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On Bruck-Belousov Problem

Victor Shcherbacov

Abstract. In this paper on the language of subgroups of the multiplication group
of a quasigroup (of the associated group of a quasigroup) necessary and sufficient
conditions of normality of congruences of a left (right) loop are given. These conditions
can be considered as a partial answer to the problem posed in books of R. H. Bruck
and V.D. Belousov about conditions of normality of all congruences of quasigroups.
Results on the regularity of congruences of quasigroups and the behavior of quasigroup
congruences by isotopy are given.
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1 Introduction

The main purpose of this paper is an attempt to promote in solving the following
Bruck-Belousov problem: What loops G have the property that every image of G
under a multiplicative homomorphism is also a loop [9, p. 92]? What quasigroups
or loops in which all congruences are normal [5, Problem 20, p. 221]?

We notice it is well known (see [3]), if homomorphic image of a multiplicative
homomorphism ϕ of a loop is also a loop then congruence θ which corresponds to
ϕ, is a normal congruence.

This article is an extended variant of the paper [27]. See also [28]. We shall
use standard quasigroup notations and definitions from [5,6,11,23]. Information on
lattices and universal algebras can be found in [10, 20, 30], on groups in [14, 19], on
semigroups in [12].

For convenience of readers we recall some well known definitions.

A groupoid (Q, ·) in which for any fixed elements a, b from the set Q the equations
a · x = b and y · a = b have unique solutions is called a quasigroup.

A quasigroup (Q, ·) that has an element f such that f · x = x for all x ∈ Q is
called a left loop.

A quasigroup (Q, ·) that has an element e such that x · e = x for all x ∈ Q is
called a right loop.

A quasigroup with the identity of associativity (x · yz = xy · z) is a group [19].

It is known (see [5]) that in a quasigroup left (La : x → a · x), right (Ra : x →
x · a) translations, as well as its inverse, are permutations. Let L = {La | a ∈ Q},
R = {Rb | b ∈ Q}, T = {La, Rb | a, b ∈ Q}.
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By Π(Q) or by Π for the short we shall designate a semigroup generated by the
left and right translations of a quasigroup Q, i.e. elements of a semigroup Π(Q) are
words of the form Tα1

1
Tα2

2
. . . Tαn

n , where Ti ∈ T, αi ∈ N.

The group generated by all left and right translations of a quasigroup Q will be
denoted by M(Q), or by M for the short. Elements of the group M are words of
the form Tα1

1
Tα2

2
. . . Tαn

n , where Ti ∈ T, αi ∈ Z.

A binary relation ϕ on a set Q is a subset of the cartesian product Q×Q [10,22].

As it is known ([10,12,20,30]), a binary relation q is an equivalence if and only
if ε ⊆ q, q−1 = q, q2 = q, where ε = {(x, x) | x ∈ Q}. We shall use both definitions:
this definition and definition of equivalence as reflexive, symmetric and transitive
relation on the language of pairs of elements.

A class of an equivalence θ that contains an element a will be denoted by θ(a).

An equivalence θ of a quasigroup (Q, ·) such that from aθb follows (c · a)θ(c · b)
for all a, b, c ∈ Q is called a left congruence of a quasigroup (Q, ·).

An equivalence θ of a quasigroup (Q, ·) such that from aθb follows (a · c)θ(b · c)
for all a, b, c ∈ Q is called a right congruence of a quasigroup (Q, ·).

A left and right congruence θ of a quasigroup (Q, ·) is called a congruence of a
quasigroup (Q, ·) [5, 6].

A congruence θ of a quasigroup (Q, ·) is called normal, if from (a ·c)θ(b ·c) follows
aθb, from (c · a)θ(c · b) follows aθb for all a, b, c ∈ Q.

We shall call a binary relation θ of a groupoid (Q, ·) stable from the left
(accordingly from the right) if from xθy it follows (a · x)θ(a · y), (accordingly
(x · a)θ(y · a)) for all a ∈ Q.

It is easy to see that a stable from the left (from the right) equivalence of a
quasigroup (Q, ·) is called a left (right) congruence. A congruence is an equivalence
relation which is stable from the left and from the right.

Definition 1. If θ is a binary relation on a set Q, α is a permutation of the set
Q and from xθy it follows αxθαy for all (x, y) ∈ θ, then we shall say that the
permutation α is semi-admissible relative to the relation θ.

Remark 1. We notice in [13] a permutation with such property is called an admis-
sible permutation.

Definition 2. If θ is a binary relation on a set Q, α is a permutation of the set Q
and from xθy it follows αxθαy and α−1xθα−1y for all (x, y) ∈ θ, then we shall say
that the permutation α is an admissible permutation relative to the binary

relation θ [5].

We recall any element of the group M(Q) of a quasigroup Q is admissible relative
to any normal congruence of the quasigroup Q; any element the semigroup Π(Q)
of a quasigroup Q is semi-admissible relative to any congruence of the quasigroup
Q [5, 6].
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As it is known (see [5, 6]) to each homomorphism ϕ of a quasigroups Q it is
possible to associate a congruence θ by the rule: aθb if and only if ϕa = ϕb. In this
case ϕQ ∼= Q/θ.

As is was proved in [3], see also [5,11], homomorphic image of a quasigroupsQ can
be a quasigroup or a groupoid with division. If homomorphic image of a quasigroup
is a quasigroup, then the congruence θ which corresponds to this homomorphism is
normal, if ϕQ is a proper division groupoid, then congruence θ is not normal [6].

If ϕ and ψ are binary relations on Q, then their product is defined in the following
way: (a, b) ∈ ϕ ◦ ψ if there is an element c ∈ Q such that (a, c) ∈ ϕ and (c, b) ∈ ψ
[12, 30]. The operation of product of binary relations is associative [12,22,24].

Below we shall designate product of binary relations and quasigroup operation
by a point, by the letter Q we shall designate a quasigroup (Q, ·) and a set on which
this quasigroup is defined.

Lemma 1. For all binary relations ϕ,ψ, θ ⊆ Q2 from ϕ ⊆ ψ follows ϕθ ⊆ ψ θ,
θ ϕ ⊆ θ ψ, i.e. it is possible to say that a binary relation of set-theoretic inclusion of
binary relations is stable from the left and from the right relative to the multiplication
of binary relations.

Proof. If (x, z) ∈ ϕθ, then there exists an element y ∈ Q, such that (x, y) ∈ ϕ and
(y, z) ∈ θ. Since ϕ ⊆ ψ, then we have (x, y) ∈ ψ, (x, z) ∈ ψ θ. �

Remark 2. Translations of a quasigroup can be considered as binary relations:
(x, y) ∈ La, if and only if y = a · x, (x, y) ∈ Rb, if and only if y = x · b.

