isomorph of a nonmaximal type (m,~ı) of the operation
f , where ~ı := (i0, . . . , ik) and i := im. Then the operation (ε, h)f is commutative if
and only if the following relationships are true:

1) the group (Q; +) is commutative;

2) p ≡ ℓ (mod |ϕ|) if p, ℓ 6∈ ~ı, where |ϕ| denotes the order of the automor-
phism ϕ;

3) a decomposition of the operation h is the following

h(xi0 , . . . , xik) = ϕ−i
(

(ϕp − ϕi0)xi0 + · · · + (ϕp − ϕim−1)xim−1 + ϕpxi+

+ (ϕp − ϕim+1)xim+1 + · · · + (ϕp − ϕik)xik

)

+ b (8)

for some p 6∈~ı and b ∈ Q.

Proof. Let the operation g be commutative, then the identities (6) and (7) are
true. Since the type ~ı is not maximal then there exists a nonnegative integer p 6 n,
which does not belong to the cross isomorphism type ~ı.
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We replace all variables, except xi and xp, with the neutral element 0 of (Q; +)
in (6). From the commutativity of the operation g we have:

g(
p

0, xp,
i−p

0 , xi,
n−i

0 ) = g(
p

0, xi,
i−p

0 , xp,
n−i

0 ), if p < i,

g(
i

0, xi,
p−i

0 , xp,
n−p

0 ) = g(
i

0, xp,
p−i

0 , xi,
n−p

0 ), if p > i.

Taking into account (7), we obtain

ϕpxp + ϕiλxi = ϕpxi + ϕiλxp, when p < i,

ϕiλxi + ϕpxp = ϕiλxp + ϕpxi, when p > i,
(9)

where λx := h(
m

0 , x,
k−m

0 ). Therefore, according to Lemma 2, the group (Q; +) is
commutative.

We denote b := h(0, . . . , 0) and put xp = 0 in (9):

ϕiλx = ϕib + ϕpx. (10)

We notice that the commutativity of g implies the identity

g(xp−1
0 , xp, x

q−1
p+1, xq, x

n
q ) = g(xp−1

0 , xq, x
q−1
p+1, xp, x

n
q ) (11)

for arbitrary numbers p, q.
To find a decomposition of the operation h we set q = ir for some r ∈ {0, . . . ,m+

1,m − 1, . . . , k} and p 6∈ ~ı in (11) and replace the operation g with its decompo-
sition (7):

ϕih(xi0 , xi1 , . . . , xik) +
n
∑

j=0,j 6=i

ϕjxj + a =

= ϕih(xi0 , xi1 , . . . , xir−1 , xp, xir+1, . . . , xik)+

+
n
∑

j=0,j 6=i,ir,p

ϕjxj + ϕpxir + ϕirxp + a. (12)

After canceling the same summands and setting xp = 0, we obtain

ϕih(xi0 , xi1 , . . . , xik) + ϕirxir = ϕih(xi0 , xi1 , . . . , xir−1 , 0, xir+1 , . . . , xik) + ϕpxir .

Thence

ϕih(xi0 , xi1 , . . . , xik) = ϕih(xi0 , xi1 , . . . , xir−1 , 0, xir+1 , . . . , xik) + (ϕp − ϕir)xir .

We shall use this equality successively for r = 0, . . . ,m + 1,m − 1, . . . , k:

ϕih(xi0 , xi1 , . . . , xik) = ϕih(0, xi1 , . . . , xik) + (ϕp − ϕi0)xi0 =

= ϕih(0, 0, xi2 , . . . , xik) + (ϕp − ϕi0)xi0 + (ϕp − ϕi1)xi1 = · · · =

= ϕih(
m

0 xim ,
k−m

0 ) +
k
∑

r=0,j 6=m

(ϕp − ϕir)xir =

(10)
= ϕpxim + ϕib +

k
∑

j=0,r 6=m

(ϕp − ϕir)xir .
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Thence we obtain the equality (8).