Remark 3. To coordinate the multiplication of translations with their multipli-
cation as binary relations, we use the following multiplication of translations: if
α, β are translations, x is an element of the set Q, then (αβ)(x) = β(α(x)), i.e.
(αβ)x = βαx.

A partially ordered set (L,⊆) is called a lower (an upper) semilattice if any its
two-element subset has exact lower (upper) bound, i.e. in a set L exists inf(a, b)
(sup(a, b)) for all a, b ∈ L [10, 20].

If a partially ordered set is simultaneously the lower and upper semilattice, then
it is called a lattice.

We can define a lattice as algebra (L,∨,∧) satisfying the following axioms ([10]):

(a ∨ b) ∨ c = a ∨ (b ∨ c); a ∨ b = b ∨ a;
a ∨ a = a; (a ∨ b) ∧ a = a;
(a ∧ b) ∧ c = a ∧ (b ∧ c); a ∧ b = b ∧ a;
a ∧ a = a; (a ∧ b) ∨ a = a.

We notice similarly as for quasigroups, which are defined in a signature with one
and three binary operations, for the lattices which are defined in a signature with
one binary operation ≤ and with two binary operations ∨ and ∧, the concepts of a
sublattice do not coincide. Namely, the sublattice of a lattice (L,∨,∧) always is a
sublattice of a lattice (L,≤), but an inverse is not always correct [20].
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2 Congruences of a quasigroup and its associated group

Connections between normal subloops of a loop Q and normal subgroups of the
group M(Q) were studied by A. Albert [1, 2]. Generalizations of Albert results on
some classes of quasigroups can be found in works of V.A. Beglaryan [4] and K.K.
Shchukin [29]. In these works also questions of the lattice embedding of lattices of
some normal congruences of a quasigroup Q into the lattice of normal subgroups of
the group M(Q) are studied.

Proposition 1. An equivalence θ is a congruence of a quasigroup Q if and only if
θω ⊆ ωθ for all ω ∈ T.

Proof. Let θ be an equivalence, ω = La. It is clear that (x, z) ∈ θLa is equivalent
to that there exists an element y ∈ Q such that (x, y) ∈ θ and (y, z) ∈ La. But if
(y, z) ∈ La, z = ay, then y = L−1

a z. Therefore, from the relation (x, z) ∈ θLa it
follows that (x,L−1

a z) ∈ θ.

Let us prove that from (x,L−1
a z) ∈ θ it follows (x, z) ∈ θLa. We have (x,L−1

a z) ∈
θ and (L−1

a z, z) ∈ La, (x, z) ∈ θLa. Thus (x, z) ∈ θLa is equivalent to (x,L−1
a z) ∈ θ.

Similarly, (x, z) ∈ Laθ is equivalent to (ax, z) ∈ θ. Now we can say that the
inclusion θω ⊆ ωθ by ω = La is equivalent to the following implication:

(x,L−1
a z) ∈ θ =⇒ (ax, z) ∈ θ

for all suitable a, x, z ∈ Q.

If we replace in the last implication z with Laz, we shall obtain the following
implication:

(x, z) ∈ θ =⇒ (ax, az) ∈ θ

for all a ∈ Q.

Thus, the inclusion θLa ⊆ Laθ is equivalent to the stability of the relation θ from
the left relative to an element a. Since the element a is an arbitrary element of the
set Q, we have that the inclusion θω ⊆ ωθ by ω ∈ L is equivalent to the stability of
the relation θ from the left.

Similarly, the inclusion θω ⊆ ωθ for any ω ∈ R is equivalent to the stability
from the right of relation θ. Uniting the last two statements, we obtain required
equivalence. �

Let us remark Proposition 1 can be deduced from results of the article of
Thurston [26].

The following proposition is almost obvious corollary of Theorem 5 from [21].

Proposition 2. An equivalence θ is a congruence of a quasigroup Q if and only if
ωθ(x) ⊆ θ(ωx) for all x ∈ Q, ω ∈ T.
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Proof. Let θ be an equivalence relation and for all ω ∈ T, ωθ(x) ⊆ θ(ωx). We shall
prove that from aθb follows caθcb, acθbc for all c ∈ Q.

By definition of the equivalence θ, aθb is equivalent to a ∈ θ(b). Then ca ∈
cθ(b) ⊆ θ(cb), caθcb. Similarly, from aθb follows acθbc.

Converse. Let θ be a congruence. We shall prove that c θ(a) ⊆ θ(ca) for all
c, a ∈ Q. Let x ∈ c θ(a). Then x = cy, where y ∈ θ(a), that is yθa. Then, since θ is
a congruence, we obtain cyθca. Therefore x = cy ∈ θ(ca). Thus, Lcθ ⊆ θ(ca). It is
similarly proved that Rcθ(a) ⊆ θ(ac). �

Corollary 1. An equivalence θ of a quasigroup (Q, ·) is a congruence if and only if
θω ⊆ ωθ for all ω ∈ Π.

Proof. The multiplication of binary relations is associative, therefore, if θω1 ⊆ ω1θ,
θω2 ⊆ ω2θ, where ω1, ω2 ∈ Π, then θ(ω1ω2) = (θω1)ω2 ⊆ (ω1θ)ω2 = ω1(θω2) ⊆
ω1(ω2θ) = (ω1ω2)θ. �

Corollary 2. An equivalence θ is a congruence of a quasigroup Q if and only if
ωθ(x) ⊆ θ(ωx) for all x ∈ Q, ω ∈ Π.

Proof. The proof is similar with the previous one. �

Corollary 3. A congruence θ of a quasigroup Q is normal if and only if at least
one of the following conditions is fulfilled:

(i) ωθ ⊆ θω for all ω ∈ T;
(ii) ωθ = θω for all ω ∈ T;
(iii) θ(ωx) ⊆ ωθ(x) for all ω ∈ T, x ∈ Q;
(vi) θ(ωx) = ωθ(x) for all ω ∈ T, x ∈ Q.

Proof. As it is proved in Proposition 1, the inclusion θLa ⊆ Laθ is equivalent to
the implication xθy =⇒ axθay.

Let us check up that the inclusion Laθ ⊆ θLa is equivalent to the implication

axθay ⇒ xθy.

Indeed, as it is proved in Proposition 1, (x, z) ∈ θLa is equivalent with
(x,L−1

a z) ∈ θ. Similarly, (x, z) ∈ Laθ is equivalent with (ax, z) ∈ θ. The inclu-
sion ωθ ⊆ θω by ω = La has the form Laθ ⊆ θLa and it is equivalent to the
following implication:

(ax, z) ∈ θ =⇒ (x,L−1
a z) ∈ θ

for all a, x, z ∈ Q. If we change in the last implication the element z by the element
Laz, we shall obtain that the inclusion θLa ⊇ Laθ is equivalent to the implication
axθay ⇒ xθy. Therefore, the equivalence θ is cancellative from the left.

Similarly, the inclusion Rbθ ⊆ θRb is equivalent to the implication:

(xa, za) ∈ θ =⇒ (x, z) ∈ θ.

If a congruence θ is cancellative from the left and from the right, then, by definition,
θ is a normal congruence.

Cases (ii), (iii), (iv) are proved similarly. �
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Corollary 4. A congruence θ of a quasigroup Q is normal if and only if ωθ = θω
for all ω ∈ Π.

A congruence θ of a quasigroup Q is normal if and only if ωθ = θω for all ω ∈M .

Proof. The proof is obvious. �

It is easy to see that an equivalence q of a set M is a congruence of the group
M if and only if q is admissible relative to all elements of the set T ∪ T−1, where
T−1 = {L−1

x , R−1
x | ∀x ∈ Q}.

Theorem 1. The lattice of congruences (L(Q),≤1) of one-sided loop (in particular,
of a loop) Q is isomorphically embedded in the lattice (L(M(Q)),≤2) of the left
congruences of group M , which are semi-admissible from the right relative to all
permutations of the semigroup Π.

Proof. The proof of this theorem in some parts repeats the proof of the theorem
on an isomorphic embedding of normal congruences of a quasigroup Q in the lattice
of congruences of the group M(Q) [26].

By a quasigroup Q during the proof of this theorem we shall understand a quasi-
group with the right unit, i.e. right loop.

Let q be a congruence of a quasigroup Q. We shall define the relation q⊤ in
group M as follows: θq⊤ϕ⇐⇒ θ−1ϕ ⊆ q for all θ, ϕ ∈M.

We prove that q⊤ is a left congruence of the group M which is admissible from
the right relative to all permutations α, α ∈ Π.

Reflexivity of q⊤. Since ε ⊆ q, αq⊤α for all α ∈M .

Symmetry of q⊤. The equivalence θq⊤ϕ↔ ϕq⊤θ is equivalent to the equivalence
θ−1ϕ ⊆ q ↔ ϕ−1θ ⊆ q. The last equivalence is true since, if θ−1ϕ ⊆ q, then
(θ−1ϕ)−1 ⊆ q−1, ϕ−1θ ⊆ q−1 = q. It is clear that in the same way it is possible to
receive also an inverse implication: (ϕ−1θ ⊆ q) → (θ−1ϕ ⊆ q).

Transitivity of q⊤. An implication θq⊤ϕ ∧ ϕq⊤ψ → θq⊤ψ is equivalent with
the implications θ−1ϕ ⊆ q ∧ ϕ−1ψ ⊆ q → θ−1ψ ⊆ q. We shall show that the last
implication is fulfilled. Indeed, if θ−1ϕ ⊆ q∧ϕ−1ψ ⊆ q, θ−1ϕϕ−1ψ = θ−1ψ ⊆ q2 = q.

Let us show that q⊤ is semi-admissible from the left relative to any permutation
α ∈ M . Indeed, the condition “if θq⊤ϕ, then αθq⊤αϕ” is equivalent with the
following condition: if θ−1ϕ ⊆ q, then θ−1α−1αϕ = θ−1ϕ ⊆ q.

Let us show that the binary relation q⊤ (we have already proved that q⊤ is a
left congruence of M) is semi-admissible from the right relative to any permutation
α ∈ Π. For this purpose we shall show that θαq⊤ϕα for all α ∈ Π. We shall pass,
using Proposition 1, to the needed inclusions.

Then we have θq⊤ϕ ↔ θ−1ϕ ⊆ q, θαq⊤ϕα ↔ α−1θ−1ϕα ⊆ q. Since q is a
congruence, then by Corollary 1 we have α−1qα ⊆ q for all α ∈ Π. Therefore, if
θ−1ϕ ⊆ q, then α−1θ−1ϕα ⊆ α−1qα ⊆ q.
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Thus, we have proved that an arbitrary congruence of a quasigroup Q corre-
sponds the left congruence q⊤ of the group M which is semi-admissible from the
right relative to all permutations of the semigroup Π.

Let p be a left congruence of the group M , that is semi-admissible from the right
relative to all α ∈ Π. We shall define a binary relation on a quasigroup Q in the
following way: p⊥ = ∪ θ−1ϕ for all θ, ϕ ∈M , such that θ pϕ.

We demonstrate that p⊥ is a congruence of a quasigroup Q.

Reflexivity of p⊥. Since θ p θ for all θ ∈M , then θ−1θ = ε ⊆ p⊥.

Symmetry of p⊥. (p⊥)−1 = p⊥, since p−1 = p and p⊥ = ∪ θ−1ϕ for all θ, ϕ ∈M ,
such that θ pϕ.

Transitivity of p⊥. Let (a, b) ∈ (p⊥)2, i.e. there exists element c such that ap⊥c
and cp⊥b. Hence, there exist θ, ϕ, ψ, ξ ∈M , θpϕ, ψpξ, such that aθ−1ϕc and cψ−1ξb.
Then c = (θ−1ϕ) a, b = (ψ−1ξ) c, and b = (θ−1ϕψ−1ξ) a, i. e. (a, b) ∈ (ϕ−1θ)−1ψ−1ξ.

We need to prove that ϕ−1θ pψ−1ξ. If θ pϕ, then taking into account that the
binary relation p is stable from the left relative to any permutation α ∈ M , we
obtain, ϕ−1θ pϕ−1ϕ, ϕ−1θ p ε.

Similarly, ε pψ−1ξ, and by transitivity of the relation p we have: ϕ−1θ pψ−1ξ.
Thus, we have proved that p is an equivalence on Q.

Let us show that p⊥ is a congruence of a quasigroup Q. For this purpose it is
sufficient, taking into account Corollary 1, to prove that for all ω ∈ Π, ω−1 p⊥ ω ⊆
p⊥.

Let (a, b) ∈ ω−1p⊥ω. Then there exist ϕ, θ ∈ M , θpϕ such that (a, b) ∈
ω−1θ−1ϕω = (θω)−1ϕω.

Since θ pϕ then for all ω ∈ Π, θω pϕω, and then (θω)−1ϕω ⊆ p⊥.

Thus (a, b) ∈ p⊥, ω−1 p⊥ ω ⊆ p⊥ for all ω ∈ Π, i.e. p⊥ is a congruence of a
quasigroup Q.