Let us set up in the equality (11) all variables with 0, except xp and xℓ, if q = ℓ.
Taking into account decomposition (7) and commutativity of the decomposition
group after respective cancellation we obtain ϕpxp + ϕℓxℓ = ϕpxℓ + ϕℓxp. Setting
xp = 0 in the preceding equality, we obtain ϕp = ϕℓ. It follows that ϕp−ℓ = ε,
therefore |ϕ| divides p − ℓ, i.e. p ≡ ℓ (mod |ϕ|).

It is easy to prove the inverse statement. �

Putting b = 0 in Theorem 3, we obtain a theorem for polyagroup strong cross
isomorphs.

4 Mediality

We shall clarify the conditions when a principal cross isomorph (Q; g) is medial,
i.e. when the following identity

g(g(x00, x01, . . . , x0n), g(x10, x11, . . . , x1n), . . . , g(xn0, xn1, . . . , xnn)) =

= g(g(x00, x10, . . . , xn0), g(x01, x11, . . . , xn1), . . . , g(x0n, x1n, . . . , xnn))
(13)

is true. The next theorem can give an answer to this question.

Theorem 4. Let a pair (ε, h) be a principal weak cross isomorphism of a nonmax-
imal type (m,~ı), where ~ı := (i0, i1, . . . , ik), between an (n + 1)-ary groupoid (Q; g)
and (n + 1)-ary polyagroup (Q; f) with a decomposition (+, ϕ, a) and let n > 2k. A
groupoid (Q; g) is medial if and only if there exist endomorphisms λ0, . . . , λm−1,
λm+1, . . . , λk, an automorphism λm and an element b of the group (Q; +) such that:

1) (Q; +) is commutative;

2) the relation

h(y0, y1, . . . , yn) = λ0y0 + λ1y1 + · · · + λkyk + b (14)

holds for all y0, y1,. . . , yk ∈ Q;

3) for arbitrary r = 0, 1, . . . , k and p 6∈~ı the following relations are true

λrϕ
p = ϕpλr, (15)

(λrϕ
i + ϕir )λm = λm(ϕiλr + ϕir), (16)

4) for arbitrary ir1 , ir2 ∈~ı and ir1 6= ir2 6= i the following equality is valid

λr1(ϕ
iλr2 + ϕir2 ) + ϕir1λr2 = λr2(ϕ

iλr1 + ϕir1 ) + ϕir2λr1 . (17)
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Proof. Suppose that the groupoid (Q; g) is medial, i.e. (13) holds, the equality (7)
implies

g(0, . . . , 0) = ϕib + a, (18)

where b := h(0, . . . , 0). Nonmaximality of the type~ı means the existence of a number
p not belonging to ~ı. We replace all variables in (13), except xpi and xip, with the
neutral element 0 of the group (Q; +). Then there exist transformations µ1, µ2, µ3,
µ4, which are compositions of translations of (Q; +) and m-th translations of h such
that

µ1xpi + µ2xip = µ1xip + µ2xpi.

The cross isotopy definition means m-invertibility of h, so that these transformations
are substitutions of Q. So, according to Lemma 2 the operation (+) is commutative.

We replace the operation h and the element a with the operation h0 and the
element a0, determined with the following equalities

h0(y0, . . . , yk) := h(y0, . . . , yk) − h(0, . . . , 0),

a0 := ϕih(0, . . . , 0) + a = ϕib + a.

Therefore, taking into account commutativity of (Q; +), the decomposition (7) of g

can be written in the form:

g(x0, . . . , xn) = ϕih0(xi0 , . . . , xik) +
n
∑

j=0,j 6=i

ϕjxj + a0. (19)

We recall that h0(0, . . . , 0) = 0.
Now we replace the first occurence of g in left and right sides of (13) with its

decomposition (19):

ϕih0(g(xi00, . . . , xi0n), . . . , g(xik0, . . . , xikn)) +

+
n
∑

j=0,j 6=i

ϕjg(xj0, . . . , xjn) + a0 =

= ϕih0(g(x0i0 , . . . , xni0), . . . , g(x0ik , . . . , xnik)) +

+
n
∑

j=0,j 6=i

ϕjg(x0j , . . . , xnj) + a0. (20)

Let us consider the second summands in the left and right sides of this equality. The
summand of the left side is equal to

n
∑

j=0,j 6=i

ϕjg(xj0, . . . , xjn) =

(19)
=

n
∑

j=0,j 6=i

ϕj

(

ϕih0(xji0, . . . , xjik) +
n
∑

u=0,u 6=i

ϕuxju + a0

)