We prove if q is a congruence of a quasigroup Q, then q⊤⊥ = q, i.e. we establish
that the map ⊤ is a bijective map and that (⊤)−1 = ⊥.

It is easy to understand that q⊤⊥ ⊆ q. Indeed, if (a, b) ∈ (q⊥)⊤ there is a pair of
permutations ϕ, θ ∈M such that θq⊤ϕ, (a, b) ∈ θ−1ϕ.

By definition of the relation q⊤, ϕq⊤θ if and only if ϕ−1θ ⊆ q, and then (a, b) ∈ q.

Let us prove a converse inclusion. Now we use property that the quasigroup Q
has the right unit.

Let (a, b) ∈ q. Then for all x from Q the relation ax q bx is equivalent with
Lax q Lbx. Having replaced x by L−1

a x, we obtain x q (L−1
a Lb)x, i.e. L−1

a Lb ⊆ q,
and then Laq

⊤Lb, L
−1
a Lb ⊆ (q⊤)⊥. From the last relation we have (a, (L−1

a Lb)a) =
(a,Lbea) = (a, b) ∈ (q⊤)⊥, since ea = eb. Therefore q ⊆ (q⊤)⊥.

If we have quasigroup with the left unit, then instead of translations La, Lb we
take translations Ra, Rb. Thus (q⊤)⊥ ⊇ q, the map ⊤ is a bijective map, (⊤)−1 = ⊥.
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Let us recall lattices L1 = (L1,≤1) and L2 = (L2,≤2) are called isomorphic
if there is a bijective map σ such that a ≤1 b in L1 if and only if σ(a) ≤1 σ(b)
in L2 [10].

In order to prove that ⊤ is a lattice isomorphism, we need to prove: if q1 ⊆ q2,
then q⊤1 ⊆ q⊤2 , if p1 ⊆ p2, then p⊥1 ⊆ p⊥2 , where q1, q2 are congruences of a quasigroup
Q, p1, p2 are the left congruences of group M that are semi-admissible relative to
multiplication from the right on permutations α from the semigroup Π. These two
implications, taking into account the definition of maps ⊥,⊤, are obvious. �

Proposition 3. If the lattice of congruences is considered as an algebra of the form
(L,∨,∧), i.e. in a signature with two binary operations, then (q1 ∧ q2)

⊤ = q⊤1 ∧ q⊤2 .

Proof. Indeed, the operation ∧ both in a lattice of congruences of a quasigroup
and in a lattice of the left congruences of group M coincides with the set-theoretic
intersection of congruences. Therefore, if (α, β) ∈ (q1 ∧ q2)

⊤, then α−1β ⊆ q1 ∧ q2,
α−1β ⊆ q1 ∩ q2, α

−1β ⊆ q1, α
−1β ⊆ q2, (α, β) ∈ q⊤1 , (α, β) ∈ q⊤2 , (α, β) ∈ q⊤1 ∩ q⊤2 =

q⊤1 ∧ q⊤2 .

Conversely, let (α, β) ∈ q⊤1 ∧ q⊤2 . Then α−1β ⊆ q1, α
−1β ⊆ q2, α

−1β ⊆ q1 ∩ q2 =
q1 ∧ q2, (α, β) ∈ (q1 ∧ q2)

⊤. Thus, (q1 ∧ q2)
⊤ = q⊤1 ∧ q⊤2 . �

Remark 4. It is easy to see that q⊤1 ∨ q⊤2 ⊆ (q1 ∨ q2)
⊤. Indeed, q⊤1 ⊆ (q1 ∨ q2)

⊤,
q⊤2 ⊆ (q1 ∨ q2)

⊤, q⊤1 ∨ q⊤2 ⊆ (q1 ∨ q2)
⊤ ∨ (q1 ∨ q2)

⊤ = (q1 ∨ q2)
⊤.

Probably, in general, there exist examples such that q⊤1 ∨q⊤2 $ (q1∨q2)
⊤. Results

from [1,2, 4, 29] strengthen our guess.

Since in Theorem 1 it is proved that the map ⊤ is bijective, we can formulate
the following theorem.

Theorem 2. The lower semilattice of congruences of an one-sided loop Q is iso-
morphically embedded in the lower semilattice of the left congruences of the group
M(Q) that are semi-admissible relative to all elements of the semigroup Π(Q).

Corollary 5. The lower semilattice of congruences of an one-sided loop Q is iso-
morphically embedded in the lower semilattices of congruences: of the semigroup LΠ,
of the semigroup Π and of the left congruences of the group LM .

Proof. By the intersection of the left congruences of group M with the set LΠ×LΠ,
for example, we obtain some binary relations of semigroup LΠ.

It is easy to understand that these binary relations are equivalences which
are semi-admissible relative to multiplication from the left and from the right by
elements of the semigroup LΠ, i.e. these equivalences are congruences of semi-
group LΠ.

Now we should prove: if p1 ⊂ p2 and p⊥1 ⊂ p⊥2 , then p1, p2 are elements of lattice
of the left congruences of the group M , p1 ∩ (LΠ)2 ⊂ p2 ∩ (LΠ)2.

If p1 ⊂ p2 and p⊥1 ⊂ p⊥2 , then there is a pair (a, b), such that (a, b) ∈ p⊥2 and
(a, b) /∈ p⊥1 . Then (La, Lb) ∈ p2 = ((p2)

⊥)⊤ and (La, Lb) /∈ p1.
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If we suppose that (La, Lb) ∈ p1, then L−1
a Lb ⊆ p⊥1 , (a,L−1

a Lba) = (a, b) ∈ p⊥1 .
We have received a contradiction. Thus p1 ∩ (LΠ)2 ⊂ p2 ∩ (LΠ)2.

The remaining inclusion maps are proved similarly. �

Corollary 6. A lower semilattice of congruences of a loop is isomorphically em-
bedded in the lower semilattices of congruences of semigroups LΠ, RΠ, Π, the left
congruences of groups LM , RM .

Theorem 3. In an one-sided loop Q all congruences are normal if and only if in
the group M all left congruences, which are semi-admissible from the right relative
to all elements of the semigroup Π, are congruences.

Proof. We suppose that in the group M all left congruences, which are semi-
admissible from the right relative to permutations from the semigroup Π, are con-
gruences. We shall show that then they induce in Q only normal congruences.
Indeed, let p be a congruence of the group M . We demonstrate that then p⊥ is a
normal congruence of a quasigroup Q.

For this purpose it is enough to prove, taking into account Theorem 1, Corollary
1, that ωp⊥ω−1 ⊆ p⊥ for all ω ∈ Π.

Let (a, b) ∈ ωp⊥ω−1. Then there exist θ, ϕ ∈ M , θ pϕ such that (a, b) ∈
ωθ−1ϕω−1 = (θω−1)−1ϕω−1. Since p is a congruence of the group M, then from
θ pϕ follows θω−1 pϕω−1 for all ω ∈M . Thus, (a, b) ∈ p⊥, ωp⊥ω−1 ⊆ p⊥.

Converse. Let in an one-sided loop Q all congruences be normal. We shall prove
that then in the group M all left congruences, which are semi-admissible from the
right relatively to permutations from Π, are congruences.

We suppose converse, that in the group M there exists a left congruence p which
is not semi-admissible relative to multiplication on the right by at least one element
from the set T−1. We denote such element by R−1

c . In other words there exist
elements α, β such that α pβ, but αR−1

c is not congruent with the element βR−1
c .

Passing to the congruence p⊥, we obtain α−1β ⊆ p⊥, but Rcα
−1βR−1

c * p⊥, i.e.
there is an element x ∈ Q such that (x, (Rcα

−1βR−1
c )x) /∈ p⊥.

Since p⊥ is a normal congruence of an one-sided loop Q, then: if (a, b) /∈ p⊥,
then for all x ∈ Q we obtain (ax, b x) /∈ p⊥.

Thus, if (x, (Rcα
−1βR−1

c )x) /∈ p⊥, (Rcx, (Rcα
−1β)x) /∈ p⊥ or (xc, (α−1β)xc) /∈

p⊥, i.e. α−1β * p⊥. We have a contradiction.

Therefore left but not right congruence θ of the group M , which is semi-
admissible from the right relative to permutations of the semigroup Π defines a
non-normal congruence of an one-sided loop. �

Definition 3. A subgroup H of a group M will be called A-invariant relative to a
set A of elements of the group M , if a−1Ha ⊆ H for all a ∈ A.

In the language of Definition 3 any normal subgroup H of a group G is G-
invariant subgroup of the group G [14].

We reformulate Theorems 2 and 3 as follows.
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Theorem 4. The lower semilattice of congruences of an one-sided loop is isomor-
phically embedded in the lower semilattice of Π-invariant subgroups of the group M .

Proof. We shall show that the kernel of a left congruence θ of the group M is some
its subgroup H, but the left congruence θ is a partition of the group M in left coset
classes by this subgroup. Indeed, if αθ ε and β θ ε, then αβ θ α, whence, αβ θ ε.

If αθ ε, then α−1α θ α−1ε, α−1 θ ε. Thus, the kernel of left congruence θ is a
subgroup of a group M .

We notice that various left congruences of the group M define various kernels.
Indeed, if we suppose converse, that α θ1 β and it is not true that αθ2 β, but β−1αθ1 ε
and β−1α θ2 ε, then β(β−1α) θ2 βε, αθ2 β. We have received a contradiction.

Since any subgroup H of a group M defines the left congruence (α ∼ β ⇐⇒
αH = βH), we proved that there is a bijection between the left congruences of the
group M and its subgroups.

We shall show, that the left congruence θ of the group M is semi-admissible from
the right relatively all permutations of the semigroup Π if and only if its kernel H
fulfill the relation Hγ ⊆ γH for all elements γ ∈ Π, or, equivalently, γ−1Hγ ⊆ H.

Indeed, if the left congruence θ of the group M is semi-admissible from the right
relatively permutations of the semigroup Π, then for the kernel H of the congruence
θ we have: let α ∈ H, i.e. α θ ε.

Then, taking into consideration the semi-admissibility from the right of the
congruence θ, we obtain αγ θ γ for all γ ∈ Π. Since θ is a left congruence, then
γ−1αγ θ γ−1γ, γ−1αγ θ ε. Therefore, for all γ ∈ Π we have γ−1Hγ ⊆ H.

Converse. Let kernel the H of a congruence θ satisfy the relation γ−1Hγ ⊆
H for all γ ∈ Π. If αθ β, then β−1α θ ε, whence γ−1β−1αγ θ ε, αγ θ βγ for
all γ ∈ Π. �

Theorem 5. Congruences of an one-sided loop are normal if and only if Π-invariant
subgroups of the group M are normal in M .

We can give sufficient conditions of normality of all congruences of a quasigroup.

Proposition 4. If a quasigroup Q satisfies the condition T−1 ⊆ Π, then in Q all
congruences are normal.

Proof. If θ is a congruence of a quasigroup Q, then, obviously, from aθb follows
αa θ αb for all α ∈ Π.

Since T−1 ⊆ Π, then from ab θ ac follows L−1
a (ab)θL−1

a (ac), bθc, from ca θ ba
follows R−1

a (ca)θR−1
a (ba), cθb. �

Corollary 7. If in a quasigroup Q the condition M = Π is fulfilled, then in the
quasigroup Q all congruences are normal.

Proof. It is easy to see that conditions T−1 ⊆ Π and M = Π are equivalent. �
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Conditions of Proposition 4 and Corollary 7 can be used for concrete classes of
quasigroups. See some examples below.

But, in general, these conditions are only sufficient, since there exists an exam-
ple of a quasigroup, in which all congruences are normal, but T $ Π, or, that is
equivalent, M 6= Π.

Example 1. Let A = { a
2n | a ∈ Z, n ∈ N}, where Z is the set of integers, and N is

the set of natural numbers.

The set A forms a torsion-free abelian group of rank 1 relative to the operation
of addition of elements of the set A [19].

Using the group (A,+) we define on the set A a new quasigroup operation ◦.
Let ϕ be a map of the set A into itself such that ϕx = 1

2
x for all x ∈ A.

It is easy to check that ϕ is an automorphism of the group (A,+). Then (A, ·)
with the form x · y = ϕx + y for all x, y ∈ A is a left loop with the left identity 0.
Indeed, 0 · x = ϕ0 + x = x.

We prove that in the quasigroup (A, ·) M(A, ·) 6= Π(A, ·), and all congruences
are normal.

For this purpose in the beginning we calculate the form of translations of a
quasigroup (A, ·). We have R·

ax = x · a = ϕx + a = (ϕR+
a )x, L·

ax = a · x =
ϕa + x = L+

ϕax. Using results from [14, 29] further it is possible to deduce the
following relations

LM(A, ·) = LM(A,+) ∼= (A,+),
RM(A, ·) ∼= RM(A,+) ⋋ 〈ϕ〉 ∼= (A,+) ⋋ (Z,+),
LΠ(A, ·) = LΠ(A,+),
RΠ(A, ·) = {(ϕnR+

a ) | a ∈ A,n ∈ N}

It is easy to see that M(A, ·) = RM(A, ·) = {(ϕnR+
a ) | a ∈ A,n ∈ Z}, Π(A, ·) =

{(ϕnR+
a ) | a ∈ A,n ∈ N ∪ {0}}. Thus, Π(A, ·) $ M(A, ·). Moreover, if we denote by

Π−1(A) the set {(ϕnR+
a ) | a ∈ A,n ∈ −N}, then M(A) = Π(A) ∪ Π−1(A).