=

=
n
∑

j=0,j 6=i

ϕi+jh0(xji0 , . . . , xjik) +
n
∑

j=0,j 6=i

n
∑

u=0,u 6=i

ϕj+uxju +
n
∑

j=0,j 6=i

ϕja0.
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By analogy we obtain a decomposition of the second summand of the right side:

n
∑

j=0,j 6=i

ϕjg(x0j , . . . , xnj) =

=
n
∑

j=0,j 6=i

ϕi+jh0(xi0j , . . . , xikj) +
n
∑

j=0,j 6=i

n
∑

u=0,u 6=i

ϕj+uxuj +
n
∑

j=0,j 6=i

ϕja0.

We notice that the following equality is obvious

n
∑

j=0,j 6=i

n
∑

u=0,u 6=i

ϕj+uxju +

n
∑

j=0,j 6=i

ϕja0 =

n
∑

j=0,j 6=i

n
∑

u=0,u 6=i

ϕj+uxuj +

n
∑

j=0,j 6=i

ϕja0,

therefore (20) can be cancelled on these summands and element a0.

ϕih0(g(xi00, . . . , xi0n), . . . , g(xik0, . . . , xikn)) +
n
∑

j=0,j 6=i

ϕi+jh0(xji0 , . . . , xjik) =

= ϕih0(g(x0i0 , . . . , xni0), . . . , g(x0ik , . . . , xnik)) +
n
∑

j=0,j 6=i

ϕi+jh0(xi0j , . . . , xikj).

After mentioned transformations we can apply the automorphism ϕ−i to the equality

h0(g(xi00, . . . , xi0n), . . . , g(xik0, . . . , xikn)) +
n
∑

j=0,j 6=i

ϕjh0(xji0, . . . , xjik) =

= h0(g(x0i0 , . . . , xni0), . . . , g(x0ik , . . . , xnik)) +
n
∑

j=0,j 6=i

ϕjh0(xi0j, . . . , xikj).

We replace all occurences of g with its decomposition (19):

h0

(

ϕih0(xi0i0 , . . . , xi0ik) +
n
∑

j=0,j 6=i

ϕjxi0j + a0; . . . ;ϕ
ih0(xiki0, . . . , xikik)+

+
n
∑

j=0,j 6=i

ϕjxikj + a0

)

+
n
∑

j=0,j 6=i

ϕjh0(xji0, . . . , xjik) =

= h0

(

ϕih0(xi0i0 , . . . , xiki0) +
n
∑

j=0,j 6=i

ϕjxji0 + a0; . . . ;ϕ
ih0(xi0ik , . . . , xikik)+

+
n
∑

j=0,j 6=i

ϕjxjik + a0

)

+
n
∑

j=0,j 6=i

ϕjh0(xi0j, . . . , xikj). (21)

Let p 6∈ ~ı. We replace all variables, except xi0p, . . . , xikp, with 0. Inasmuch as
h0(0, . . . , 0) = 0, then (21) can be given in the form

ϕph0(xi0p, . . . , xikp) = h0(ϕ
pxi0p + a0, . . . , ϕ

pxikp + a0) − h0(a0, . . . , a0). (22)

We add to the both sides of (21) the element (n − k)(−h0(a0, . . . , a0)) and apply
(22) to the last summands of (21). Then the equality (21) in the case xuv = 0 for
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all u, v ∈~ı gives

h0

(

n
∑

j=0,j 6∈~ı

ϕjxi0j + a0; . . . ;
n
∑

j=0,j 6∈~ı

ϕjxikj + a0

)

+

+
n
∑

j=0,j 6∈~ı

h0

(

ϕjxji0 + a0; . . . ;ϕ
jxjik + a0

)

=

= h0

(

n
∑

j=0,j 6∈~ı

ϕjxji0 + a0; . . . ;
n
∑

j=0,j 6∈~ı

ϕjxjik + a0

)

+

+
n
∑

j=0,j 6∈~ı

h0

(

ϕjxi0j + a0; . . . ;ϕ
jxikj + a0

)

.