Since (A, ·) is a left loop, we can use Theorem 4. As it follows from Theorem 4,
the subgroups of the group M(A, ·) that are invariant relative to all permutations
of the semigroup Π(A, ·) correspond to congruences of the quasigroup (A, ·).

We demonstrate that any Π-invariant subgroup of the group M(A, ·) is a normal
subgroup of the group M(A, ·).

We notice that following our agreements we have (R+
a ϕ)(x) = ϕ(x + a) = ϕx+

ϕa = (ϕR+
ϕa)(x). Below in this example we shall write Rx instead of R+

x . We have

(ϕ kRa)(ϕ
lRb) = ϕ k+lRϕ la+b, (ϕnRa)

−1 = ϕ−nR−ϕ−na.
It is clear that any element of a subgroup H of the group M has the form

ϕkRb. If H is a Π-invariant subgroup of the group M , then we have: if ϕkRb ∈ H,
then ϕ−nR−ϕ−naϕ

kRbϕ
nRa = ϕkRc ∈ H for all ϕkRb ∈ H, ϕnRa ∈ Π, where

c = −ϕka+ ϕnb+ a.
In other words, IfH is a Π-invariant subgroup of the groupM , then: if ϕkRb ∈ H,

then ϕkRϕnbR−ϕka+a ∈ H for all ϕkRb ∈ H, n ∈ N ∪ {0}, a ∈ A.
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If we change in the last implication a by −a, then we obtain the following im-
plication:

if ϕkRb ∈ H, then ϕkRϕnbRϕka−a ∈ H for all ϕkRb ∈ H, n ∈ N ∪ {0}, a ∈ A. (∗)

From the implication (∗) by a = 0 it follows:

if ϕkRb ∈ H, then ϕkRϕnb ∈ H for all ϕkRb ∈ H, n ∈ N ∪ {0}. (∗∗)

We can write the condition that the Π-invariant subgroupH of group M is a nor-
mal subgroup of group M , in the form: if ϕkRb ∈ H, then ϕnRaϕ

kRbϕ
−nR−ϕ−na =

ϕkRd ∈ H, where d = −ϕ−n(−ϕka− b+ a), for all ϕkRb ∈ H, ϕnRa ∈ Π.

Applying to the last implication condition (∗∗), we obtain the following equiva-
lent condition of normality of Π-invariant group H: if ϕkRb ∈ H, then ϕkRh ∈ H,
where h = ϕka+ b− a for all ϕkRb ∈ H, a ∈ A.

The last implication we can re-write in the form:
if ϕkRb ∈ H, then ϕkRbRϕka−a ∈ H for all ϕkRb ∈ H, a ∈ A.

It is easy to see that the last implication follows from the implication (∗) by
n = 0.

Example 2. Using the group (A,+) from Example 1 we define on the set A a binary
operation ∗ in the following way x ∗ y = 2 · x+ y for all x, y ∈ A. The operation ∗ is
a quasigroup operation, since the map 2 : x 7→ 2 ·x for all x ∈ A is an automorphism
of the group (A,+), moreover, a left loop operation, see Example 1.

We denote by H the following subgroup of the group M(A, ∗): H = 〈R+

1
| 1 ∈

A〉 = {. . . R+

−2
, R+

−1
, R+

0
, R+

1
, R+

2
, . . . }. It is easy to see that H ∼= (Z,+).

We check that the group H is a Π-invariant non-normal subgroup of the
group M .

We use results of Example 1 by ϕ = 2. Thus, if H is a Π-invariant subgroup of
the group M , then we have: 2−nR−2−naR12

nRa = R2n ∈ H for all 2nRa ∈ Π.
We prove that the group H is a non-normal subgroup of the group M . We have

2nRaR12
−nR−2−na = R2−n /∈ H for all 2nRa ∈M such that n > 1.

As it follows from Theorems 2 and 4, the subgroup H of the group M(A, ∗)
induces a non-normal congruence of the quasigroup (A, ∗).

Remark 5. The fact that the group H induces a congruence of the quasigroup
(A, ∗) can be deduced from results of the article of T. Kepka and P. Nemec [16,
Theorem 42], since the quasigroup (A, ∗) is a T-quasigroup, moreover, it is a medial
quasigroup.

3 On normality of congruences of some inverse quasigroups

Definition 4. A quasigroup Q is called rst-inverse quasigroup, if there exist a per-
mutation J of the set Q, some fixed integers r, s, t such that in the quasigroup Q for
all x, y ∈ Q the relation Jr(x ◦ y) ◦ Jsx = J ty is fulfilled [16].
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A (0, 1, 0)-inverse quasigroup is called a CI-quasigroup. A (−1, 0,−1)-inverse
quasigroup is called an WIP-quasigroup [5]. An (m,m+ 1,m)-inverse quasigroup is
called an m-inverse quasigroup [15].

Proposition 5. In rst-quasigroup (Q, ·) all congruences are normal if permutations
Jr and J−t are semi-admissible relative to any congruence of (Q, ·).

Proof. In the language of translations we can re-write Definition 4 in the form
LxJ

rRJsx = J t. Then L−1
x = JrRJsxJ

−t, R−1

Jsx = J−tLxJ
r.

Using Proposition 4 we obtain the required. �

Corollary 8. In CI-quasigroup all congruences are normal.

Corollary 9. In WIP-quasigroup (Q, ·) all congruences are normal if the permuta-
tion J is admissible relative to any congruence of (Q, ·).

Corollary 10. In m-inverse quasigroup (Q, ·) all congruences are normal if the
permutation Jm is admissible relative to any congruence of (Q, ·).

In [17] Definition 4 is generalized in the following way.

Definition 5. A quasigroup Q, ◦) is called an (α, β, γ)-inverse quasigroup if there
exist permutations α, β, γ of the set Q such that α(x ◦ y) ◦ βx = γy for all x, y ∈ Q.

Proposition 6. In (α, β, γ)-quasigroup (Q, ·) all congruences are normal if permu-
tations α and γ−1 are semi-admissible relative to any congruence of (Q, ·).

Proof. The proof repeats the proof of Proposition 5. �

Definition 6. A quasigroup (Q, ◦) has the λ-inverse-property if there exist per-
mutations λ1, λ2, λ3 of the set Q such that λ1x ◦ λ2(x ◦ y) = λ3y for all x, y ∈ Q [8].

Definition 7. A quasigroup (Q, ◦) has the ρ-inverse-property if there exist per-
mutations ρ1, ρ2, ρ3 of the set Q such that ρ1(x ◦ y) ◦ ρ2y = ρ3x for all x, y ∈ Q [8].

Definition 8. A quasigroup (Q, ◦) that has λ-inverse-property and ρ-inverse-
property is called I-inverse quasigroup [8].

Proposition 7. In an I-inverse quasigroup (Q, ·) all congruences are normal if
permutations λ2, λ

−1

3
, ρ1 and ρ−1

3
are semi-admissible relative to any congruence of

(Q, ·).

Proof. From Definition 6 we have Lxλ2Lλ1x = λ3. Then L−1
x = λ2Lλ1xλ

−1

3
. From

Definition 7 we have Ryρ1Rρ2y = ρ3. Therefore R−1
y = ρ1Rρ2yρ

−1

3
. Further we can

apply Proposition 4. �

If in I-inverse quasigroup (Q, ◦) λ2 = λ3 = ρ1 = ρ3 = ε, then (Q, ◦) is called an
IP -quasigroup.

Corollary 11. In IP-quasigroup all congruences are normal [5].

Proof. The proof follows from the definition of IP-quasigroup and Propo-
sition 7. �
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4 On regularity of congruences of quasigroups

Definition 9. A congruence is called regular if it is uniquely defined by any its coset,
the coset of a congruence is called regular if it is a coset of only one congruence.

In [21] A.I. Mal’tsev has given necessary and sufficient conditions that a normal
complex K of an algebraic systems A is a coset of only one congruence, i.e. K is a
coset of only one congruence of a system A.

For this purpose for any set S ⊆ A the congruence mod S is constructed. Ele-
ments a, b are equivalent a ∼ b (mod S) if either a = b, or a, b ∈ S, or a = αu, b = αv,
where u, v ∈ S, α is a translation of the algebraic system A.

A.I. Mal’tsev names elements a and b comparable if there exists a sequence
x1, . . . , xn of elements from A such that: a ∼ x1, x1 ∼ x2, . . . , xn ∼ b (mod S).

The binary relation (mod S) is a congruence on an algebraic system A, and the
congruence (mod S) is minimal among all congruences for which elements of the set
S are comparable with each other [21].

Theorem 6. The normal complex K is a coset of only one congruence of an alge-
braic system A if and only if elements a, b ∈ A, for which by any translation α the
statements αa ∈ K and αb ∈ K are equivalent, are comparable (mod K) [21].

We notice if in Theorem 6 A is a binary quasigroup, then α is an element of
Π(A).

If in Mal’tsev theorem we pass from a quasigroup A to its homomorphic image
Ā = A/mod K, then we shall have the following conditions of regularity of a normal
complex K of a quasigroup A.

Proposition 8. The normal complex K is a coset of only one congruence of a
quasigroup A if and only if for each pair of elements ā, b̄ ∈ Ā for which by any
translation ᾱ ∈ Ā the statements ᾱā = k̄ and ᾱb̄ = k̄ are equivalent the equality
ā = b̄ is fulfilled.

Remark 6. Let’s remark if Ā is a binary quasigroup, then conditions of Proposition
8 are fulfilled. Indeed, if we take translation ᾱ such that ᾱ = L̄c and c̄ · ā = k̄, then
we have c̄ · b̄ = k̄ by conditions of the proposition. Then ā = c̄\k̄ = b̄.

Example 3. It is possible to construct division groupoid in which the conditions
of Proposition 8 are satisfied. We denote by (Q,+) the group of rational numbers
relative to the operation of addition, and by (Z,+) the group of integers relative to
the operation of addition. On the factor group Ā = (Q/Z,+) we define operation
x ◦ y = 2x+ y for all x, y ∈ Ā.

It is easy to check up that (Ā, ◦) is a division groupoid. We shall show that this
groupoid satisfies conditions of Proposition 8. Since (Ā, ◦) is a division groupoid,
then for any k̄ ∈ Ā there exists c̄ ∈ Ā such that c̄ ◦ ā = k̄, and then by conditions of
this proposition also c̄ ◦ b̄ = k̄. Therefore 2c̄+ ā = k̄, 2c̄+ b̄ = k̄, ā = b̄ = k̄ − 2c̄.
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Proposition 9. There exist a quasigroup Q and its subset K such that K is a coset
of more than one congruence.

Proof. It is known (see [9. p. 10]) that any division groupoid is a homomorphic
image of some quasigroups.

From Mal’tsev theorem it follows that to give an example of a quasigroup in
which not all congruences are regular it is necessary to find a pair of elements
a, b ∈ Q such that a ≁ b (mod K), where K is a coset of some congruence, but for
which by any translation α statements αa ∈ K and αb ∈ K are equivalent.

We pass to homomorphic image P = Q/modK of quasigroups Q. Then condi-
tions that the coset K is not regular are the following: ā 6= b̄, but for any c ∈ Q
the equality c̄ · ā = k̄ is equivalent with the equality c̄ · b̄ = k̄, the equality ā · c̄ = k̄
is equivalent to the equality b̄ · c̄ = k̄ where k̄ is an image of the set K in the grou-
poid P .

We construct the following division groupoid. Let C be a set of complex numbers,
x◦y = (xy)2 for all x, y ∈ C. It is easy to check that (C, ◦) is a commutative division
groupoid.

Let k̄ = 4. Then the equation a ◦ y = 4 ⇐⇒ (ay)2 = 4, ay = ±2, y = ± 2

a
has

two solutions. And, if one of radicals is a solution of the equations a ◦ y = 4, so is
the other, for any a ∈ C. If we take in a quasigroup Q pre-images of elements of 2
and −2, then we find the necessary pair. �

5 On behavior of congruences by an isotopy

A quasigroup (Q, ◦) is an isotope of a quasigroup (Q, ·) if there exist permutations
α, β, γ of the set Q such that x ◦ y = γ−1(αx · βy) for all x, y ∈ Q. We can also
write this fact in the form (Q, ◦) = (Q, ·)T , where T = (α, β, γ) [5,6,23]. An isotopy
T = (α, β, γ) is admissible relative to a binary relation θ, if the permutations α, β, γ
are admissible relative to θ.

If (Q, ·) is a quasigroup, then an isotopy of the form (R−1
a , L−1

b , ε), where Ra, Lb

are some fixed translations of the quasigroup (Q, ·) is called LP-isotopy. Any LP-
isotopic image of a quasigroup is a loop [5,6].

In [5], p. 59 the following lemma is proved.