Let us replace ϕjy + a0 with y for all variables y appearing in the last identity:

h0

(

n
∑

j=0,j 6∈~ı

xi0j; . . . ;
n
∑

j=0,j 6∈~ı

xikj

)

+
n
∑

j=0,j 6∈~ı

h0(xji0, . . . , xjik) =

= h0

(

n
∑

j=0,j 6∈~ı

xji0; . . . ;
n
∑

j=0,j 6∈~ı

xjik

)

+
n
∑

j=0,j 6∈~ı

h0(xi0j , . . . , xikj). (23)

Inasmuch as n > 2k, then there exist at least k+1 numbers which do not belong
to~ı. We denote them by p0, p1,. . . , pk and replace all variables in (23), except xp0i0 ,
xp1i1 , . . . , xpkik , with 0:

h0(xp0i0 ,
k

0) + h0(0, xp1i1,
k−1
0 ) + · · · + h0(

k

0, xpkik) = h0(xp0i0 , xp1i1 , . . . , xpkik).

Denoting yj := xpjij and λjx := h0(
j

0, x,
k−j

0 ) for all j = 0, 1, . . . , k, we obtain

h0(y0, y1, . . . , yk) = λ0y0 + λ1y1 + · · · + λkyk. (24)

It implies a decomposition (14) of h.

In the identity (23) we replace all variables, except xirp0 and xirp1 , with 0 and
replace h0 with its decomposition:

λr(xirp0 + xirp1) = λrxirp0 + λrxirp1,

i.e. λr is an endomorphism of the group (Q; +).

Let us replace h0 with its decomposition (24) in (21). Since every of λ0, . . . , λk

is an endomorphism of commutative group (Q; +), then left and right sides of the
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obtained equality can be cancelled on λ0a0 + · · · + λka0:

λ0

(

ϕi(λ0xi0i0 + · · · + λkxi0ik) +
n
∑

j=0,j 6=i

ϕjxi0j

)

+ . . .

· · · + λk

(

ϕi(λ0xiki0 + · · · + λkxikik) +
n
∑

j=0,j 6=i

ϕjxikj

)

+

+
n
∑

j=0,j 6=i

ϕj(λ0xji0 + · · · + λkxjik) =

= λ0

(

ϕi(λ0xi0i0 + · · · + λkxiki0) +
n
∑

j=0,j 6=i

ϕjxji0

)

+ . . .

· · · + λk

(

ϕi(λ0xi0ik + · · · + λkxikik) +
n
∑

j=0,j 6=i

ϕjxjik

)

+

+
n
∑

j=0,j 6=i

ϕj(λ0xi0j + · · · + λkxikj). (25)

Let us consider the equality (25). Let ir ∈ ~ı, p 6∈ ~ı. Replacing all variables,
except xirp, with 0 we obtain the relationship (15).

We replace all variables in (25) with 0, except xiri:

λrϕ
iλm + ϕirλm = λm(ϕiλr + ϕir ).

It implies (16).
Let r1, r2 ∈ {0, . . . ,m−1,m+1, . . . , k}. If we replace all variables in (25) with 0,

except xir1 ir2
, then in the left side of the equality we have λr1(ϕ

iλr2 +ϕir2 )+ϕir1λr2 ,

and in the right side we obtain λr2(ϕ
iλr1 + ϕir1 ) + ϕir2λr1 . i.e. (17) is true.

Vice versa, let (Q; +) be commutative group, λ0, . . . , λk be its endomorphisms;
λm be its automorphism; b be an arbitrary element of Q; an operation h be deter-
mined by (14), and let the relationships (15)–(17) be valid. Thus, the operation g

has a decomposition

g(x0, . . . , xn) =
n
∑

j=0,j 6∈~ı

ϕjxj +
k
∑

r=0,r 6=m

(ϕir + ϕiλr)xr + ϕiλmxi + ϕib + a. (26)

All coefficients of g’s decomposition are endomorphisms of the group (Q; +). From
the relationships (15), (16), (17) it follows that the coefficients pairwise commute.
It is easy to prove that every such operation is medial. �

If a cross isomorphism is strong, then the operation h is idempotent (it follows
that b = h(0, . . . , 0) = 0). Hence, Theorem 4 with b = 0 states a mediality criterion
for a polyagroup strong cross isomorph.