Lemma 2. Let θ be a normal congruence of a quasigroup (Q, ·). If a quasigroup
(Q, ◦) is isotopic to (Q, ·) and the isotopy (α, β, γ) is admissible relative to θ, then
θ is a normal congruence also in (Q, ◦).

Corollary 12. If (Q, ·) is a quasigroup, (Q,+) is a loop of the form x + y =
R−1

a x · L−1

b y for all x, y ∈ Q, then nCon(Q, ·) ⊆ nCon(Q,+), where nCon(Q, ·) is
the set of normal congruences of the quasigroup (Q, ·), and nCon(Q,+) is the set of
normal congruences of the loop (Q,+).

Proof. If θ is a normal congruence of a quasigroup (Q, ·), then, since θ is admissible
relative to the isotopy T = (R−1

a , L−1

b , ε), θ is also a normal congruence of a loop
(Q,+). �
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Remark 7. It is easy to see, if x + y = R−1
a x · L−1

b y, then x · y = Rax + Lby. If
in conditions of Corollary 12 we shall in addition suppose, that the isotopy T−1 =
(Ra, Lb, ε) is admissible relative to any normal congruence of the loop (Q,+), then
we obtain the following equality nCon(Q, ·) = nCon(Q,+).

Proposition 10. The lattice (L,∨,∧) of normal congruences of a quasigroup (Q, ·)
is isomorphic to a sublattice of the lattice (L1,∨,∧) of normal congruences of isotope
loop (Q, ◦) [9].

Proof. By an LP-isotopy T (T = (R−1
a , L−1

b , ε)) a normal congruence θ of quasi-
group (Q, ·) is also a normal congruence of a loop (Q, ⋆), (Q, ⋆) = (Q, ·)T (Corollary
12).

Since the operation ∧ in sets of congruences of a quasigroup (Q, ·) and loops
(Q, ⋆) coincides with the set-theoretic intersection, and the operation ∨ coincides,
in view of the permutability of normal congruences, with their product as binary
relations ([30]), we can state that the lattice of normal congruences of a quasigroup
(Q, ·) is a sublattice of the lattice of normal congruences of the loop (Q, ⋆). This
corollary is proved, since any isotopy between a loop and a quasigroup has the form
(R−1

a , L−1

b , ε)(ϕ,ϕ, ϕ). �

Obviously, any permutation of the semigroup Π(Q, ·) is semi-admissible rela-
tive to any congruence of a quasigroup (Q, ·). An isotopy is semi-admissible, if all
permutations included in it are semi-admissible.

Proposition 11. Let θ be a congruence of a quasigroup (Q, ·). If a quasigroup (Q, ◦)
is isotopic to (Q, ·), and the isotopy T is semi-admissible relative to θ, then θ is a
congruence also in (Q, ◦).

Proof. We suppose that the isotopy T has the form T = (α, β, γ). If aθb, then
βaθβb, αc · βaθαc · βb, γ−1(αc · βa)θγ−1(αc · βb).

Finally, we obtain (c ◦ a)θ(c ◦ b). Similarly, if aθb, then a ◦ cθb ◦ c. �

Proposition 12. If in a quasigroup (Q, ·) there exist elements a, b such that R−1
a ,

L−1

b ∈ Π, then the lower semilattice (L1,∧) of congruences of a quasigroup (Q, ·) is
a subsemilattice of the semilattice (L2,∧) of congruences of the loop (Q, ◦) which is
an isotope of a quasigroup (Q, ·) of the form (R−1

a , L−1

b , ε).

Proof. If R−1
a , L−1

b ∈ Π, then the isotopy (R−1
a , L−1

b , ε) is admissible relative to
any congruence of quasigroup (Q, ·). The corollary is true, since the operations ∧ in
(L1,∧) and (L2,∧) coincide with the set-theoretic intersection of congruences. �

In any IP-loop (Q, ◦) with the identity 1 the map J : a 7→ a−1 for all a ∈ Q,
where a ◦ a−1 = 1, is a permutation of the set Q, J 2 = ε ([11]).

Example 4. If (Q, ◦) is an IP-loop, (Q, ·) is its isotope of the form (αJτ , βJκ, ε),
where α, β ∈ M(Q, ◦), τ, κ ∈ {0, 1}, i.e. x · y = αJτx ◦ βJκy for all x, y ∈ Q, then
Con(Q, ◦) = nCon(Q, ·).
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Proof. The permutation J is an antiautomorphism in (Q, ◦) and any normal con-
gruence in (Q, ◦) is admissible relative to this permutation. Indeed, if xθy, then
1θx−1 ◦ y, y−1θ(x−1 ◦ y) ◦ y−1, y−1θx−1, x−1θy−1 and in the similar way xθy follows
from x−1θy−1.

By Corollary 11 in an IP-loop all congruences are normal, i.e. Con(Q, ◦) =
nCon(Q, ◦). Then permutations α, β and J are admissible relative to any congruence
of the loop (Q, ◦), by Lemma 2 Con(Q, ◦) ⊆ nCon(Q, ·).

Since (Q, ·) = (Q, ◦)(αJτ , βJκ, ε), then (Q, ◦) = (Q, ·)((αJτ )−1, (βJκ)−1, ε). It is
known ([5,6]) that every principal isotopy (the third component of such isotopy is an
identity mapping) of a quasigroup (Q, ·) to a loop (Q, ◦) has the form (R−1

a , L−1

b , ε),
where Rax = x · a, Lbx = b · x.

Thus, taking into consideration Corollary 12, we have: nCon(Q, ·) ⊆ Con(Q, ◦).
Therefore nCon(Q, ·) = Con(Q, ◦). �

Example 5. If (Q, ◦) is a CI-loop, (Q, ·) is its isotope of the form x·y = αJτx◦βJκy
for all x, y ∈ Q, where α, β ∈M(Q, ◦), τ, κ ∈ {0, 1}, then Con(Q, ◦) = nCon(Q, ·).

Proof. The permutation J is an automorphism in (Q, ◦) ([5]) and any normal
congruence in (Q, ◦) is admissible relative to this permutation. Indeed, if xθy, then
1θy ◦ Jx, Jyθ(y ◦ Jx) ◦ Jy, JyθJx, JxθJy.

In any CI-quasigroup (Q, ◦) the following equality is true x ◦ (y ◦ Jx) = y for all
x, y ∈ Q [16]. If JxθJy, then y ◦ Jx θ y ◦ Jy, y ◦ Jx θ 1, x ◦ (y ◦ Jx) θ x, yθx.

By Corollary 8 in the loop (Q, ◦) all congruences are normal. Therefore, permu-
tations α, β are admissible relative to any congruence of the loop (Q, ◦). �
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