5 Neutral elements

Every group isotop with a neutral element is derived. But for group cross isotop
it is not true. The set of all identity elements of derived group is a subgroup of
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its decomposition group center. The structure of the set of all neutral elements of
a cross isotop is still unknown. Here we consider a neutrality criterion in medial
polyagroup cross isotopes only, i.e. having commutative decomposition groups.

Theorem 5. Let (Q; g) be i-cross isomorph of the type ~ı := (i0, i1, . . . , ik), where
i = im, of an (n + 1)-ary medial polyagroup (Q; f) with decomposition (+, ϕ, a) and
let (ε, h) be respective cross isomorphism. Then element e of the set Q is neutral in
(Q; g) if and only if

1) ϕp = ε, when p 6∈~ı;
2) for all r = 0, . . . , m − 1, m + 1, . . . , k

h(
r
e, x,

k−r
e ) = b + ϕ−i(x − e) − ϕir−i(x − e); (27)

3) for all x from Q

h(
m
e , x,

k−m
e ) = b + ϕ−i(x − e); (28)

4) g(e, . . . , e) = e.

Proof. Let e be a neutral element of (Q; g), i.e. for arbitrary j = 0, . . . , n

g(
j
e, x,

n−j
e ) = x (29)

holds for all x ∈ Q. In particular, when x = e we obtain item 4) of Theorem 5.
Taking into account the decomposition (7) and the relation ϕnx + a = a + x, we
have

ϕib + c = 0, (30)

where b := h(e, . . . , e), c := a +
n−1
∑

j=0,j 6=i

ϕje.

If p does not belong to ~ı, then (29) with decomposition (7) implies the equality

ϕib + c + e − ϕpe + ϕpx = x

for all x ∈ Q. Taking into account (30), we obtain

ϕpx = x + ϕpe − e.

If x = 0 then ϕpe = e, which together with the previous equality give ϕp = ε, i.e.
item 1) of Theorem 5 is valid.

We suppose that r is one of the numbers 0, 1, . . . , k, then (29) means that

ϕih(
r
e, x,

k−r
e ) + c − ϕire + ϕirx + e = x.

Taking into account (30), we have

ϕih(
r
e, x,

k−r
e ) − ϕib − ϕire + ϕirx + e = x.
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It implies (27).
If j = i, the equality (29) has the form

g(e, . . . , e) + ϕih(
m
e , x,

k−m
e ) − ϕih(e, . . . , e) = x.

This equality is equivalent to ϕih(
m
e , x,

k−m
e ) − ϕib = x − e. Hence (28) is valid.

Vice versa, let the conditions 1) – 4) of the theorem for some element e be true.
We shall show that e is a neutral element. If j ∈~ı, then

g(
j
e, x,

n−j
e )

(20)
= e + ϕe + . . . + ϕi−1e + ϕih(

k+1
e ) + ϕi+1e + . . . + ϕne+

+a − ϕje + ϕjx
1),3)
= g(e, . . . , e) − e + x = e − e + x = x.

If j 6= i and j ∈~ı, i.e. j = ir for some number r ∈ {0, . . . ,m− 1,m + 1, . . . , k}, then

g(
j
e, x,

n−j
e )

(7)
= e + ϕe + . . . + ϕi−1e + ϕih(

r
e, x,

k−r
e ) + ϕi+1e + . . . + ϕne+

+a + ϕirx − ϕire = g(e, . . . , e) − ϕib + ϕih(
r
e, x,

k−r
e ) + ϕirx − ϕire

(27)
= e − ϕib + ϕib + x − e − ϕir (x − e) + ϕir(x − e) = x.

At last, let j = i = im, then

g(
i
e, x,

n−i
e )

(7)
= e + ϕe + . . . + ϕi−1e + ϕih(

m
e , x,

k−m
e ) + ϕi+1e + . . . + ϕne + a =

= g(e, . . . , e) − ϕib + ϕih(
m
e , x,

k−m
e )

(28)
= e − ϕib + ϕib + x − e = x. �
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